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WEAK ALMOST PERIODIC AND OPTIMAL MILD SOLUTIONS
OF FRACTIONAL EVOLUTION EQUATIONS

AMAR DEBBOUCHE, MAHMOUD M. EL-BORAI

Abstract. In this article, we prove the existence of optimal mild solutions

for linear fractional evolution equations with an analytic semigroup in a Ba-

nach space. As in [16], we use the Gelfand-Shilov principle to prove existence,
and then the Bochner almost periodicity condition to show that solutions are

weakly almost periodic. As an application, we study a fractional partial dif-

ferential equation of parabolic type.

1. Introduction

The object of this paper is to study the fractional evolution equation

dαu(t)
dtα

+ (A−B(t))u(t) = f(t), t > t0 (1.1)

in a Banach space X, where 0 < α ≤ 1, u is an X-valued function on R+ = [0,∞),
and f is a given abstract function on R+ with values in X. We assume that -A
is a linear closed operator defined on a dense set S in X into X, {B(t) : t ∈ R+}
is a family of linear bounded operators defined on X into X. It is assumed that
-A generates an analytic semigroup Q(t) such that ‖Q(t)‖ ≤ M for all t ∈ R+,
Q(t)h ∈ S, ‖AQ(t)h‖ ≤ M

t ‖h‖ for every h ∈ X and all t ∈ (0,∞).
Let X be a uniformly convex Banach space equipped with a norm ‖ · ‖ and X∗

its topological dual space. N’Guerekata [16] gave necessary conditions to ensure
that the so-called optimal mild solutions of u′(t) = Au(t) + f(t) are weakly almost
periodic. Following Gelfand and Shilov [10], we define the fractional integral of
order α > 0 as

Iα
a f(t) =

1
Γ(α)

∫ t

a

(t− s)α−1f(s)ds,

also, the fractional derivative of the function f of order 0 < α < 1 as

aDα
t f(t) =

1
Γ(1− α)

d

dt

∫ t

a

f(s)(t− s)−αds,

where f is an abstract continuous function on the interval [a, b] and Γ(α) is the
Gamma function, see [14, 18].
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Definition 1.1. By a solution of (1.1), we mean a function u with values in X
such that:

(1) u is continuous function on R+ and u(t) ∈ D(A),
(2) dαu

dtα exists and continuous on (0,∞), 0 < α < 1, and u satisfies (1.1) on
(0,∞).

It is suitable to rewrite equation (1.1) in the form

u(t) = u(t0) +
1

Γ(α)

∫ t

t0

(t− s)α−1[(B(s)−A)u(s) + f(s)]ds. (1.2)

According to [5, 6, 7, 8, 9], a solution of equation (1.2) can be formally represented
by

u(t) =
∫ ∞

0

ζα(θ)Q((t− t0)αθ)u(t0)dθ

+ α

∫ t

t0

∫ ∞

0

θ(t− s)α−1ζα(θ)Q((t− s)αθ)F (s)dθds,

(1.3)

where F (t) = B(t)u(t) + f(t) and ζα is a probability density function defined on
(0,∞) such that its Laplace transform is given by∫ ∞

0

e−θxζα(θ)dθ =
∞∑

j=0

(−x)j

Γ(1 + αj)
, 0 < α ≤ 1, x > 0,

A continuous solution of the integral equation (1.3) is called a mild solution of (1.1).
The theory of almost periodic functions with values in a Banach space was

developed by Bohr, Bochner, von Neumann, and others [1, 3]. See also [2, 4,
13, 16, 17, 19].

Definition 1.2. A function f : R → X is called (Bochner) almost periodic if
(i) f is strongly continuous, and
(ii) for each ε > 0 there exists l(ε) > 0, such that every interval I of length l(ε)

contains a number τ such that supt∈R ‖f(t + τ)− f(t)‖ < ε.

