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REGULARITY FOR A CLAMPED GRID EQUATION
uxxxx + uyyyy = f ON A DOMAIN WITH A CORNER

TYMOFIY GERASIMOV, GUIDO SWEERS

Abstract. The operator L = ∂4

∂x4 + ∂4

∂y4 appears in a model for the vertical

displacement of a two-dimensional grid that consists of two perpendicular sets

of elastic fibers or rods. We are interested in the behaviour of such a grid that
is clamped at the boundary and more specifically near a corner of the domain.

Kondratiev supplied the appropriate setting in the sense of Sobolev type spaces

tailored to find the optimal regularity. Inspired by the Laplacian and the
Bilaplacian models one expect, except maybe for some special angles that

the optimal regularity improves when angle decreases. For the homogeneous

Dirichlet problem with this special non-isotropic fourth order operator such a
result does not hold true. We will show the existence of an interval ( 1

2
π, ω?),

ω?/π ≈ 0.528 . . . (in degrees ω? ≈ 95.1 . . .◦), in which the optimal regularity
improves with increasing opening angle.
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1. Introduction

1.1. The model. A model for small deformations of a thin isotropic elastic plate
is uxxxx + 2uxxyy + uyyyy = f . Here f is a force density and u is the vertical
displacement of a plate; the model neglects the influence of horizontal deviations.
Non-isotropic elastic plates are still modeled by fourth order differential equations
but the coefficients in front of the derivatives of u may vary. Two interesting
extreme cases are L1 = ∂4

∂x4 + ∂4

∂y4 and L2 = 1
2

∂4

∂x4 +3 ∂4

∂x2∂y2 + 1
2

∂4

∂y4 . One may think
of these operators as of the operators appearing in the model of an elastic medium
consisting of two sets of intertwined (not glued) perpendicular fibers: ∂4

∂x4 + ∂4

∂y4 for
fibers running in cartesian directions (Figure 1, left). The differential operator is
not rotation invariant. For a diagonal grid the rotation of 1

4π transforms L1 into
L2 (Figure 1, right). We will call such medium a grid.

We should mention that sets of fibers are connected such that the vertical posi-
tions coincide but there is no connection that forces a torsion in the fibers. Such
torsion would occur if the fibers are glued or imbedded in a softer medium. For
those models see [19]. The appropriate linearized model in that last situation would
contain mixed fourth order derivatives.

A first place where operator L1 appears is J. II. Bernoulli’s paper [1]. He assumed
that it was the appropriate model for an isotropic plate. It was soon dismissed as
a model for such a plate, since indeed it failed to have rotational symmetry.
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Figure 1. A fragment of a rectangular grid with aligned and di-
agonal fibers.

1.2. The setting. We will focus on L1 supplied with homogeneous Dirichlet bound-
ary conditions. This problem, which we call ‘a clamped grid’, is as follows:

uxxxx + uyyyy = f in Ω,

u =
∂u

∂ν
= 0 on ∂Ω.

(1.1)

Here Ω ⊂ R2 is open and bounded, and ν is the unit outward normal vector on
∂Ω. The boundary conditions in (1.1) correspond to the clamped situation meaning
that the vertical position and the angle are fixed to be 0 at the boundary.

One verifies directly that the operator L1 = ∂4

∂x4 + ∂4

∂y4 is elliptic in Ω. One may
also prove, if the normal is well-defined, that the boundary value problem (1.1) is
regular elliptic. Indeed, the Dirichlet problem which fixes the zero and first order
derivatives at the boundary, is regular elliptic for any fourth order uniformly elliptic
operator. Hence, under the assumption that Ω is bounded and ∂Ω ∈ C∞ the full
classical regularity result (see e.g. [17]) for problem (1.1) can be used to find for
k ≥ 0 and p ∈ 1,∞):

if f ∈W k,p(Ω) then u ∈W k+4,p(Ω). (1.2)

If Ω in (1.1) has a piecewise smooth boundary ∂Ω with, say, one angular point,
the result (1.2) in general does not apply. Instead, one may use the theory developed
by Kondratiev [12]. This theory provides the appropriate treatment of problem
(1.1) by employing the weighted Sobolev space V k,p

β (Ω) (see Definition 3.1), where
k ≥ 0 is the differentiability index and β ∈ R characterizes the powerlike growth
of the solution near the angular point. Within the framework of the Kondratiev
spaces V k,p

β (Ω) the regularity result “analogous” to (1.2) will then be as follows.
There is a countable set of functions {uj}j∈N such that for all k ∈ N:

if f ∈ V k,p
β (Ω) then u = w +

Jk∑
j=1

cjuj with w ∈ V k+4,p
β (Ω). (1.3)

We will restrict our formulations to p = 2.
Partial differential equations on domains with corners have obtained a lot of

attention in the literature. After the seminal paper by Kondatiev [12] many authors
of which we would like to mention Kozlov, Maz’ya, Rossmann [13, 14], Grisvard [10],
Dauge [7], Costabel and Dauge [4], Nazarov and Plamenevsky [18] have contributed.
For applications in elasticity theory we refer to Leguillon and Sanchez-Palencia [16],
Blum and Rannacher [3]. A recent paper of Kawohl and Sweers [15] concerned the
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positivity question for the operators L1 and L2 in a rectangular domain for hinged
boundary conditions.

1.3. The target. In this paper, we will focus particularly on the optimal regularity
for the boundary value problem which depends on the opening angle of the corner.
For the sake of a simple presentation, we will consider (1.1) in a domain Ω ⊂ R2

which has one corner in 0 ∈ ∂Ω with opening angle ω ∈ (0, 2π]. A more appropriate
formulation of the problem should read as:

uxxxx + uyyyy = f in Ω,
u = 0 on ∂Ω,

∂u

∂ν
= 0 on ∂Ω\{0},

(1.4)

with prescribed growth behaviour near 0.
To be more precise in the description of a domain Ω, we assume the following

condition.

Condition 1.1. The domain Ω has a smooth boundary except at (x, y) = 0, and
is such that in the vicinity of 0 it locally coincides with a sector. In other words,

(1) ∂Ω\{0} is C∞,
(2) there exists ε > 0, ω ∈ (0, 2π] : Ω ∩Bε(0) = Kω ∩Bε(0),

where Bε(0) = {(x, y) : |(x, y)| < ε} is the open ball of radius ε centered at
(x, y) = 0 and Kω an infinite sector with an opening angle ω:

Kω = {(r cos(θ), r sin(θ)) : 0 < r <∞ and 0 < θ < ω} . (1.5)

In Figure 2 some domains Ω which satisfy the condition above are sketched.

0

y

x

0

y

x

Figure 2. Examples for Ω

For the elliptic problem one might roughly distinguish between papers that focus
on the general theory and those papers that explicitly study in detail the results for
one special model. If one chooses a special fourth order model then it usually has
the biharmonic operator in the differential equation. For the biharmonic problem
of the type (1.4) the optimal regularity due to the corner of Ω ‘improves’ when the
opening angle ω decreases. In fact Kondratiev in [12, page 210] states that
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“ . . . and to obtain the theorems about the differential properties
of solution. We do this for the number of concrete equations in §
5. In particular, it is derived that the differential properties of the
solution are getting better when the cone opening decreases.”

One of the peculiar results for the present clamped grid problem is that this
does not apply for the whole range 0 to 2π. We will show that there is an interval
( 1
2π, ω?), with ω?/π ≈ 0.528 . . . (in degrees ω? ≈ 95.1 . . .◦), where the optimal

regularity increases with increasing ω. This is outlined in the table below. The
actual curve that displays the connection between ω and λ, a parameter for the
differential properties, is obtained numerically. The discretization is chosen fine
enough such that analytical estimates show that the numerical errors are so small
that they do not destroy the structure.

operator L in (1.4) opening angle ω
regularity of the solution u
to (1.4) in dependence of ω

∆2 (0, 2π] decreases

∂4

∂x4 + ∂4

∂y4

(0, 1
2π], [ω?, 2π]
[ 12π, ω?]

decreases
increases

Table 1. Optimal regularity of the homogeneous Dirichlet prob-
lem for ∆2 and ∂4

∂x4 + ∂4

∂y4 .

For a graph displaying relation between ω and λ see Figure 3. In Figure 6 one
finds a more detailed view. The lowest value of the appearing λ is a measure for
the regularity. See Figure 9.

1.4. The lineup. The paper is divided into 5 sections and several appendices. We
start in Section 2 by recalling the results for existence and uniqueness of a weak
solution u to problem (1.4). In Section 3 the weighted Sobolev spaces V l,2

β (Ω) are
introduced. Section 4 studies the homogeneous problem (1.4) in the infinite cone
Kω. We derive (almost explicitly) a countable set of functions {uj}j∈N solving
this problem. They will contribute in Section 5 to the regularity statement for u
of type (1.3). We address the Kondratiev theory in order to give the asymptotic
representation for the solution u to (1.4) in terms of {uj}j∈N.

The first appendix recalls imbedding results for W k,2(Ω) and V l,2
β (Ω) based on

a Hardy inequality. The other appendices contain computational and numerical
results. The elaborate third appendix confirms that indeed the errors in the nu-
merical results are small enough. This appendix also contains an explicit version of
the Morse Theorem, which is necessary for an analytical error bound that confirms
the numerical results.

