Electronic Journal of Differential Equations, Vol. 2009(2009), No. 46, pp. 1–8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

WEAK ALMOST PERIODIC AND OPTIMAL MILD SOLUTIONS OF FRACTIONAL EVOLUTION EQUATIONS

AMAR DEBBOUCHE, MAHMOUD M. EL-BORAI

ABSTRACT. In this article, we prove the existence of optimal mild solutions for linear fractional evolution equations with an analytic semigroup in a Banach space. As in [16], we use the Gelfand-Shilov principle to prove existence, and then the Bochner almost periodicity condition to show that solutions are weakly almost periodic. As an application, we study a fractional partial differential equation of parabolic type.

1. INTRODUCTION

The object of this paper is to study the fractional evolution equation

$$\frac{d^{\alpha}u(t)}{dt^{\alpha}} + (A - B(t))u(t) = f(t), \quad t > t_0$$
(1.1)

in a Banach space X, where $0 < \alpha \leq 1$, u is an X-valued function on $\mathbb{R}^+ = [0, \infty)$, and f is a given abstract function on \mathbb{R}^+ with values in X. We assume that -A is a linear closed operator defined on a dense set S in X into X, $\{B(t) : t \in \mathbb{R}^+\}$ is a family of linear bounded operators defined on X into X. It is assumed that -A generates an analytic semigroup Q(t) such that $\|Q(t)\| \leq M$ for all $t \in \mathbb{R}^+$, $Q(t)h \in S$, $\|AQ(t)h\| \leq \frac{M}{t} \|h\|$ for every $h \in X$ and all $t \in (0, \infty)$.

Let X be a uniformly convex Banach space equipped with a norm $\|\cdot\|$ and X^* its topological dual space. N'Guerekata [16] gave necessary conditions to ensure that the so-called optimal mild solutions of u'(t) = Au(t) + f(t) are weakly almost periodic. Following Gelfand and Shilov [10], we define the fractional integral of order $\alpha > 0$ as

$$I_a^{\alpha}f(t) = \frac{1}{\Gamma(\alpha)} \int_a^t (t-s)^{\alpha-1} f(s) ds,$$

also, the fractional derivative of the function f of order $0 < \alpha < 1$ as

$${}_aD_t^{\alpha}f(t) = \frac{1}{\Gamma(1-\alpha)}\frac{d}{dt}\int_a^t f(s)(t-s)^{-\alpha}ds,$$

where f is an abstract continuous function on the interval [a, b] and $\Gamma(\alpha)$ is the Gamma function, see [14, 18].

²⁰⁰⁰ Mathematics Subject Classification. 34G10, 26A33, 35A05, 34C27, 35B15.

Key words and phrases. Linear fractional evolution equation; Optimal mild solution;

weak almost periodicity; analytic semigroup. ©2009 Texas State University - San Marcos.

Submitted March 10, 2009. Published March 30, 2009.

Definition 1.1. By a solution of (1.1), we mean a function u with values in X such that:

- (1) u is continuous function on \mathbb{R}^+ and $u(t) \in D(A)$,
- (2) $\frac{d^{\alpha}u}{dt^{\alpha}}$ exists and continuous on $(0,\infty)$, $0 < \alpha < 1$, and u satisfies (1.1) on $(0,\infty)$.

It is suitable to rewrite equation (1.1) in the form

$$u(t) = u(t_0) + \frac{1}{\Gamma(\alpha)} \int_{t_0}^t (t-s)^{\alpha-1} [(B(s) - A)u(s) + f(s)] ds.$$
(1.2)

According to [5, 6, 7, 8, 9], a solution of equation (1.2) can be formally represented by

$$u(t) = \int_0^\infty \zeta_\alpha(\theta) Q((t-t_0)^\alpha \theta) u(t_0) d\theta + \alpha \int_{t_0}^t \int_0^\infty \theta(t-s)^{\alpha-1} \zeta_\alpha(\theta) Q((t-s)^\alpha \theta) F(s) d\theta ds,$$
(1.3)

where F(t) = B(t)u(t) + f(t) and ζ_{α} is a probability density function defined on $(0, \infty)$ such that its Laplace transform is given by

$$\int_0^\infty e^{-\theta x} \zeta_\alpha(\theta) d\theta = \sum_{j=0}^\infty \frac{(-x)^j}{\Gamma(1+\alpha j)}, \quad 0 < \alpha \le 1, x > 0,$$

A continuous solution of the integral equation (1.3) is called a mild solution of (1.1).