2. Optimal mild solutions

As in N’Guerekata [16], let Ωf denote the set of mild solutions u(t) of (1.1) which
are bounded over R; that is

µ(u) = sup
t∈R

‖u(t)‖ < ∞, (2.1)

where R = (−∞,∞). We assume here that Ωf 6= ∅, and recall that a bounded mild
solution ũ(t) of (1.1) is called optimal mild solution of (1.1) if

µ(ũ) ≡ µ∗ = inf
u∈Ωf

µ(u). (2.2)

Theorem 2.1. Assume that Ωf 6= ∅ and f : R → X is a nontrivial strongly
continuous function, then (1.1) has a unique optimal mild solution.

Compare with [22, Theorem 1.1, p.138] and [16, Theorem 1. p. 673]. Our proof
is based on the following lemma.

Lemma 2.2 ([12, Corollary 8.2.1]). If K is a non-empty convex and closed subset of
a uniformly convex Banach space X and v /∈ K, then there exists a unique k0 ∈ K
such that |v − k0| = infk∈K |v − k|.
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Proof of Theorem 2.1. It suffices to prove that Ωf is a convex and closed set because
the trivial solution 0 /∈ Ωf , then we use lemma 2.2 to deduce the uniqueness of the
optimal mild solution, see [16]. For the convexity of Ωf , we consider two distinct
bounded mild solutions u1(t) and u2(t), and a real number 0 ≤ λ ≤ 1 and let
u(t) = λu1(t) + (1 − λ)u2(t), t ∈ R. For every t0 ∈ R, u(t) is continuous and ( see
[16]) has the integral representation

u(t) = T (t− t0)u(t0) +
∫ t

t0

S(t− s)F (s)ds, t ≥ t0, (2.3)

where

T (t) =
∫ ∞

0

ζα(θ)Q(tαθ)dθ, S(t) = α

∫ ∞

0

θtα−1ζα(θ)Q(tαθ)dθ.

We have u(t0) = λu1(t0)+(1−λ)u2(t0), then u(t) is a mild solution of (1.1). We note
that u(t) is bounded over R since µ(u) = supt∈R ‖u(t)‖ ≤ λµ(u1)+(1−λ)µ(u2) < ∞,
we conclude that u(t) ∈ Ωf . Now we show that Ωf is closed. Let un ∈ Ωf a sequence
such that limn→∞ un(t) = u(t), t ∈ R. For all t0 ∈ R and t ≥ t0 we have

un(t) = T (t− t0)un(t0) +
∫ t

t0

S(t− s)[B(s)un(s) + f(s)]ds, (2.4)

It is clearly that T (t − t0) and S(t − s) are continuous operators, then for every
fixed t and t0 with t ≥ t0, we have

lim
n→∞

T (t− t0)un(t0) = lim
n→∞

∫ ∞

0

ζα(θ)Q((t− t0)αθ)un(t0)dθ

=
∫ ∞

0

ζα(θ)Q((t− t0)αθ)dθ lim
n→∞

un(t0)

= T (t− t0) lim
n→∞

un(t0)

= T (t− t0)u(t0).

Similarly we have

lim
n→∞

∫ t

t0

S(t− s)[B(s)un(s) + f(s)]ds =
∫ t

t0

S(t− s)[ lim
n→∞

B(s)un(s) + f(s)]ds

=
∫ t

t0

S(t− s)F (s)ds.

Then we deduce that

u(t) = T (t− t0)u(t0) +
∫ t

t0

S(t− s)F (s)ds,

for all t0 ∈ R, t ≥ t0, which means that u(t) is a mild solution of (1.1). Finally we
show that u(t) is bounded over R. We can write (2.3) as

u(t) = T (t− t0)u(t0) +
∫ t

t0

S(t− s)F (s)ds− un(t) + un(t)

= T (t− t0)[u(t0)− un(t0)] +
∫ t

t0

S(t− s)(B(u− un))(s)ds + un(t),
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for n = 1, 2, . . . , and every t0 ∈ R such that t ≥ t0. Since
∫∞
0

ζα(θ)dθ = 1, it
follows that ‖T (t)‖ ≤ M , again, since

∫∞
0

θζα(θ)dθ = 1 (see [9, p. 54]), it follows
that ‖S(t)‖ ≤ αMtα−1. Let ‖B‖ ≤ C. These estimates lead to

‖u(t)‖ ≤ M‖u(t0)− un(t0)‖+ αMC

∫ t

t0

(t− s)α−1‖u(s)− un(s)‖ds + ‖un(t)‖.