2. Existence and uniqueness

For the present so-called clamped boundary conditions existence of an appropri-
ate weak solution can be obtained in a standard way even when the corner is not
convex. Let us recall the arguments for the existence of a weak solution to problem
(1.4). The function space for these weak solutions is

W̊ 2,2(Ω) = C∞
c (Ω)

‖.‖W2,2(Ω) .
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where C∞
c (Ω) is the space of infinitely smooth functions with compact support in

Ω.

Definition 2.1. A function ũ ∈ W̊ 2,2(Ω) is a weak solution of the boundary value
problem (1.4) with f ∈ L2(Ω), if∫

Ω

(ũxxϕxx + ũyyϕyy − fϕ) dx dy = 0 for all ϕ ∈ W̊ 2,2(Ω). (2.1)

Theorem 2.2. Suppose f ∈ L2(Ω). Then a weak solution of the boundary value
problem (1.4) in the sense of Definition 2.1 exists. Moreover, this solution is unique.

Proof. The proof uses the variational formulation of the problem (1.4), namely,

Minimize: E(u) =
∫

Ω

(
1
2

(
u2

xx + u2
yy

)
− fu

)
dx dy on W̊ 2,2(Ω). (2.2)

This functional is coercive: For u ∈ C∞
0 (Ω̄) it follows from u = ux = 0 on ∂Ω that

one finds by a Poincaré inequality:∫
Ω

u2dx dy ≤ C

∫
Ω

u2
xdx dy ≤ C2

∫
Ω

u2
xxdx dy (2.3)

and a similar result for x replaced by y. For the mixed second derivative the
clamped boundary conditions allow an integration by parts such that∫

Ω

u2
xydx dy =

∫
Ω

uxxuyydx dy ≤ 1
2

∫
Ω

(
u2

xx + u2
yy

)
dx dy. (2.4)

By a density argument (2.3) and (2.4) hold for u ∈ W̊ 2,2(Ω). Hence ‖u‖W 2,2(Ω) →
∞ implies E(u) → ∞. A quadratic functional that is coercive is even strictly
convex and hence has at most one minimizer. This minimizer exists since u 7→ E(u)
is weakly lower semicontinuous. The integral form of the Euler-Lagrange equation
that the minimizer satisfies, defines this minimizer as a weak solution. Moreover,
since a weak solution is a critical point of E defined in (2.2) and since the critical
point is unique, so is the weak solution. �

Remark 2.3. For u ∈ W̊ 2,2(Ω) we have just shown that ‖u‖W 2,2(Ω) ≤ C
∫
Ω
(u2

xx +
u2

yy)dx dy. For the hinged grid, that is u ∈W 2,2(Ω)∩W̊ 1,2(Ω) a Poincaré inequality
still yields (2.3). Indeed, for u = 0 on ∂Ω there exists on every line y = c that
intersects Ω an xc with (xc, c) ∈ Ω and ux(xc, c) = 0 and starting from this point
one proves the second inequality in (2.3). The real problem is (2.4). Indeed, this
estimate does not hold on domains with non-convex corners for u ∈ W 2,2(Ω) ∩ W̊
1,2(Ω).

3. Kondratiev’s weighted Sobolev spaces

Due to Kondratiev [12], one of the appropriate functional spaces for the boundary
value problems of the type (1.4) are the weighted Sobolev space V l,2

β . Such spaces
can be defined in different ways: either via the set of the square-integrable weighted
weak derivatives in Ω (see [12, 10]), or via the completion of the set of infinitely
differentiable on Ω functions with bounded support in Ω, with respect to a certain
norm (see [13, 20]).

In our case Ω ⊂ R2 is open, bounded, and has a corner in 0 ∈ ∂Ω. It also holds
that ∂Ω\{0} is smooth, and that Ω ∩Bε(0) = Kω ∩Bε(0), where Bε(0) is a ball of
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radius ε > 0 and Kω is an infinite sector with an opening angle ω ∈ (0, 2π). These
weighted spaces are as follows:

Definition 3.1. Let l ∈ {0, 1, 2, . . . } and β ∈ R. Then V l,2
β (Ω) is defined as a

completion:

V l,2
β (Ω) = C∞

c

(
Ω\{0}

)‖·‖
with (3.1)

‖u‖ := ‖u‖V l,2
β (Ω) =

( l∑
|α|=0

∫
Ω

(x2 + y2)β−l+|α||Dαu|2dx dy
)1/2

, (3.2)

where
C∞

c

(
Ω\{0}

)
:=

{
u ∈ C∞

c

(
Ω

)
: support(u) ⊂ Ω\Bε(0)

}
.

The space V l,2
β (Ω) consists of all functions u : Ω → R such that for each mul-

tiindex α = (α1, α2) with |α| ≤ l, Dαu = ∂|α|u
∂xα1∂yα2 exists in the weak sense and

rβ−l+|α|Dαu ∈ L2(Ω). Here r = (x2 + y2)1/2.
Straightforward from the definition of the norm the following continuous imbed-

dings hold (see [13, Section 6.2, lemma 6.2.1]):

V l2,2
β2

(Ω) ⊂ V l1,2
β1

(Ω) if l2 ≥ l1 ≥ 0, β2 − l2 ≤ β1 − l1. (3.3)

To have the appropriate space for zero Dirichlet boundary conditions in problem
(1.4) we also define the corresponding space.

Definition 3.2. For l ∈ {0, 1, 2, . . . } and β ∈ R, set

V̊ l,2
β (Ω) = C∞

c (Ω)
‖·‖
, (3.4)

with ‖ · ‖ as the norm (3.2) and C∞
c (Ω) :=

{
u ∈ C∞

c

(
Ω̄

)
: support(u) ⊂ Ω

}
.

Remark 3.3. For u ∈ V̊ l,2
β (Ω) one finds Dαu = 0 on ∂Ω for |α| ≤ ` − 1 where

Dαu = 0 is understood in the sense of traces.

4. Homogeneous problem in an infinite sector, singular solutions

The first step in order to improve the regularity of a weak solution is to consider
the homogeneous problem in an infinite cone:

uxxxx + uyyyy = 0 in Kω,

u =
∂u

∂ν
= 0 on ∂Kω\{0}.

(4.1)

Here Kω is as in (1.5). We will derive almost explicit formula’s for power type
solutions to (4.1).

4.1. Reduced problem. The reduced problem for (4.1) is obtained in the follow-
ing way. By Kondratiev [12] one should consider the power type solutions of (4.1):

u = rλ+1Φ(θ), (4.2)
with x = r cos(θ) and y = r sin(θ). Here λ ∈ C and Φ : [0, ω] → R.

We insert u from (4.2) into problem (4.1) and find(
∂4

∂x4 + ∂4

∂y4

)
rλ+1Φ(θ) = rλ−3L

(
θ, d

dθ , λ
)
Φ(θ),
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with

L
(
θ, d

dθ , λ
)

= 3
4

(
1 + 1

3 cos(4θ)
)

d4

dθ4 + (λ− 2) sin(4θ) d3

dθ3 +

+ 3
2

(
λ2 − 1−

(
λ2 − 4λ− 7

3

)
cos(4θ)

)
d2

dθ2 +

+
(
−λ3 + 6λ2 − 7λ− 2

)
sin(4θ) d

dθ+

+ 3
4

(
λ4 − 2λ2 + 1 + 1

3

(
λ4 − 8λ3 + 14λ2 + 8λ− 15

)
cos(4θ)

)
.

(4.3)

Then we obtain a λ-dependent boundary value problem for Φ:

L
(
θ, d

dθ , λ
)
Φ = 0 in (0, ω),

Φ = dΦ
dθ = 0 on ∂(0, ω).

(4.4)

Remark 4.1. The nonlinear eigenvalue problem (4.4) appears by a Mellin trans-
formation:

Φ(θ) = (Mu)(λ) =
∫ ∞

0

r−λ−2u(r, θ)dr.

So, the reduced problem for (4.1) we mentioned above is problem (4.4). Before
we start analyzing it, let us fix some basic notions.

Definition 4.2. Every number λ0 ∈ C, such that there exists a nonzero function
Φ0 satisfying (4.4), is said to be an eigenvalue of problem (4.4), while Φ0 ∈ C4[0, ω]
is called its eigenfunction. Such pairs (λ0,Φ0) are called solutions to problem (4.4).

If (λ0,Φ0) solves (4.4) and if Φ1 is a nonzero function that solves

L(λ0)Φ1 + L′(λ0)Φ0 = 0 in (0, ω),

Φ = dΦ
dθ = 0 on ∂(0, ω),

(4.5)

then Φ1 is a generalized eigenfunction (of order 1) for (4.4) with eigenvalue λ0.

Remark 4.3. Similarly, one may define generalized eigenfunctions of higher order.

The following holds for (4.4).

Lemma 4.4. Let θ ∈ (0, ω), ω ≤ 2π. For every fixed λ /∈ {±1, 0} in (4.4), let us
set

ϕ1(θ) = (cos(θ) + τ1 sin(θ))λ+1
, ϕ2(θ) = (cos(θ) + τ2 sin(θ))λ+1

,

ϕ3(θ) = (cos(θ)− τ1 sin(θ))λ+1
, ϕ4(θ) = (cos(θ)− τ2 sin(θ))λ+1

,

where τ1 =
√

2
2 (1 + i), τ2 =

√
2

2 (1− i) and i =
√
−1.