The theory of almost periodic functions with values in a Banach space was developed by Bohr, Bochner, von Neumann, and others [1, 3]. See also [2, 4, 13, 16, 17, 19].

Definition 1.2. A function $f : \mathbb{R} \to X$ is called (Bochner) almost periodic if

- (i) f is strongly continuous, and
- (ii) for each $\epsilon > 0$ there exists $l(\epsilon) > 0$, such that every interval I of length $l(\epsilon)$ contains a number τ such that $\sup_{t \in \mathbb{R}} \|f(t+\tau) f(t)\| < \epsilon$.

2. Optimal mild solutions

As in N'Guerekata [16], let Ω_f denote the set of mild solutions u(t) of (1.1) which are bounded over \mathbb{R} ; that is

$$\mu(u) = \sup_{t \in \mathbb{R}} \|u(t)\| < \infty, \tag{2.1}$$

where $\mathbb{R} = (-\infty, \infty)$. We assume here that $\Omega_f \neq \emptyset$, and recall that a bounded mild solution $\tilde{u}(t)$ of (1.1) is called optimal mild solution of (1.1) if

$$\mu(\tilde{u}) \equiv \mu^* = \inf_{u \in \Omega_f} \mu(u). \tag{2.2}$$

Theorem 2.1. Assume that $\Omega_f \neq \emptyset$ and $f : \mathbb{R} \to X$ is a nontrivial strongly continuous function, then (1.1) has a unique optimal mild solution.

Compare with [22, Theorem 1.1, p.138] and [16, Theorem 1. p. 673]. Our proof is based on the following lemma.

Lemma 2.2 ([12, Corollary 8.2.1]). If K is a non-empty convex and closed subset of a uniformly convex Banach space X and $v \notin K$, then there exists a unique $k_0 \in K$ such that $|v - k_0| = \inf_{k \in K} |v - k|$.

EJDE-2009/46

Proof of Theorem 2.1. It suffices to prove that Ω_f is a convex and closed set because the trivial solution $0 \notin \Omega_f$, then we use lemma 2.2 to deduce the uniqueness of the optimal mild solution, see [16]. For the convexity of Ω_f , we consider two distinct bounded mild solutions $u_1(t)$ and $u_2(t)$, and a real number $0 \leq \lambda \leq 1$ and let $u(t) = \lambda u_1(t) + (1 - \lambda)u_2(t), t \in \mathbb{R}$. For every $t_0 \in \mathbb{R}$, u(t) is continuous and (see [16]) has the integral representation

$$u(t) = T(t - t_0)u(t_0) + \int_{t_0}^t S(t - s)F(s)ds, \quad t \ge t_0,$$
(2.3)

where

$$T(t) = \int_0^\infty \zeta_\alpha(\theta) Q(t^\alpha \theta) d\theta, \quad S(t) = \alpha \int_0^\infty \theta t^{\alpha - 1} \zeta_\alpha(\theta) Q(t^\alpha \theta) d\theta.$$

We have $u(t_0) = \lambda u_1(t_0) + (1-\lambda)u_2(t_0)$, then u(t) is a mild solution of (1.1). We note that u(t) is bounded over \mathbb{R} since $\mu(u) = \sup_{t \in \mathbb{R}} ||u(t)|| \leq \lambda \mu(u_1) + (1-\lambda)\mu(u_2) < \infty$, we conclude that $u(t) \in \Omega_f$. Now we show that Ω_f is closed. Let $u_n \in \Omega_f$ a sequence such that $\lim_{n\to\infty} u_n(t) = u(t), t \in \mathbb{R}$. For all $t_0 \in \mathbb{R}$ and $t \geq t_0$ we have

$$u_n(t) = T(t - t_0)u_n(t_0) + \int_{t_0}^t S(t - s)[B(s)u_n(s) + f(s)]ds,$$
(2.4)