Choose n large enough, for every ε1, ε2 > 0 we get

µ(u) ≤ ε1 + ε2 + µ(un) < ∞.

Thus u ∈ Ωf . This completes the proof. �

3. Weak almost periodic solutions

To formulate a property of almost periodic functions, which is equivalent to
Definition 1.2, we discuss the concept of normality of almost periodic functions.
Namely, let f(t) be almost periodic in t ∈ R, then for every sequence of real
numbers (s′n) there exists a subsequence (sn) such that f(t + sn) is uniformly
convergent in t ∈ R. see Hamaya [11, p. 188]. It is well known [15, 16, 21, 22]
that: f : R → X is weakly almost periodic if for every sequence of real numbers
(s′n) there exists a subsequence (sn) such that every (f(t + sn)) is convergent in
the weak sense, uniformly in t ∈ R. In other words, for every u∗ ∈ X∗, the
sequence (〈u∗, f(t + sn)〉) is uniformly convergent in t ∈ R, where 〈·, ·〉 denotes
duality 〈X∗, X〉. For each Q(t), t ∈ R+, Q∗(t) denotes the adjoint operator of Q(t).

Theorem 3.1. Let f : R → X be almost periodic and a nontrivial strongly contin-
uous function, also assume that f ∈ L1(R) and Q∗(t) ∈ L(X∗) for every t ∈ R+,
then the optimal mild solution of (1.1) is weakly almost periodic.

Proof. As in N’Guerekata [16], let u(t) be the unique optimal mild solution of (1.1),
by Theorem 2.1

u(t) = T (t− t0)u(t0) +
∫ t

t0

S(t− s)F (s)ds,

for all t0 ∈ R, t ≥ t0. Let (s′n) be an arbitrary sequence of real numbers. Since f is
almost periodic, we can extract a subsequence (sn) ⊂ (s′n) such that limn→∞ f(t +
sn) = g(t) uniformly in t ∈ R. We note that g(t) is also strongly continuous. For
fixed t0 ∈ R, we can obtain a subsequence of (sn), which again we will denote (sn),
such that

weak-lim
n→∞

u(t0 + sn) = v0 ∈ X.

Since X is a reflexive Banach space, then the function

y(t) = T (t− t0)v0 +
∫ t

t0

S(t− s)(Bu + g)(s)ds,

is strongly continuous. It is a mild solution of

dαu(t)
dtα

+ (A−B(t))u(t) = g(t), t ∈ R.

�

We need the following lemmas.
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Lemma 3.2. For each t ∈ R, we have

weak-lim
n→∞

u(t + sn) = y(t).

Proof. We can write

u(t + sn) = T (t− t0)u(t0 + sn) +
∫ t

t0

S(t− s)[(Bu)(s) + f(s + sn)]ds,

n = 1, 2, . . . (see for instance [20, p. 721]). Let u∗ ∈ X∗, then we have

〈u∗, T (t− t0)u(t0 + sn)〉 − 〈u∗, T (t− t0)v0〉 = 〈T ∗(t− t0)u∗, u(t0 + sn)− v0〉,

for every n = 1, 2, . . . , we deduce that the sequence (T (t− t0)u(t0 + sn)) converges
to T (t− t0)v0 in the weak sense. Also we have∫ t

t0

S(t− s)[(Bu)(s) + f(s + sn)]ds−
∫ t

t0

S(t− s)[(Bu)(s) + g(s)]ds

≤ ‖
∫ t

t0

S(t− s)[f(s + sn)− g(s)]ds‖

≤ αM

∫ t

t0

(t− s)α−1‖f(s + sn)− g(s)‖ds.