The set Sλ := {ϕm}4m=1 is a fundamental system of solutions to the equation
L

(
θ, ∂

∂θ , λ
)
Φ = 0 on (0, ω).

Proof. The derivation of ϕm, m = 1, . . . , 4 in Sλ is rather technical and we refer to
Appendix 7. There we also compute the Wronskian:

W (ϕ1(θ), ϕ2(θ), ϕ3(θ), ϕ4(θ)) = 16 (λ+ 1)3 λ2 (λ− 1)
(
cos4(θ) + sin4(θ)

)λ−2
.

It is non-zero on θ ∈ (0, 2π] except for λ ∈ {±1, 0}. Hence, for every fixed λ /∈
{±1, 0} the set {ϕm}4m=1 consists of four linear independent functions on (0, ω),
ω ≤ 2π. �
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Lemma 4.5. In the particular cases λ ∈ {±1, 0} in (4.4), one finds the following
fundamental systems:

S−1 = {1, arctan(cos(2θ)), arctanh(
√

2
2 sin(2θ)), ϕ4(θ)},

S0 = {sin(θ), cos(θ), ϕ3(θ), ϕ4(θ)} ,
S1 = {1, sin(2θ), cos(2θ), ϕ4(θ)} ,

where the explicit formulas for ϕ4 ∈ S−1, {ϕ3, ϕ4} ∈ S0 and ϕ4 ∈ S1 are given in
Appendix 7.

Proof. The fundamental systems S−1, S0, S1 are given in Appendix 7. By straight-
forward computations one finds that for every above Sλ, λ ∈ {±1, 0} the corre-
sponding Wronskian W is proportional to

(
cos4(θ) + sin4(θ)

)λ−2
, λ ∈ {±1, 0} and

hence is nonzero on θ ∈ (0, 2π]. �

In terms of the fundamental systems S we have Φ that solves L
(
θ, ∂

∂θ , λ
)
Φ = 0

as

Φ(θ) =
4∑

m=1

bmϕm(θ),

where bm ∈ C. Inserting this expression into the boundary conditions of problem
(4.4), we find a homogeneous system of four equations in the unknowns {bm}4m=1

reading as

Ab :=


ϕ1(0)) ϕ2(0)) ϕ3(0)) ϕ4(0))
ϕ′1(0)) ϕ′2(0)) ϕ′3(0)) ϕ′4(0))
ϕ1(ω) ϕ2(ω) ϕ3(ω) ϕ4(ω)
ϕ′1(ω) ϕ′2(ω) ϕ′3(ω) ϕ′4(ω)



b1
b2
b3
b4

 = 0,

where ω ∈ (0, 2π]. It admits non-trivial solutions for {bm}4m=1 if and only if
det(A) = 0. Hence, the eigenvalues λ of problem (4.4) in sense of Definition 4.2
will be completely determined by the characteristic equation det(A) = 0.

We deduce the following four cases:

det(A) :=


P (ω, λ) when λ /∈ {±1, 0},
P−1(ω) when λ = −1,
P0(ω) when λ = 0,
P1(ω) when λ = 1.

(4.6)

The explicit formulas for P reads as

P (ω, λ) =
(
1−

√
2

2 sin(2ω)
)λ

+
(
1 +

√
2

2 sin(2ω)
)λ

+
(

1
2 + 1

2 cos2(2ω)
) 1

2 λ
[
2 cos

(
λ

(
arctan

(√
2

2 tan(2ω)
)

+ `π
))

− 4 cos
(
λ arctan

(
tan2(ω)

)) ]
,

(4.7)

where

` = 0 if ω ∈ (0,
1
4
π], ` = 1 if ω ∈ (

1
4
π,

3
4
π],

` = 2 if ω ∈ (
3
4
π,

5
4
π], ` = 3 if ω ∈ (

5
4
π,

7
4
π],
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` = 4 if ω ∈ (
7
4
π, 2π].

In particular, for ω ∈ { 1
2π, π,

3
2π, 2π} in (4.7) we have

P ( 1
2π, λ) = 2 + 2 cos(πλ)− 4 cos(1

2πλ),

P (π, λ) = −4 + 4 cos2(πλ),

P ( 3
2π, λ) = 8 cos3(πλ)− 6 cos(πλ)− 4 cos( 1

2πλ) + 2,

P (2π, λ) = 16 cos4(πλ)− 16 cos2(πλ).

Formulas for P−1, P0, P1 in (4.6) are available in Appendix 7.

4.2. Analysis of the eigenvalues λ. To describe the eigenvalues λ of (4.4) for a
fixed ω and, what is more important, their behavior in dependence on ω, we analyze
the equation det(A) = 0 on the interval ω ∈ (0, 2π].

First, we find that the equations P−1(ω) = 0 and P1(ω) = 0 have identi-
cal solutions on (0, 2π], that are denoted ω ∈ {π, ω0, 2π}. The approximation
ω0/π ≈ 1.424 . . . (in degrees ω0 ≈ 256.25 . . .◦) is obtained by the Maple 9.5 pack-
age. Equation P0(ω) = 0 has no solutions on ω ∈ (0, 2π]. Hence, λ ∈ {±1} are the
eigenvalues of (4.4) for the above values of ω, while λ = 0 is not an eigenvalue of
(4.4).

Now we consider P (ω, λ) = 0 on ω ∈ (0, 2π]; here P is given by (4.7). We note
that for every λ ∈ C\{±1, 0} it holds that

P (ω,−λ) = ( 3
4 + 1

4 cos(4ω))−λP (ω, λ),

that is, the solutions λ of P (ω, λ) = 0 are symmetric with respect to the ω-axis. It
is immediate that if λ is an eigenvalue then so is λ. It is convenient to introduce
the following notation.

Notation 4.6. For every fixed ω ∈ (0, 2π] we write {λj}∞j=1 for the collection of
the eigenvalues of problem (4.4) in the sense of Definition 4.2, which have positive
real part Re(λ) > 0 and are ordered by increasing real part.

The complete set of eigenvalues to problem (4.4) will then read as {−λj , λj}∞j=1.
Now the following lemma can be formulated.

Lemma 4.7. Let L be the operator given by (4.3).

• For every fixed ω ∈ (0, 2π]\ {π, ω0, 2π} the set {λj}∞j=1 from Notation 4.6
is given by

{λj}∞j=1 =
{
λ ∈ C : Re(λ) ∈ R+\{1}, P (ω, λ) = 0

}
.

• For every fixed ω ∈ {π, ω0, 2π} the set {λj}∞j=1 from Notation 4.6 is given
by

{λj}∞j=1 =
{
λ ∈ C : Re(λ) ∈ R+\{1}, P (ω, λ) = 0

}
∪ {1}.

Here ω0 is a solution of P1(ω) = 0 on ω ∈ (π, 2π) with the approximation ω0/π ≈
1.424 . . . (in degrees ω0 ≈ 256.25 . . .◦).
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4.3. Intermezzo: a comparison with ∆2. Let the grid-operator ∂4

∂x4 + ∂4

∂y4 in

problems (1.4), (4.1) be replaced by the bilaplacian ∆2 = ∂4

∂x4 + 2 ∂4

∂x2∂y2 + ∂4

∂y4 . We
recall some results for that operator, in particular, the eigenvalues {λj}∞j=1 of the
corresponding reduced problem. We will compare them to those given in Lemma
4.7.

So, for ∆2 in (4.1) the reduced problem of the type (4.4) has an operator L
reading as (see e.g. [10, page 88]):

L
(
θ, d

dθ , λ
)

= d4

dθ4 + 2
(
λ2 + 1

)
d2

dθ2 +
(
λ4 − 2λ2 + 1

)
. (4.8)

Proceeding as above one obtains that the corresponding determinants (see [10, page
89] or [3, page 561]) are the following:

det(A) :=


sin2(λω)− λ2 sin2(ω) when λ /∈ {±1, 0},
sin2(ω)− ω2 when λ = 0,
sin(ω) (sin(ω)− ω cos(ω)) when λ ∈ {±1}.

(4.9)

Note that for every λ ∈ C\{±1, 0} the function sin2(λω)−λ2 sin2(ω) is even with
respect to ω and hence the Notation 4.6 is applicable here. Analysis of det(A) = 0
with det(A) as in (4.9) enables to formulate the analog of Lemma 4.7. Namely,

Lemma 4.8. Let L be the operator given by (4.8).
• For every fixed ω ∈ (0, 2π]\ {π, ω0, 2π} the set {λj}∞j=1 from Notation 4.6

is given by

{λj}∞j=1 =
{
λ ∈ C : Re(λ) ∈ R+\{1} : sin2(λω)− λ2 sin2(ω) = 0

}
.

• For every fixed ω ∈ {π, ω0, 2π} the set {λj}∞j=1 from Notation 4.6 is given
by

{λj}∞j=1 =
{
λ ∈ C : Re(λ) ∈ R+\{1} : sin2(λω)− λ2 sin2(ω) = 0

}
∪ {1}.

Here ω0 is a solution of tan(ω) = ω on ω ∈ (π, 2π) with the approximation ω0/π ≈
1.430 . . . (in degrees ω0 ≈ 257.45 . . .◦).