It is clearly that $T(t - t_0)$ and S(t - s) are continuous operators, then for every fixed t and t_0 with $t \ge t_0$, we have

$$\lim_{n \to \infty} T(t - t_0) u_n(t_0) = \lim_{n \to \infty} \int_0^\infty \zeta_\alpha(\theta) Q((t - t_0)^\alpha \theta) u_n(t_0) d\theta$$
$$= \int_0^\infty \zeta_\alpha(\theta) Q((t - t_0)^\alpha \theta) d\theta \lim_{n \to \infty} u_n(t_0)$$
$$= T(t - t_0) \lim_{n \to \infty} u_n(t_0)$$
$$= T(t - t_0) u(t_0).$$

Similarly we have

$$\lim_{n \to \infty} \int_{t_0}^t S(t-s) [B(s)u_n(s) + f(s)] ds = \int_{t_0}^t S(t-s) [\lim_{n \to \infty} B(s)u_n(s) + f(s)] ds$$
$$= \int_{t_0}^t S(t-s)F(s) ds.$$

Then we deduce that

$$u(t) = T(t - t_0)u(t_0) + \int_{t_0}^t S(t - s)F(s)ds,$$

for all $t_0 \in \mathbb{R}, t \ge t_0$, which means that u(t) is a mild solution of (1.1). Finally we show that u(t) is bounded over \mathbb{R} . We can write (2.3) as

$$u(t) = T(t - t_0)u(t_0) + \int_{t_0}^t S(t - s)F(s)ds - u_n(t) + u_n(t)$$

= $T(t - t_0)[u(t_0) - u_n(t_0)] + \int_{t_0}^t S(t - s)(B(u - u_n))(s)ds + u_n(t)$

for n = 1, 2, ..., and every $t_0 \in \mathbb{R}$ such that $t \geq t_0$. Since $\int_0^\infty \zeta_\alpha(\theta) d\theta = 1$, it follows that $||T(t)|| \leq M$, again, since $\int_0^\infty \theta \zeta_\alpha(\theta) d\theta = 1$ (see [9, p. 54]), it follows that $||S(t)|| \leq \alpha M t^{\alpha-1}$. Let $||B|| \leq C$. These estimates lead to

$$||u(t)|| \le M ||u(t_0) - u_n(t_0)|| + \alpha MC \int_{t_0}^t (t-s)^{\alpha-1} ||u(s) - u_n(s)|| ds + ||u_n(t)||.$$

Choose *n* large enough, for every $\epsilon_1, \epsilon_2 > 0$ we get

$$\mu(u) \le \epsilon_1 + \epsilon_2 + \mu(u_n) < \infty.$$

Thus $u \in \Omega_f$. This completes the proof.

3. Weak almost periodic solutions

To formulate a property of almost periodic functions, which is equivalent to Definition 1.2, we discuss the concept of normality of almost periodic functions. Namely, let f(t) be almost periodic in $t \in \mathbb{R}$, then for every sequence of real numbers (s'_n) there exists a subsequence (s_n) such that $f(t + s_n)$ is uniformly convergent in $t \in \mathbb{R}$. see Hamaya [11, p. 188]. It is well known [15, 16, 21, 22] that: $f : \mathbb{R} \to X$ is weakly almost periodic if for every sequence of real numbers (s'_n) there exists a subsequence (s_n) such that every $(f(t + s_n))$ is convergent in the weak sense, uniformly in $t \in \mathbb{R}$. In other words, for every $u^* \in X^*$, the sequence $(\langle u^*, f(t + s_n) \rangle)$ is uniformly convergent in $t \in \mathbb{R}$, where $\langle \cdot, \cdot \rangle$ denotes duality $\langle X^*, X \rangle$. For each $Q(t), t \in \mathbb{R}^+$, $Q^*(t)$ denotes the adjoint operator of Q(t).

Theorem 3.1. Let $f : \mathbb{R} \to X$ be almost periodic and a nontrivial strongly continuous function, also assume that $f \in L^1(\mathbb{R})$ and $Q^*(t) \in L(X^*)$ for every $t \in \mathbb{R}^+$, then the optimal mild solution of (1.1) is weakly almost periodic.