This leads to

lim
n→∞

∫ t

t0

S(t− s)[(Bu)(s) + f(s + sn)]ds =
∫ t

t0

S(t− s)[(Bu)(s) + g(s)]ds,

in the strong sense, then consequently in the weak sense in X. �

Lemma 3.3. µ(y) = µ(u) = µ∗.

Proof. Since u(t) is an optimal mild solution of (1.1), we have µ∗ = µ(u) =
supt∈R ‖u(t)‖. Let u∗ ∈ X∗, then by lemma 3.2 we obtain

lim
n→∞

〈u∗, u(t + sn)〉 = 〈u∗, y(t)〉,

for every t ∈ R. For each n = 1, 2, . . . , we have

‖〈u∗, u(t + sn)〉‖ ≤ ‖u∗‖‖u(t + sn)‖ ≤ ‖u∗‖µ∗.

Therefore, ‖〈u∗, y(t)〉‖ ≤ ‖u∗‖µ∗ for every t ∈ R, and consequently ‖y(t)‖ ≤ µ∗

for every t ∈ R, so that µ(y) < µ∗. We suppose that µ(y) < µ∗. Note that
limn→∞ g(t− sn) = f(t) uniformly in t ∈ R because f(t) is almost periodic. Since
X is a reflexive Banach space, we can extract from the sequence (sn), a subsequence
which we still denote (sn) such that (y(t0 − sn)) is weakly convergent to z ∈ X.
We have

lim
n→∞

y(t− sn) = T (t− t0)z +
∫ t

t0

S(t− s)F (s)ds

in the weak sense for every t ∈ R. Now we consider the function

Z(t) = T (t− t0)z +
∫ t

t0

S(t− s)F (s)ds.

It is a bounded mild solution of equation (1.1). Similarly as above, we have µ(Z) ≤
µ(y); therefore, µ(Z) < µ∗, which is absurd by definition of µ∗. �
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Lemma 3.4. µ(y) = infv∈Ωg
µ(v); i.e., y(t) is an optimal mild solution of the

equation
dαu(t)

dtα
+ (A−B(t))u(t) = g(t), t ∈ R. (3.1)

Proof. By lemma 3.3, y(t) is bounded over R. Also y(t) is a mild solution of (3.1)
which implies y(t) ∈ Ωg. It remains to prove that y(t) is optimal. Suppose it is
not. Since Ωg 6= ∅, by Theorem 2.1, there exists a unique optimal solution v(t) of
(3.1). We have µ(v) < µ(y) and

v(t) = T (t− t0)v(t0) +
∫ t

t0

S(t− s)(Bu + g)(s)ds,

for all t0 ∈ R, t ≥ t0. We can find a subsequence (snk
) ⊂ (sn) such that

weak-lim
k→∞

v(t− snk
) = T (t− t0)z +

∫ t

t0

S(t− s)F (s)ds ≡ V (t).

Noting that V (t) ∈ Ωf and µ(V ) ≤ µ(v) < µ(y), which is absurd. Therefore, y(t)
is an optimal mild solution of (3.1), and in fact the only one by Theorem 2.1. �

Proof of Theorem 3.1. To prove that u(t) is weakly almost periodic, it suffices to
show that

weak-lim
n→∞

u(t + sn) = y(t)

uniformly in t ∈ R. Suppose that this does not hold; then there exists u∗ ∈ X∗

such that
lim

n→∞
〈u∗, u(t + sn)〉 = 〈u∗, y(t)〉

is not uniform in t ∈ R. Consequently, we can find a number γ > 0, and a sequence
(tk) with two subsequences (s′k) and (s′′k) of (sn) such that

|〈u∗, u(t + s′k)− u(t + s′′k)〉| > γ (3.2)

for all k = 1, 2, . . . . Again, let us extract two subsequences of (s′k) and (s′′k) respec-
tively, with the same notation, such that

lim
k→∞

f(t + tk + s′k) = g1(t), text lim
k→∞

f(t + tk + s′′k) = g2(t)