4.4. Analysis of the eigenvalues λ (continued). Let (ω, λ) be the pair that
solves the equations of Lemmas 4.7 and 4.8. In Figure 3 we plot the pairs (ω,Re(λ))
inside the region (ω,Re(λ)) ∈ (0; 2π]× [0, 7.200].

Remark 4.9. The numerical computations are performed with the Maple 9.5 pack-
age in the following way: at a first cycle for every ωn = 21

180π+ 1
60πn, n = 0, . . . , 113

we compute the entries of the set {λj}N
j=1. Here, N is determined by the condi-

tion: Re (λN ) ≤ 7.200 and Re (λN+1) > 7.200. The points (ω, λ) where λj transits
from the complex plane to the real one or vice-versa are solutions to the system
P (ω, λ) = 0 and ∂P

∂λ (ω, λ) = 0 (the justification for the second condition will be
discussed in Lemma 4.15).

In Figure 3 one sees the difference in the behavior of the eigenvalues in the
corresponding cases. In particular, in the top plot (the case L = ∂4

∂x4 + ∂4

∂y4 ) there
are the loops and the ellipses in the vicinities of ω ∈

{
1
2π,

3
2π

}
(we inclose them

in the rectangles). The bottom plot (the case L = ∆2) looks much simpler near
the same region. As mentioned, the contribution of the first eigenvalue λ1 to the
regularity of the solution u to our problem (1.4) is the most essential. So, it is
important for us to know the dependence of the eigenvalues λ on the opening angle
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Figure 3. Some first eigenvalues λj in (ω,Re(λ)) ∈ (0, 2π] ×
[0, 7.200] of problem (4.4), where L is related respectively to
∂4

∂x4 + ∂4

∂y4 (on the top) and ∆2 (on the bottom). Dashed lines
depict the real part of those λj ∈ C, solid lines are for purely real
λj ; the vertical thin lines mark out values

{
1
2π, π,

3
2π, 2π

}
on ω-

axis.

ω. In this sense, the region (ω,Re(λ)) ∈ V (Figure 3, top) seems to be the most
interesting part and the model one. One observes that inside V the graph of the
implicit function P (ω,λ) = 0 looks like a deformed 8-shaped curve. So, if one proves
that everywhere in V , P (ω,λ) = 0 allows its local parametrization in ω 7→ λ = ψ(ω)
or λ 7→ ω = ϕ(λ), then the bottom part of this graph is λ1 and there is a subset of
the this bottom part where λ1 as a function of ω increases with increasing ω.

4.4.1. Behavior of λ in V . So let us fix the open rectangular domain V = {(ω, λ) :
[ 70
180π,

110
180π]×[2.900, 5.100]}, the function P∈ C∞(V,R) is given by (4.7) with ` = 1:

P (ω, λ) =
(
1−

√
2

2 sin(2ω)
)λ

+
(
1 +

√
2

2 sin(2ω)
)λ

+
(

1
2 + 1

2 cos2(2ω)
) 1

2 λ
[
2 cos

(
λ

(
arctan

(√
2

2 tan(2ω)
)

+ π
))

− 4 cos
(
λ arctan

(
tan2(ω)

)) ]
.

(4.10)

and set
Γ:= {(ω,λ) ∈ V : P (ω,λ) = 0}, (4.11)

as a zero level set of P in V .

Remark 4.10. To plot the set Γ we perform the computations to P (ω,λ) = 0 in
V in the spirit of Remark 4.9.

In particular, for ω = 1
2π being set in (4.10) we obtain P

(
1
2π,λ

)
=2+2 cos(πλ)−

4 cos
(

1
2πλ

)
. The equation P

(
1
2π,λ

)
= 0 admits exact solutions for λ in the interval

(2.900, 5.100), namely, λ ∈ {3, 4, 5}. This yields the points(1
2
π, 3

)
=: c1,

(1
2
π, 4

)
=: a,

(1
2
π, 5

)
=: c4,

of Γ. It also holds straightforwardly that ∂P
∂ω (c1) = ∂P

∂ω (c4) = 0 and hence one may
guess that horizontal tangents to the set Γ exist at those points (in Lemma 4.14
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this situation will be discussed in details for the point c1). For a we find directly
that ∂P

∂ω (a) = ∂P
∂λ (a) = 0 and hence more detailed analysis is required. Additionally

to c1, c4, we will also specify four other points of the set Γ. Denoted as c2, c3, c5, c6,
they are defined by the system P (ω, λ) = 0 and ∂P

∂λ (ω, λ) = 0. The latter condition
(we will justify it in Lemma 4.15 for the point c2) gives us a hint that vertical
tangents to Γ exist at those points. The approximations for the coordinates of ci,
i = 1, . . . , 6 are listed in the table and we plot the level set Γ in Figure 4.

Point of Γ Coordinates (ω/π, λ) ω in degrees property of Γ at ck

c1 ( 1
2 , 3) 90◦ horizontal tangent

c2 (0.528 . . . , 3.220 . . . ) ≈ 95.1 . . .◦ vertical tangent

c3 (0.591 . . . , 4.291 . . . ) ≈ 106.4 . . .◦ vertical tangent

c4 ( 1
2 , 5) 90◦ horizontal tangent

c5 (0.477 . . . , 4.746 . . . ) ≈ 85.96 . . .◦ vertical tangent

c6 (0.412 . . . , 3.655 . . . ) ≈ 74.2 . . .◦ vertical tangent
Table 2. Approximations for the points of the level set Γ.

V

6c

5c

4c

3c

2c

1c

a

3

3. 5

4

4. 5

5

L
a
m
b
d
a

7 0 8 0 9 0 10 0 110

o m e g a ( i n  d e g r e e s )

Figure 4. The level set Γ (solid line) in V .

As we mention in Remark 4.10, the set Γ as in (4.11) was found by means of
numerical computations. In order to show that the plot of Γ is adequate, we study
the implicit function P (ω,λ) = 0 in V analytically. It is done in several steps.
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The first lemma studies P (ω,λ) = 0 in the vicinity of the point

a = (1
2π, 4) ∈ Γ. (4.12)

Lemma 4.11. Let U = I × J ⊂ V be the closed rectangle with I =
[

88
180π,

92
180π

]
,

J = [3.940, 4.060] and let point a ∈ U be as in (4.12). The set Γ given by (4.11)
consists of two smooth branches passing through a. Their tangents at a are λ = 4
and λ = − 16

√
2

π ω + 4.

Proof. Let DP stand for the gradient vector and D2P is the Hessian matrix. For
the given a we already know that DP (a) = 0. We also find

∂2P
∂ω2 (a) = 0, ∂2P

∂ω∂λ (a) = −8
√

2π, ∂2P
∂λ2 (a) = −π2.

That is, detD2P (a) = −128π2 and by Proposition 8.5 and remark 8.6 (Appendix
8) it holds that

P (ω, λ) = − 1
2h2(ω, λ)

(
16
√

2h1(ω, λ) + πh2(ω, λ)
)

on U, (4.13)

where h1, h2 ∈ C∞ (U,R) are given by almost explicit formulas in (8.13), (8.14) in
the same lemma. We also have that h1(a) = h2(a) = 0 and

∂h1
∂ω (a) = 1, ∂h1

∂λ (a) = 0, (4.14)
∂h2
∂ω (a) = 0, ∂h2

∂λ (a) = 1. (4.15)

Due to (4.13) we deduce that in U :

P (ω, λ) = 0 if and only if h2(ω, λ) = 0 or 16
√

2h1(ω, λ)+πh2(ω, λ) = 0. (4.16)

By applying the Implicit Function Theorem to the functions h2(ω, λ) = 0 and
16
√

2h1(ω, λ) + πh2(ω, λ) = 0 in U one finds a parametrization ω 7→ λ = η(ω) for
each of these implicit functions. Indeed:

(1) For h2(ω, λ) = 0 it is shown in Lemma 8.8 (Appendix 8) that
∂h2
∂λ (ω, λ) > 0 on U,

and hence there exists η1 : I → J , η1 ∈ C∞(I) such that

h2(ω, η1(ω)) = 0,

and
η′1(ω) = −∂h2

∂ω (ω, η1(ω))
[

∂h2
∂λ (ω, η1(ω))

]−1
,

for all ω ∈ I. We have that η1( 1
2π) = 4 and due to (4.15) we find η′1(

1
2π) = 0.

Hence, there is a smooth branch of Γ in U passing through a, which is given by
λ = η1(ω) with the tangent λ = 4.

(2) For 16
√

2h1(ω, λ) + πh2(ω, λ) = 0 it is shown in Lemma 8.9 (Appendix 8)
that

16
√

2∂h1
∂λ (ω, λ) + π ∂h2

∂λ (ω, λ) > 0 on U,

and hence there exists η2 : Ĩ → J , η2 ∈ C∞(Ĩ), where Ĩ ⊂ I, such that

16
√

2h1 (ω, η2(ω)) + πh2 (ω, η2(ω)) = 0,

and

η′2(ω) = −
16
√

2∂h1
∂ω (ω, η2(ω)) + π ∂h2

∂ω (ω, η2(ω))

16
√

2∂h1
∂λ (ω, η2(ω)) + π ∂h2

∂λ (ω, η2(ω))
,
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for all ω ∈ Ĩ. We have that η2( 1
2π) = 4 and due to (4.14) and (4.15) we obtain

η′2(
1
2π) = − 16

√
2

π .