Proof. As in N'Guerekata [16], let u(t) be the unique optimal mild solution of (1.1), by Theorem 2.1

$$u(t) = T(t - t_0)u(t_0) + \int_{t_0}^t S(t - s)F(s)ds,$$

for all $t_0 \in \mathbb{R}$, $t \ge t_0$. Let (s'_n) be an arbitrary sequence of real numbers. Since f is almost periodic, we can extract a subsequence $(s_n) \subset (s'_n)$ such that $\lim_{n\to\infty} f(t + s_n) = g(t)$ uniformly in $t \in \mathbb{R}$. We note that g(t) is also strongly continuous. For fixed $t_0 \in \mathbb{R}$, we can obtain a subsequence of (s_n) , which again we will denote (s_n) , such that

weak-lim
$$u(t_0 + s_n) = v_0 \in X.$$

Since X is a reflexive Banach space, then the function

$$y(t) = T(t - t_0)v_0 + \int_{t_0}^t S(t - s)(Bu + g)(s)ds,$$

is strongly continuous. It is a mild solution of

$$\frac{d^{\alpha}u(t)}{dt^{\alpha}} + (A - B(t))u(t) = g(t), \quad t \in \mathbb{R}.$$

We need the following lemmas.

EJDE-2009/46

Lemma 3.2. For each $t \in \mathbb{R}$, we have

weak-
$$\lim_{n \to \infty} u(t+s_n) = y(t).$$

Proof. We can write

$$u(t+s_n) = T(t-t_0)u(t_0+s_n) + \int_{t_0}^t S(t-s)[(Bu)(s) + f(s+s_n)]ds,$$

 $n = 1, 2, \dots$ (see for instance [20, p. 721]). Let $u^* \in X^*$, then we have

$$\langle u^*, T(t-t_0)u(t_0+s_n) \rangle - \langle u^*, T(t-t_0)v_0 \rangle = \langle T^*(t-t_0)u^*, u(t_0+s_n) - v_0 \rangle,$$

for every n = 1, 2, ..., we deduce that the sequence $(T(t - t_0)u(t_0 + s_n))$ converges to $T(t - t_0)v_0$ in the weak sense. Also we have

$$\begin{split} &\int_{t_0}^t S(t-s)[(Bu)(s) + f(s+s_n)]ds - \int_{t_0}^t S(t-s)[(Bu)(s) + g(s)]ds \\ &\leq \|\int_{t_0}^t S(t-s)[f(s+s_n) - g(s)]ds\| \\ &\leq \alpha M \int_{t_0}^t (t-s)^{\alpha-1} \|f(s+s_n) - g(s)\|ds. \end{split}$$

This leads to

$$\lim_{n \to \infty} \int_{t_0}^t S(t-s)[(Bu)(s) + f(s+s_n)]ds = \int_{t_0}^t S(t-s)[(Bu)(s) + g(s)]ds,$$

in the strong sense, then consequently in the weak sense in X.

Lemma 3.3. $\mu(y) = \mu(u) = \mu^*$.

Proof. Since u(t) is an optimal mild solution of (1.1), we have $\mu^* = \mu(u) = \sup_{t \in \mathbb{R}} \|u(t)\|$. Let $u^* \in X^*$, then by lemma 3.2 we obtain

$$\lim_{n \to \infty} \langle u^*, u(t+s_n) \rangle = \langle u^*, y(t) \rangle,$$

for every $t \in \mathbb{R}$. For each $n = 1, 2, \ldots$, we have

$$\|\langle u^*, u(t+s_n) \rangle\| \le \|u^*\| \|u(t+s_n)\| \le \|u^*\| \mu^*.$$