both uniformly in t ∈ R, because f is almost periodic. As we did previously, we
may obtain

weak-lim
k→∞

f(t + tk + s′k) = T (t− t0)z1 +
∫ t

t0

S(t− s)[(Bu)(s) + g1(s)]ds ≡ y1(t),

and

weak-lim
k→∞

f(t + tk + s′′k) = T (t− t0)z2 +
∫ t

t0

S(t− s)[(Bu)(s) + g2(s)]ds ≡ y2(t)

for each t ∈ R, where y1(t) and y2(t) are optimal mild solutions in Ωg1 and Ωg2 ,
respectively. Since limk→∞ f(t + tk + sk) exists uniformly in t ∈ R, and (s′k), (s′′k)
are two subsequences of (sk), we will get

sup
s∈R

‖f(s + s′k)− f(s + s′′k)‖ < ε

if k ≥ k0(ε) and consequently

sup
s∈R

‖f(t + tk + s′k)− f(t + tk + s′′k)‖ < ε
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for k ≥ k0(ε), which shows that g1(s) = g2(s) for all s ∈ R. By the uniqueness of the
optimal mild solution we get y1(t) = y2(t), t ∈ R. But y1(0) = weak-limk→∞ u(tk +
s′k) and y2(0) = weak-limk→∞ u(tk + s′′k). Clearly y1(0) = y2(0) contradicts the
inequality (3.2) above. This completes the proof. �

4. Application

Consider the partial differential equation of fractional order

∂αu(x, t)
∂tα

+
∑

|q|≤2m

aq(x)Dq
xu(x, t) =

∫
Rn

K(x, η, t)u(η, t)dη + f(x, t), (4.1)

where t ∈ R+, x ∈ Rn, Dq
x = Dq1

x1
. . . Dqn

xn
, Dxi

= ∂
∂xi

, q = (q1, . . . , qn) is an n-
dimensional multi-index, |q| = q1 + · · · + qn. Let L2(Rn) be the set of all square
integrable functions on Rn. We denote by Cm(Rn) the set of all continuous real-
valued functions defined on Rn which have continuous partial derivatives of order
less than or equal to m. By Cm

0 (Rn) we denote the set of all functions f ∈ Cm(Rn)
with compact supports. Let Hm

0 (Rn) be the completion of Cm
0 (Rn) with respect

to the norm

‖f‖2
m =

∑
|q|≤m

∫
Rn

|Dq
xf(x)|2dx.

It is supposed that
(i) The operator A = −

∑
|q|=2m aq(x)Dq

x is uniformly parabolic on Rn. In other
words, all the coefficients aq, |q| = 2m, are continuous and bounded on Rn and

(−1)m
∑

|q|=2m

aq(x)ξq ≥ c|ξ|2m, c > 0,

for all x ∈ Rn and all ξ 6= 0, ξ ∈ Rn, where ξq = ξq1
1 . . . ξqn

n and |ξ|2 = ξ2
1 + · · ·+ ξ2

n.
(ii) All the coefficients aq, |q| = 2m, satisfy a uniform Hölder condition on Rn,∫

Rn K2(x, η, t)dη < ∞. It’s proved, see [5, p. 438], that the operator A defined by
(i) with domain of definition S = H2m(Rn) generates an analytic semigroup Q(t)
defined on L2(Rn), and that H2m(Rn) is dense in X = L2(Rn). Which achieves
the proof of the existence of (bounded) mild solutions of the equation (4.1).
(iii) f is a nontrivial strongly continuous function defined on Rn × R+ satisfying:
For every ε > 0 there exists β > 0 such that every interval [a, a + β] contains at
least a point τ such that∫

Rn

|f(x, t + τ)− f(x, t)|2dx < ε,

for all t ∈ R+ and all x ∈ Rn. Applying Theorems 2.1, 3.1, stated above, we deduce
that (4.1) has a unique optimal mild solution which is weakly almost periodic.
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