Hence, there is another smooth branch of Γ in U passing through a and given by
λ = η2(ω). The tangent is λ = − 16

√
2

π ω + 4. �

The next lemma studies P (ω,λ) = 0 locally in V but away from the point a.

Lemma 4.12. Let

H1 = {(ω, λ) : [ 84
180π,

90
180π]× [4.030, 4.970]},

H2 = {(ω, λ) : [ 87
180π,

101
180π]× [4.750, 5.100]},

H3 = {(ω, λ) : [ 100180π,
108
180π]× [4.000, 4.850]},

H4 = {(ω, λ) : [ 91
180π,

102
180π]× [3.950, 4.100]},

H5 = {(ω, λ) : [ 90
180π,

96
180π]× [3.030, 3.970]},

H6 = {(ω, λ) : [ 79
180π,

94
180π]× [2.900, 3.230]},

H7 = {(ω, λ) : [ 72
180π,

80
180π]× [3.150, 4.000]},

H8 = {(ω, λ) : [ 78
180π,

89
180π]× [3.900, 4.050]},

and U be as in Lemma 4.11. Then ∪8
j=1Hj covers the set Γ in V (see Figure 5)

and in each Hj the following holds:

Rectangle Property in Hj The set Γ in Hj is given by

H2k−1
∂P
∂ω (ω, λ) 6= 0 ω = φ2k−1(λ) : φ2k−1 ∈ C∞(J2k−1)

H2k
∂P
∂λ (ω, λ) 6= 0 λ = ψ2k(ω) : ψ2k ∈ C∞(I2k)

Here k = 1, . . . , 4.

Proof. In Claims 8.10 – 8.17 of Appendix 8 we constructed the rectangles Hj ⊂ V ,
j = 1, . . . , 8 such that the results of the second column in a table above hold.
In Figure 5 we sketched the covering of the set Γ in V with the rectangles Hj ,
j = 1, . . . , 8.

Due to result of the second column we can apply the Implicit Function Theorem
to the function P (ω,λ) = 0 in everyHj , j = 1, . . . , 8 in order to obtain ω = φ2k−1(λ)
or λ= ψ2k(ω), k = 1, . . . , 4. By assumption P∈ C∞(V,R) and hence φ, ψ are C∞

on the corresponding intervals J, I. �

Based on the results of the two lemmas above, we arrive at the following result.

Proposition 4.13. The set Γ given by (4.11) is an 8-shaped curve. That is, there
exists an open set Ṽ ⊃ [−1, 1]2 and a C∞-diffeomorphism S : V → Ṽ such that

S (Γ) = {(sin(2t), sin(t)), 0 ≤ t < 2π} .

Henceforth, we will call the set Γ a curve (having one self-intersection point)
which means that every part of the set Γ is locally parametrizable in ω or λ.
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Figure 5. For lemma 4.12.

4.4.2. Eigenvalue λ1 as the bottom part of Γ. The curve Γ in a rectangle V combines
the graphs of the first four eigenvalues λ1, . . . , λ4 of the boundary value problem (
4.4) as functions of ω as far as they are real. Here we focus on the eigenvalue λ1

which is a bottom part of Γ (the segment c6c1c2 ⊂ Γ in Figure 4). In particular,
we prove that as a function of ω the eigenvalue λ1 = λ1(ω) increases between the
points c1, c2 (the approximations for their coordinates are given in Table 2). The
situation is illustrated by Figure 6.

To prove this result, we follow the approach used in Lemmas 4.11 and 4.12.
To be more precise, we fix two rectangles {H0,H?} ⊂ V such that H0 ∩ H? 6= ∅
and H0 ∪H? covers the part of Γ containing the segment c1c2 (see Figure 7). We
parameterize Γ in H0,H? as ω 7→ λ = ψ(ω) and λ 7→ ω = ϕ(λ), respectively,
and study the properties of these parametrizations (convexity-concavity, extremum
points, the intervals of increase-decrease). This will enable to gain the information
about c1c2.

Lemma 4.14. Let H0 = I0×J0 ⊂ V be the closed rectangle with I0 =
[

84
180π,

94
180π

]
and J0 = [2.960, 3.060]. It holds that Γ in H0 is given by λ = ψ(ω), ψ ∈ C∞(ωα, ωβ),
(ωα, ωβ) ⊂ I0 and is such that it attains its minimum on (ωα, ωβ) at ω = ω0 = 1

2π
and increases monotonically on (ω0, ωβ). Here ωα, ωβ are the solutions to the equa-
tion P (ω, 3.060) = 0 on ω ∈

(
84
180π,

1
2π

)
and on ω ∈

(
1
2π,

94
180π

)
, respectively, with

P given by (4.10).

Proof. By Lemma 4.12 we know that

P (ω, λ) = 0 if and only if P (ω, ψ(ω)) = 0 in H6, (4.17)
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Figure 6. Increase of λ1 between c1 and c2
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Figure 7. The rectangles H0,H? from lemmas 4.14 and 4.15, re-
spectively (on the left); the enlarged view (on the right).

and if we take the rectangle H0 defined as in lemma above, then due to H0 ⊂ H6,
(4.17) will also hold in H0. Moreover, we also set H0 in such a way that its
top boundary intersects Γ at two points, meaning that we find two solutions of
P (ω, 3.060) = 0 with P as in (4.10). We name these two solutions ωα, ωβ .

Hence, we deduce that Γ in H0 is given by λ = ψ(ω), ψ ∈ C∞(ωα, ωβ) and
satisfies ψ(ωα) = ψ(ωβ) = 3.060. Due to condition

ψ(ωα) = ψ(ωβ),
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by Rolle’s theorem there exists ω0 ∈ (ωα, ωβ) such that ψ′(ω0) = 0.
Since P (ω0, ψ (ω0)) = 0 and due to

ψ′(ω) = −∂P
∂ω (ω, ψ(ω))[∂P

∂λ (ω, ψ(ω))]−1,

we solve the system P (ω, λ) = 0 and ∂P
∂ω (ω, λ) = 0 in H0 in order to find ω0. Its

solution is a point c1 = (1
2π, 3) and hence

ω0 = 1
2π.

We deduce that λ = ψ(ω) attains its local extremum at ω = ω0.
Next we show that λ = ψ(ω) has a minimum at ω = ω0 on (ωα, ωβ). For this

purpose we consider a function G ∈ C∞(H0,R) such that

G (ω, ψ(ω)) = ψ′′(ω). (4.18)

For an explicit formula for G see Appendix 8. In Claim 8.18 of this Appendix we
show that

G(ω, λ) > 0 on H0. (4.19)
This condition together with (4.18) yields

G (ω, ψ(ω)) = ψ′′(ω) > 0 on (ωα, ωβ),

meaning that λ = ψ(ω) is convex on (ωα, ωβ).
The result is that λ = ψ(ω) attains its minimum on (ωα, ωβ) at ω = ω0 = 1

2π
and increases monotonically on the interval ω ∈ (ω0, ωβ). �

We also have the following result.

Lemma 4.15. Let H? = I?×J? ⊂ V be the closed rectangle with I? =
[
93.5
180 π,

95.5
180 π

]
and J? = [3.030, 3.600]. It holds that Γ in H? is given by ω = ϕ(λ), ϕ ∈ C∞(λγ , λδ),
(λγ , λδ) ⊂ J? and is such that it attains its maximum on (λγ , λδ) at λ = λ? ≈
3.220 . . . and increases monotonically on the interval (λγ , λ?). Here λγ , λδ are
the solutions to the equation P

(
93.5
180 π, λ

)
= 0 on λ ∈ (3.030, 3.100) and on λ ∈

(3.500, 3.600), respectively. Also, λ? is the solution to the system P (ω, λ) = 0 and
∂P
∂λ (ω, λ) = 0 on λ ∈ (λγ , λδ); P given by (4.10).

Proof. By Lemma 4.12 we know that

P (ω, λ) = 0 if and only if P (ϕ(λ), λ) = 0 in H5, (4.20)

and if we take the rectangle H? defined as in lemma above, then due to H? ⊂ H5,
(4.20) will also hold in H?. Moreover, we also set H? in such a way that its left
boundary intersects Γ at two points, meaning we find two solutions of P

(
93.5
180 π, λ

)
=

0 with P as in (4.10). We name these two solutions λγ , λδ.
Hence, we deduce that Γ in H? is given by ω = ϕ(λ), ϕ ∈ C∞(λγ , λδ) and

satisfies ϕ(λγ) = ϕ(λδ) = 93.5
180 π. Due to condition

ϕ(λγ) = ϕ(λδ),

by Rolle’s theorem there exists λ? ∈ (λγ , λδ) such that ϕ′(λ?) = 0.
Since P (ϕ(λ?), λ?) = 0 and due to

ϕ′(λ) = −∂P
∂λ (ϕ(λ), λ)[∂P

∂ω (ϕ(λ), λ)]−1,

we solve the system P (ω, λ) = 0 and ∂P
∂λ (ω, λ) = 0 in H? in order to find λ?. Its

solution is a point c2 =
(
ω̃, λ̃

)
, where ω̃/π ≈ 0.528 . . . and λ̃ ≈ 3.220 . . . . Hence,

λ? ≈ 3.220 . . . .
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We deduce that ω = ϕ(λ) attains its local extremum at λ = λ?.
Next we show that ω = ϕ(λ) has a maximum at λ = λ? on (λγ , λδ). For this

purpose we consider a function F ∈ C∞ (H?,R) such that

F (ϕ(λ), λ) = ϕ′′(λ). (4.21)

For explicit formula for F see Appendix 8. In Claim 8.19 of this Appendix we show
that

F (ω, λ) < 0 on H?. (4.22)
This condition together with (4.21) yields

F (ϕ(λ), λ) = ϕ′′(λ) < 0 on (λγ , λδ),

meaning that ω = ϕ(λ) is concave on (λγ , λδ). The result is that ω = ϕ(λ) attains
its maximum on (λγ , λδ) at λ = λ? ≈ 3.220 . . . and increases monotonically on the
interval λ ∈ (λγ , λ?). �

Theorem 4.16. As a function of ω the first eigenvalue λ1 = λ1(ω) of the boundary
value problem (4.4) increases on ω ∈

(
1
2π, ω?