Therefore, $\|\langle u^*, y(t) \rangle\| \leq \|u^*\|\mu^*$ for every $t \in \mathbb{R}$, and consequently $\|y(t)\| \leq \mu^*$ for every $t \in \mathbb{R}$, so that $\mu(y) < \mu^*$. We suppose that $\mu(y) < \mu^*$. Note that $\lim_{n\to\infty} g(t-s_n) = f(t)$ uniformly in $t \in \mathbb{R}$ because f(t) is almost periodic. Since X is a reflexive Banach space, we can extract from the sequence (s_n) , a subsequence which we still denote (s_n) such that $(y(t_0 - s_n))$ is weakly convergent to $z \in X$. We have

$$\lim_{n \to \infty} y(t - s_n) = T(t - t_0)z + \int_{t_0}^t S(t - s)F(s)ds$$

in the weak sense for every $t \in \mathbb{R}$. Now we consider the function

$$Z(t) = T(t - t_0)z + \int_{t_0}^t S(t - s)F(s)ds.$$

It is a bounded mild solution of equation (1.1). Similarly as above, we have $\mu(Z) \leq \mu(y)$; therefore, $\mu(Z) < \mu^*$, which is absurd by definition of μ^* .

Lemma 3.4. $\mu(y) = \inf_{v \in \Omega_g} \mu(v)$; *i.e.*, y(t) is an optimal mild solution of the equation

$$\frac{d^{\alpha}u(t)}{dt^{\alpha}} + (A - B(t))u(t) = g(t), \quad t \in \mathbb{R}.$$
(3.1)

Proof. By lemma 3.3, y(t) is bounded over \mathbb{R} . Also y(t) is a mild solution of (3.1) which implies $y(t) \in \Omega_g$. It remains to prove that y(t) is optimal. Suppose it is not. Since $\Omega_g \neq \emptyset$, by Theorem 2.1, there exists a unique optimal solution v(t) of (3.1). We have $\mu(v) < \mu(y)$ and

$$v(t) = T(t - t_0)v(t_0) + \int_{t_0}^t S(t - s)(Bu + g)(s)ds,$$

for all $t_0 \in \mathbb{R}, t \geq t_0$. We can find a subsequence $(s_{n_k}) \subset (s_n)$ such that

weak-lim
$$v(t - s_{n_k}) = T(t - t_0)z + \int_{t_0}^t S(t - s)F(s)ds \equiv V(t)$$

Noting that $V(t) \in \Omega_f$ and $\mu(V) \leq \mu(v) < \mu(y)$, which is absurd. Therefore, y(t) is an optimal mild solution of (3.1), and in fact the only one by Theorem 2.1. \Box

Proof of Theorem 3.1. To prove that u(t) is weakly almost periodic, it suffices to show that

weak-lim
$$u(t+s_n) = y(t)$$

uniformly in $t \in \mathbb{R}$. Suppose that this does not hold; then there exists $u^* \in X^*$ such that

$$\lim_{n \to \infty} \langle u^*, u(t+s_n) \rangle = \langle u^*, y(t) \rangle$$

is not uniform in $t \in \mathbb{R}$. Consequently, we can find a number $\gamma > 0$, and a sequence (t_k) with two subsequences (s'_k) and (s''_k) of (s_n) such that

$$\langle u^*, u(t+s'_k) - u(t+s''_k) \rangle | > \gamma$$
 (3.2)

for all $k = 1, 2, \ldots$ Again, let us extract two subsequences of (s'_k) and (s''_k) respectively, with the same notation, such that

$$\lim_{k \to \infty} f(t + t_k + s'_k) = g_1(t), \quad text \quad \lim_{k \to \infty} f(t + t_k + s''_k) = g_2(t)$$

both uniformly in $t \in \mathbb{R}$, because f is almost periodic. As we did previously, we may obtain

weak-lim
$$f(t + t_k + s'_k) = T(t - t_0)z_1 + \int_{t_0}^t S(t - s)[(Bu)(s) + g_1(s)]ds \equiv y_1(t),$$

and

weak-lim
$$f(t + t_k + s_k'') = T(t - t_0)z_2 + \int_{t_0}^t S(t - s)[(Bu)(s) + g_2(s)]ds \equiv y_2(t)$$

for each $t \in \mathbb{R}$, where $y_1(t)$ and $y_2(t)$ are optimal mild solutions in Ω_{g_1} and Ω_{g_2} , respectively. Since $\lim_{k\to\infty} f(t+t_k+s_k)$ exists uniformly in $t \in \mathbb{R}$, and $(s'_k), (s''_k)$ are two subsequences of (s_k) , we will get

$$\sup_{s \in \mathbb{P}} \|f(s+s'_k) - f(s+s''_k)\| < \epsilon$$

if $k \ge k_0(\epsilon)$ and consequently

$$\sup_{s \in \mathbb{R}} \|f(t + t_k + s'_k) - f(t + t_k + s''_k)\| < \epsilon$$