)
. Here ω?/π ≈ 0.528 . . . (in degrees

ω? ≈ 95.1 . . .◦) and λ? ≈ 3.220 . . . .

4.5. The multiplicities of {λj}∞j=1 and the structure of a singular solution.
Here we proceed with the qualitative analysis of the eigenvalues {λj}∞j=1 of problem
(4.4).

Definition 4.17. Let ω ∈ (0, 2π] be fixed. The eigenvalue λj , j ∈ N+ of problem
(4.4) is said to have an algebraic multiplicity κ(j) ≥ 1, if the following holds:

P (ω, λj) = 0, dP
dλ (ω, λj) = 0, . . . , dκ(j)−1P

dλκ(j)−1
(ω, λj) = 0, dκ(j)

P

dλκ(j) (ω, λj) 6= 0.

Based on the numerical approximations for some first eigenvalues λj , j ∈ N+

depicted in Figure 3 (the top one) and partly by our derivations (namely, the
existence of the solution to the system P (ω, λ) = ∂P

∂λ (ω, λ) = 0 in Lemma 4.15) we
believe that the maximal algebraic multiplicity of a certain λj of problem (4.4) is
at most 2 . Indeed, generically 3 curves never intersect at one point, meaning that
geometrically the algebraic multiplicity will always be at most 2.

Definition 4.18. The eigenvalue λj , j ∈ N+ of problem (4.4) is said to have a
geometric multiplicity I(j) ≥ 1, if the number of linearly independent eigenfunctions
Φ equals I(j).

For given λj , j ∈ N+ of problem (4.4) the three cases occur:
1. κ(j) = I(j) = 1 one finds a solution (λj ,Φ

(j)
0 ) of (4.4) and then the solution

of (4.1) reads:
u

(j)
0 = rλj+1Φ(j)

0 (θ); (4.23)

2. κ(j) = 2, I(j) = 1 one finds a solution (λj ,Φ
(j)
0 ) of (4.4) and a generalized

solution (λj ,Φ
(j)
1 ), with Φ(j)

1 found from the equation

L(λj)Φ
(j)
1 + L′(λj)Φ

(j)
0 = 0,

where L(λ) is given by (4.3) and L′(λ) = d
dλL(λ). Then we have two solutions of

(4.1):

u
(j)
0 = rλj+1Φ(j)

0 (θ) and u
(j)
1 = rλj+1

(
Φ(j)

1 (θ) + log(r)Φ(j)
0 (θ)

)
; (4.24)
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3. κ(j) = I(j) = 2 one finds two solutions (λj ,Φ
(j)
0 ), (λj ,Φ

(j)
1 ) of (4.4), where

Φ(j)
0 and Φ(j)

1 are linearly independent on θ ∈ (0, ω) and then we again have two
solutions of (4.1):

u
(j)
0 = rλj+1Φ(j)

0 (θ) and u
(j)
1 = rλj+1Φ(j)

1 (θ). (4.25)

Let us note that for an opening angle ω ∈ { 1
2π, π,

3
2π, 2π} of the sector Kω

one can find the eigenvalues {λj}∞j of the problem (4.4) explicitly. Moreover, if
ω ∈

{
1
2π, π

}
, then for every given λj one can compute explicitly the corresponding

eigenfunctions Φ(j)
q , q = 0, . . . , κ(j)−1, whereas if ω ∈

{
3
2π, 2π

}
, the eigenfunctions

Φ(j)
q can be computed explicitly only for some λj . Thus, in Appendix 9 we bring the

formulas of some first functions Φ(j)
q (if computable) and the respective solutions

u
(j)
q to (4.1).
These functions rλ+1Φ(θ) and rλ+1 log(r)Φ(θ) determine the bands for the reg-

ularity in Kondratiev’s theory. Details are found in the next section.

5. Regularity results

In this subsection we will give the regularity result for the boundary value prob-
lem (1.4) under consideration. In order to do this we refer to the key theorem of
the Kondratiev theory (see e.g. [13, Theorem 6.4.1]). The general version adapted
to our problem (1.4) will read as:

Theorem 5.1 (Kondratiev). Let u ∈ V l1,2
β1

(Ω) with l1 ∈ N, β1 ∈ R be a solution of
the elliptic boundary value problem (1.4).

Suppose that f ∈ V l2,2
β2

(Ω), where l2 ∈ N, β2 ∈ R and such that l1 − β1 <

l2 − β2 + 4. If no eigenvalue λj of problem (4.4) lies on the lines

Re(λ) = l1 − β1 − 2, Re(λ) = l2 − β2 + 2,

while the strip
l1 − β1 − 2 < Re(λ) < l2 − β2 + 2,

contains the eigenvalues λn, λn+1 . . . , λn+N , then u has the representation

u = w + χ(r)
n+N∑
j=n

κ(j)−1∑
q=0

c(j)q u(j)
q , (5.1)

where w ∈ V l2+4,2
β2

(Ω), χ ∈ C∞
0 [0, ε) is a cut-off function such that χ(r) = 1 in the

neighborhood of r = 0, κ(j) ≤ 2 is the algebraic multiplicity of λj and u(j)
q are the

solutions of the problem (4.1) in Kω given by formulas (4.23), (4.24), (4.25).

Let us recall that by Theorem 2.2 there exists a unique weak solution u ∈
W̊ 2,2(Ω) of (1.4) with f ∈ L2(Ω). Since L2(Ω) = V 0,2

0 (Ω) and by Corollary 6.4
one has W̊ 2,2(Ω) = V̊ 2,2

0 (Ω) ⊂ V 2,2
0 (Ω), we conclude that for f ∈ V 0,2

0 (Ω) we have
u ∈ V 2,2

0 (Ω).
Then assuming more regularity for f ∈ V 0,2

0 (Ω) we apply Theorem 5.1 to our
problem (1.4). Using Lemma 6.3 we may consider three different cases:

f ∈


V k,2

β (Ω), k ≥ 0, β ≥ k,

W̊ k,2(Ω), k ≥ 1,
W k,2(Ω), k ≥ 0,
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and obtain the following result (in order to describe all three cases and also for the
convenience we arranged this result as a table):

Theorem 5.2. Let f ∈ L2(Ω) and let u ∈ W̊ 2,2(Ω) be a weak solution to (1.4).

f is in V k,2
β (Ω), k ≥ 0, β ≥ k W̊ k,2(Ω), k ≥ 1 W k,2(Ω), k ≥ 0

no eigenvalue
λj of (4.4) lies
on the lines

{
Re(λ) = 0,
Re(λ) = k − β + 2

{
Re(λ) = 0,
Re(λ) = k + 2

{
Re(λ) = 0,
Re(λ) = 2

while the strip 0 < Re(λ) < k − β + 2 0 < Re(λ) < k + 2 0 < Re(λ) < 2

contains λ1, λ2, . . . , λN

u = w + χ(r)
∑N

j=1

∑κ(j)−1
q=0 c

(j)
q u

(j)
q

where w is in V k+4,2
β (Ω) W k+4,2(Ω) W k+4,2(Ω, |x|2kdµ)

and χ ∈ C∞
0 [0, ε) is a cut-off function such that χ = 1 in the neighborhood of r = 0,

κ(j) ≤ 2 is the algebraic multiplicity of λj and u(j)
q are the solutions of the problem

(4.1) in Kω given by formulas (4.23), (4.24), (4.25).

Remark 5.3. The first column gives the optimal regularity in the sense of Kon-
dratiev’s spaces. The second and third column shows two corollaries with the more
commonly used Sobolev spaces. Away from the corner also these results are opti-
mal. Of course the optimal regularity near a corner can not be stated using just
the standard Sobolev spaces W `,2(Ω).

Proof of Theorem Theorem2. The first column is just a representation of the previ-
ous theorem in the case that f ∈ L2(Ω) and a weak solution u ∈ W̊ 2,2(Ω) is known
to exist. Additional regularity in the sense of Kondratiev’s weighted Sobolev spaces
for f implies the representation as stated for the solution u. In the second and third
column the most common special cases are listed independently. For the second
column one uses the imbeddings

W̊ k,2(Ω) ⊂ V k,2
0 (Ω) and V k+4,2

0 (Ω) ⊂W k+4,2(Ω),

and for the third

W k,2(Ω) ⊂ V k,2
k (Ω) and V k+4,2

k (Ω) ⊂W k+4,2(Ω, |x|2kdµ).