EJDE-2009/46

for $k \geq k_0(\epsilon)$, which shows that $g_1(s) = g_2(s)$ for all $s \in \mathbb{R}$. By the uniqueness of the optimal mild solution we get $y_1(t) = y_2(t), t \in \mathbb{R}$. But $y_1(0) = \text{weak-lim}_{k \to \infty} u(t_k + s'_k)$ and $y_2(0) = \text{weak-lim}_{k \to \infty} u(t_k + s''_k)$. Clearly $y_1(0) = y_2(0)$ contradicts the inequality (3.2) above. This completes the proof.

4. Application

Consider the partial differential equation of fractional order

$$\frac{\partial^{\alpha} u(x,t)}{\partial t^{\alpha}} + \sum_{|q| \le 2m} a_q(x) D_x^q u(x,t) = \int_{\mathbb{R}^n} K(x,\eta,t) u(\eta,t) d\eta + f(x,t),$$
(4.1)

where $t \in \mathbb{R}^+$, $x \in \mathbb{R}^n$, $D_x^q = D_{x_1}^{q_1} \dots D_{x_n}^{q_n}$, $D_{x_i} = \frac{\partial}{\partial x_i}$, $q = (q_1, \dots, q_n)$ is an *n*dimensional multi-index, $|q| = q_1 + \dots + q_n$. Let $L_2(\mathbb{R}^n)$ be the set of all square integrable functions on \mathbb{R}^n . We denote by $C^m(\mathbb{R}^n)$ the set of all continuous realvalued functions defined on \mathbb{R}^n which have continuous partial derivatives of order less than or equal to m. By $C_0^m(\mathbb{R}^n)$ we denote the set of all functions $f \in C^m(\mathbb{R}^n)$ with compact supports. Let $H_0^m(\mathbb{R}^n)$ be the completion of $C_0^m(\mathbb{R}^n)$ with respect to the norm

$$||f||_m^2 = \sum_{|q| \le m} \int_{\mathbb{R}^n} |D_x^q f(x)|^2 dx.$$

It is supposed that

(i) The operator $A = -\sum_{|q|=2m} a_q(x) D_x^q$ is uniformly parabolic on \mathbb{R}^n . In other words, all the coefficients $a_q, |q| = 2m$, are continuous and bounded on \mathbb{R}^n and

$$(-1)^m \sum_{|q|=2m} a_q(x)\xi^q \ge c|\xi|^{2m}, \quad c>0,$$

for all $x \in \mathbb{R}^n$ and all $\xi \neq 0, \xi \in \mathbb{R}^n$, where $\xi^q = \xi_1^{q_1} \dots \xi_n^{q_n}$ and $|\xi|^2 = \xi_1^2 + \dots + \xi_n^2$. (ii) All the coefficients $a_q, |q| = 2m$, satisfy a uniform Hölder condition on \mathbb{R}^n , $\int_{\mathbb{R}^n} K^2(x, \eta, t) d\eta < \infty$. It's proved, see [5, p. 438], that the operator A defined by (i) with domain of definition $S = H^{2m}(\mathbb{R}^n)$ generates an analytic semigroup Q(t)defined on $L_2(\mathbb{R}^n)$, and that $H^{2m}(\mathbb{R}^n)$ is dense in $X = L_2(\mathbb{R}^n)$. Which achieves the proof of the existence of (bounded) mild solutions of the equation (4.1).

(iii) f is a nontrivial strongly continuous function defined on $\mathbb{R}^n \times \mathbb{R}^+$ satisfying: For every $\epsilon > 0$ there exists $\beta > 0$ such that every interval $[a, a + \beta]$ contains at least a point τ such that

$$\int_{\mathbb{R}^n} |f(x,t+\tau) - f(x,t)|^2 dx < \epsilon,$$

for all $t \in \mathbb{R}^+$ and all $x \in \mathbb{R}^n$. Applying Theorems 2.1, 3.1, stated above, we deduce that (4.1) has a unique optimal mild solution which is weakly almost periodic.