�

As the last step of our analysis we derive the regularity in Ω for the singular part∑N
j=1

∑κ(j)−1
q=0 c

(j)
q u

(j)
q of the solution u given in Theorem 5.2.

5.1. Regularity for the singular part of u. The first term of the summation∑N
j=1

∑κ(j)−1
q=0 c

(j)
q u

(j)
q in the solution u defines the regularity of the whole sum.

From formulas (4.23), (4.24), (4.25) we know that depending on the algebraic mul-
tiplicity of λ1 it reads as

rλ1+1Φ(θ) or rλ1+1 (Ψ(θ) + log(r)Φ(θ)) ,

where λ1 ∈ C is the first eigenvalue of (4.4) such that Re(λ1) > 0 and Φ(θ),Ψ(θ) ∈
C∞[0, ω], 0 < ω < 2π.
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Lemma 5.4. Let Φ(θ) ∈ C∞[0, ω] be nontrivial and 0 < ω < 2π. Let also λ ∈ C\Z
with Re(λ) > 0. Suppose that k ∈ {0, 1, 2, 3, . . . }. Then the following are equivalent:

(1) rλ+1Φ(θ) ∈W k,2(Ω),
(2) rλ+1 log(r)Φ(θ) ∈W k,2(Ω),
(3) Re(λ) + 1 > k − 1.

Proof. If λ is not an integer, then the first item and second items are equivalent with
an integrability condition for the kth -derivative that reads as 2Re(λ+1−k)+1 >
−1. �

Remark 5.5. To restrict the already heavy technical aspects we have not consid-
ered (weighted) Sobolev spaces with non-integer coefficients k and Hölder spaces.
A similar result will hold for k is noninteger. Concerning Hölder spaces:

rλ+1Φ(θ) ∈ Ck,γ(Ω̄) for Re(λ) + 1 ≥ k + γ with k ∈ N, γ ∈ [0, 1).

For the second function it holds that

rλ+1 log(r)Φ(θ) ∈ Ck,γ(Ω̄) for Re(λ) + 1 > k + γ with k ∈ N, γ ∈ [0, 1).

A useful consequence of the above lemma is that for every fixed λ ∈ C with
Re(λ) > 0 we deduce{

rλ+1Φ(θ), rλ+1 log(r)Φ(θ)
}
∈W dRe(λ)e+1,2(Ω), (5.2)

where d·e stands for the ceiling function (defined as dxe = min{n ∈ Z : x ≤ n}).

Remark 5.6. In the particular cases, namely, ω = 1
2π and ω = π we know that

each term u
(j)
q of the singular part

∑N
j=1

∑κ(j)−1
q=0 c

(j)
q u

(j)
q is a polynomial in x, y of

order λj + 1 (see Appendix 9). That is, for every λj , j ∈ N+ we have

rλj+1Φ(j)(θ) = Pλj+1(x, y) ∈ C∞ (
Ω

)
. (5.3)

For non-polynomials the result in Lemma 5.4 even holds for λ ∈ N.

Now, in order to use the result of Lemma 5.4, we proceed with Figure 8 where
we plot the Re(λ1) as a function of the opening angle ω on the interval ω ∈ (0, 2π].
The two cases are compared: the plots of Re(λ1) of the boundary value problem
(4.4) for L related to L = ∂4

∂x4 + ∂4

∂y4 and L = ∆2. In Figure 9 we split the plot of
Figure 8 into two: a plot of Re(λ1) on ω ∈ (0, π] and ω ∈ [π, 2π].

Based on the numerical approximations to λ1 and partly on the analytical esti-
mates for λ1 we conclude the following.

Claim 5.7. (0, 2π] 3 ω 7→ Re(λ1(ω)) is a continuous function and

for ω ∈ (0, ω1)/{
1
2
π} : Re(λ1) > 3, for ω =

1
2
π : Re(λ1) = 3,

for ω ∈ [ω1, ω2) : 3 ≥ Re(λ1) > 2, for ω ∈ [ω2, π) : 2 ≥ Re(λ1) > 1,

for ω ∈ [π, 2π] : 1 ≥ Re(λ1) ≥
1
2
.

Here ω1, ω2 are respectively the solutions of P (ω, 3 + iξ) = 0 on ω ∈
(

1
2π,

120
180π

)
and of P (ω, 2 + iξ) = 0 on ω ∈

(
2
3π,

3
4π

)
, where P as in formula (4.7) for ` = 1

. The approximation are ω1/π ≈ 0.555 . . . (in degrees ω1 ≈ 99.9 . . .◦) and ω2/π ≈
0.720 . . . (in degrees ω2 ≈ 129.7 . . .◦).
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Bilaplacian
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Figure 8. The plot of eigenvalue λ1 in (ω,Re(λ)) ∈ (0, 2π] ×
[0, 7.200] of problem ( 4.4). For L related to ∂4

∂x4 + ∂4

∂y4 , λ1 is
represented by the red line and for L related to ∆2, by the blue
line. Dashed lines depict the real part of λ1 ∈ C, solid lines are for
purely real λ1; the vertical lines mark out

{
1
2π, π,

3
2π, 2π

}
on ω-

axis.

5.2. Consequences. For the numerical results from Claim 5.7, it holds by Theo-
rem 5.2 that:

Corollary 5.8. Let u ∈ W̊ 2,2(Ω) be a weak solution of problem (1.4) with f ∈
L2(Ω). Then

for ω ∈ (0, ω2) : u ∈W 4,2(Ω), for ω ∈ (ω2, π) : u ∈W 3,2(Ω),

for ω = π : u ∈W 4,2(Ω), for ω ∈ (π, 2π] : u ∈W 2,2(Ω).

Here ω2 is as in Claim 5.7.

Remark 5.9. For the opening angle ω = ω2 we have Re(λ1) = 2 and hence
Theorem 5.2 does not apply. Nevertheless, assuming f ∈ L2(Ω) to be more regular,
e.g. in V 1,2

0 (Ω) or W̊ 1,2(Ω), we may show that

for ω = ω2 : u ∈W 3,2(Ω).

Proof. By Theorem 5.2 if f ∈ L2(Ω), the solution u of problem (1.4) reads as

u = w + χ(r)
∑

0<λj<2

κ(j)−1∑
q=0

c(j)q u(j)
q , (5.4)

with w ∈ W 4,2(Ω). Due to 5.7 we see that the sum in ( 5.4) has no terms when
ω ∈ (0, ω2) and hence for ω ∈ (0, ω2) we have u ∈W 4,2(Ω).

For ω ∈ (ω2, π)∪(π, 2π] the first term of sum in (5.4), depending on the algebraic
multiplicity of λ1, reads as u(1)

0 = rλ1+1Φ(1)
0 (θ), or as a linear combination of
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Figure 9. The plot of Figure 8 rescaled. The curves for the grid-
operator and the bilaplacian intersect four times. Three of these
points (we obviously exclude ω = π) seem to be special: It looks
like the curves intersect at ω = 3

4π, ω = 5
4π and ω = 7

4π (the inter-
section points are marked by cross). The numerical approximation
shows however that the first values λ1,Grid and λ1,Bilaplace at those
points only coincide up to three digits.

u
(1)
0 = rλ1+1Φ(1)

0 (θ) and u
(1)
1 = rλ1+1

(
Φ(1)

1 (θ) + log(r)Φ(1)
0 (θ)

)
. By (5.2) we have

that
{
u

(1)
0 , u

(1)
1

}
∈ W dRe(λ)e+1,2(Ω), where due to Claim 5.7 we may deduce that
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dRe(λ1)e+ 1 = 3, when ω ∈ (ω2, π) and dRe(λ1)e+ 1 = 2, when ω ∈ (π, 2π]. This
results in u ∈W 3,2(Ω) for ω ∈ (ω2, π) and u ∈W 2,2(Ω) for ω ∈ (π, 2π].

Finally, for ω = π due to (5.3) the singular part is of C∞(Ω) and hence u ∈
W 4,2(Ω) in this case. �

6. Comparing (weighted) Sobolev spaces

6.1. One-dimensional Hardy-type inequalities.

Lemma 6.1 (A higher order one-dimensional Hardy inequality). Let w be a func-
tion in C∞

0 [x1, x2]. For every k ≥ 1 it holds that∫ x2

x1

(
w(x)

(x−x1)k

)2

dx = 4k

(2k−1)2(2k−3)2...3212

∫ x2

x1

(
w(k)(x)

)2

dx. (6.1)

Proof. It holds straightforwardly that∫ x2

x1

(
w(x)

(x−x1)k

)2

dx

=
1

1− 2k

[
(w(x))2 (x− x1)1−2k

]
|x2
x1

+
2

2k − 1

∫ x2

x1

w(x)w′(x)(x− x1)1−2kdx

≤ 2
2k − 1

( ∫ x2

x1

(
w(x)

(x−x1)k

)2

dx
)1/2( ∫ x2

x1

(
w′(x)

(x−x1)k−1

)2

dx
)1/2

and the first step in the proof of (6.1) follows. Repeating the argument for w′ and
k − 1 etc. will give the result. �

Remark 6.2. Since W̊ k,2(x1, x2), k ≥ 1 is the closure of C∞
0 [x1, x2] in the W k,2-

norm, one can use the results of Lemma 6.1 for every w ∈ W̊ k,2(x1, x2), k ≥ 1.