Acknowledgements. The authors are grateful to the anonymous referee for his or her carefully reading of the original manuscript and for the valuable suggestions.

References

- L. Amerio, and G. Prouse; Almost periodic functions and functional equations, Van Nostrand-Reinhold, New York, (1971).
- [2] M. Bahaj, O. Sidki; Almost periodic solutions of semilinear equations with analytic semigroup in Banach spaces, Electron. J. Ddiff. Eqns., Vol 2002(2002), No.98, pp. 1-11.

- [3] S. Bochner and J. V. Neumann; Almost periodic in a group, II, Trans. Amer. Math. Soc. 37(1935), 21-50.
- [4] T. T. Dat; On the existence of almost periodic, periodic and quasi-periodic solutions of neutral differential equations with piecewise constant arguments, IJEE Vol.1, N0.2,(2005) pp. 29-44.
- [5] M. M. El-Borai; Some probability densities and fundamental solutions of fractional evolution equations, Chaos, Solitons and Fractals, 14(2002), 433-440.
- M. M. El-Borai; Semigroup and some nonlinear fractional differential equations, Appl. Math. and Computations, 149(2004), 823-831.
- [7] M. M. El-Borai; The fundamental solutions for fractional evolution equations of parabolic type, J. Appl. Math. and Stoch. Analysis, 3(2004), 197-211.
- [8] M.M. El-Borai; On some fractional evolution equations with nonlocal conditions, Int. J. Pure and Appl. Math., Vol.24, No.3 (2005), 405-413.
- [9] M. M. El-Borai; On Some Stochastic Fractional Integro-Differential Equations, Advances in Dyn. Sys. App. ISSN 0973-5321 Vol.1, No.1 (2006) 49-57.
- [10] I. M. Gelfand, G. E. Shilov; In: Generalized functions, Vol. 1. Moscow: Nauka;(1959).
- [11] Y. Hamaya; On the existence of almost periodic solutions of a nonlinear Volterra difference equation, IJDE, ISSN 0973-6069 Vol.2, No.2 (2007), pp. 187-196.
- [12] R. Larsen; Functional Analysis, Decker Inc., New York(1973).
 [13] N.V. MINH; Almost periodic solutions of c-well-posed evolution equations, Math. J. Okayama
- Univ. 48 (2006), 145-157.
 [14] J. Munkhammar; *Riemann-Liouville Fractional Derivatives and the Taylor-Riemann series*, U.U.D.M. project report (2004).
- [15] G. N'Guerekata; Almost automorphic and almost periodic functions in abstract spaces, Kluwer Academic/Plenum Publishers, New York(2001).
- [16] G. N'Guerekata; On weak-almost periodic mild solutions of some linear abstract differential equations, PFICDSDE, 27(2002), Wilmington. NC. USA, pp.672-677.
- [17] H. Ni and F. Lin; The Existence of Almost Periodic Solutions of Several Classes of Second Order Differential Equations, IJNS, ISSN 1479-3889 (print), 1479-3897 (online) Vol.2, No.2 (2006) pp. 83-91.
- [18] I. Podlubny; Fractional Differential Equations, Math. in Science and Eng., Technical University of Kosice, Slovak Republic Vol.198(1999).
- [19] T. Yoshizawa; Stability theory and the existence of periodic solutions and almost periodic solutions, Springer-Verlag, New York(1975).
- [20] S. Zaidman; Weak almost periodicity for some vector-valued functions, Istituto Lombardo Accad. di Science e'Lettere. 104,(1970), 720-725.
- [21] S. Zaidman; Abstract differential equations, Pitman Publishing, San Francisco- London-Melbourne(1979).
- [22] S. Zaidman; Topics in abstract differential equations, Pitman Research Notes in Math. Ser.II, John Wiley and Sons, New York(1995).

Amar Debbouche

FACULTY OF SCIENCE, GUELMA UNIVERSITY, GUELMA, ALGERIA *E-mail address:* amar_debbouche@yahoo.fr

Mahmoud M. El-Borai

Faculty of Science, Alexandria University, Alexandria, Egypt $E\text{-mail address: m_m_elborai@yahoo.com}$