6.2. Imbeddings. As mentioned e.g. in [12, page 240] or [13, Chapter 7, sum-
mary], the family of weighted spaces V l,2

β does not contain the ordinary Sobolev

spaces without weight. More precisely: W k,2 /∈
{
V l,2

β

}
l,β

for k ≥ 1. We will prove

the imbedding results for bounded Ω that satisfy Condition 1.1.

Lemma 6.3. Let β ∈ R and l ∈ {0, 1, 2, . . . }. Then the following holds:

(a) V l,2
β (Ω) ⊂W l,2(Ω) if and only if β ≤ 0,

(b) W l,2(Ω) ⊂ V l,2
β (Ω) if and only if β ≥ l,

(c) V̊ l,2
β (Ω) ⊂ W̊ l,2(Ω) if and only if β ≤ 0,

(d) W̊ l,2(Ω) ⊂ V̊ l,2
β (Ω) if and only if β ≥ 0.

Corollary 6.4. For l ∈ {0, 1, 2, . . . } one has

W̊ l,2(Ω) = V̊ l,2
0 (Ω).

Proof of Lemma 6.3. Let Ω be as in Condition 1.1 and Ω ⊂ BM (0), where BM (0)
is an open ball of radius M > 0. The statement in a) goes as follows: for (x, y) ∈ Ω
one has 0 ≤ r ≤M and hence r2(β−l+|α|) ≥M2(β−l+|α|) if and only if β−l+|α| ≤ 0.
Since 0 ≤ |α| ≤ l, we obtain β ≤ 0. This enables us to have the estimate

‖u‖V l,2
β (Ω) =

( l∑
|α|=0

∫
Ω

r2(β−l+|α|)|Dαu|2dx dy
)1/2



26 T. GERASIMOV, G. SWEERS EJDE-2009/47

≥
( l∑
|α|=0

∫
Ω

M2(β−l+|α|)|Dαu|2dx dy
)1/2

≥ min(1,Mβ−l)
( l∑
|α|=0

∫
Ω

|Dαu|2dx dy
)1/2

= min(1,Mβ−l)‖u‖W l,2(Ω),

which is the result in (a).
To prove the statement in (b) we notice that r2(β−l+|α|) ≤ M2(β−l+|α|) if and

only if β − l + |α| ≥ 0. Due to 0 ≤ |α| ≤ l, we obtain β ≥ l and then the estimate
holds

‖u‖V l,2
β (Ω) =

( l∑
|α|=0

∫
Ω

r2(β−l+|α|)|Dαu|2dx dy
)1/2

≤
( l∑
|α|=0

∫
Ω

M2(β−l+|α|)|Dαu|2dx dy
)1/2

≤ max(1,Mβ−l)
( l∑
|α|=0

∫
Ω

|Dαu|2dx dy
)1/2

= max(1,Mβ−l)‖u‖W l,2(Ω).

This is the result in (b).
To prove the statements in (c) and (d) we set θ = 1

2ω where the opening angle
ω ∈ (0, 2π). We also use the fact that for our domain there exists c > 0 such that
r > cρ(x, y), where ρ denotes the distance from a point (x, y) on the lines

` : y = tan(θ)x+ τ,

with τ ∈ R to the point (x1, y1) ∈ ∂Ω. In particular, it holds that

ρ2 = (x− x1)2(1 + tan2(θ)).

We may integrate along the lines ` and use the one-dimensional Hardy-inequality
to find that there exist C̃l ∈ R+ with

‖u‖V l,2
0 (Ω) ≤ C̃l‖u‖W l,2(Ω) for all u ∈ C∞

c (Ω). (6.2)

On the other hand, using the same trick as in proof of a) we find Cl ∈ R+ such
that

Cl‖u‖W l,2(Ω) ≤ ‖u‖V l,2
0 (Ω) for all u ∈ C∞

c (Ω). (6.3)

Estimates (6.2), (6.3) yield

W̊ l,2(Ω) = V̊ l,2
0 (Ω).

Due to imbedding V̊ l,2
β1

(Ω) ⊂ V̊ l,2
0 (Ω) ⊂ V̊ l,2

β2
(Ω) when β1 ≤ 0 ≤ β2 one obtains the

result in (c) and (d). �
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Figure 10. Domain Ω with a concave corner ω intersected by `

7. A fundamental system of solutions

7.1. Derivation of system Sλ. Let us find the fundamental set of solutions to
equation

L(θ, d
dθ , λ)Φ = 0, (7.1)

with L(θ, d
dθ , λ) as in formula (4.3). For this L it seems to be hard to derive a set

of functions solving (7.1) explicitly. The following approach applies in this case.
For L = ∂4

∂x4 + ∂4

∂y4 we find L
(
rλ+1Φ

)
= rλ−3L

(
θ, d

dθ , λ
)
Φ and hence instead of

L
(
θ, d

dθ , λ
)
Φ = 0 we may consider the equation

L
(
rλ+1Φ

)
= 0. (7.2)

Operator L admits the decomposition

L = ∂4

∂x4 + ∂4

∂y4 =
2∏

p=1

(
∂
∂y − τp

∂
∂x

) 2∏
p=1

(
∂
∂y + τp

∂
∂x

)
,

with τ1 =
√

2
2 (1+ i), τ2 =

√
2

2 (1− i) and hence every function of the form F (x±τpy)
solves (7.2). Therefore, we have that

rλ+1Φ(θ) =
2∑

p=1

cpfp(x+ τpy) + cp+2fp+2(x− τpy),

and after translation {fp, fp+2}2p=1 into polar coordinates we set

fp (r cos(θ) + τpr sin(θ)) := (r cos(θ) + τpr sin(θ))λ+1
,
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fp+2 (r cos(θ)− τpr sin(θ)) := (r cos(θ)− τpr sin(θ))λ+1
,

So, the set of functions

ϕ1(θ) = (cos(θ) + τ1 sin(θ))λ+1
, ϕ2(θ) = (cos(θ) + τ2 sin(θ))λ+1

, (7.3)

ϕ3(θ) = (cos(θ)− τ1 sin(θ))λ+1
, ϕ4(θ) = (cos(θ)− τ2 sin(θ))λ+1

, (7.4)
is a set of solutions to (7.1). The Wronskian for {ϕm}4m=1 reads as

W (ϕ1(θ), ϕ2(θ), ϕ3(θ), ϕ4(θ)) = det


ϕ1(θ) ϕ2(θ) ϕ3(θ) ϕ4(θ)
ϕ′1(θ) ϕ′2(θ) ϕ′3(θ) ϕ′4(θ)
ϕ′′1(θ) ϕ′′2(θ) ϕ′′3(θ) ϕ′′4(θ)
ϕ′′′1 (θ) ϕ′′′2 (θ) ϕ′′′3 (θ) ϕ′′′4 (θ)

 , (7.5)

and by straightforward computations one finds

W = 16 (λ+ 1)3 λ2 (λ− 1)
(
cos4(θ) + sin4(θ)

)λ−2
,

which is non-zero on θ ∈ (0, 2π] except for λ ∈ {±1, 0}. Hence, except for these
values {ϕm}4m=1 given in (7.3), (7.4) is a fundamental system of solutions to (7.1).

7.2. Derivation of systems S−1, S0, S1. Here we find the fundamental systems
of solutions to equation L

(
θ, ∂

∂θ , λ
)
Φ = 0 when λ ∈ {±1, 0}. We will go into details

in solving the corresponding equation for every λ ∈ {±1, 0}.

7.2.1. Case λ = −1. For λ = −1 the equation (7.1) reads as
1
4 (3 + cos(4θ))Φ′′′′ − 3 sin(4θ)Φ′′′ + (3− 11 cos(4θ))Φ′′ + 12 sin(4θ)Φ′ = 0. (7.6)

First we set Φ(θ) =
∫
F (θ)dθ and obtain the equation for F :

1
4 (3 + cos(4θ))F ′′′ − 3 sin(4θ)F ′′ + (3− 11 cos(4θ))F ′ + 12 sin(4θ)F = 0.

The first integral of the above equation reads as
1
4 (3 + cos(4θ))F ′′ − 2 sin(4θ)F ′ + 3(1− cos(4θ))F = c0.

We use the change of variables F (θ) = (3 + cos(4θ))−1
G(θ) and get

G′′ + 4G = 4c0.

Solution of the last equation reads as

G(θ) = c1 sin(2θ) + c2 cos(2θ) + c0.

and then
F (θ) = c1

sin(2θ)
3+cos(4θ) + c2

cos(2θ)
3+cos(4θ) + c3

1
3+cos(4θ) .

As a result, Φ that solves (7.6) will read as

Φ(θ) = A1 +A2

∫
sin(2θ)

3+cos(4θ)dθ +A3

∫
cos(2θ)

3+cos(4θ)dθ +A4

∫
1

3+cos(4θ)dθ,

and then the candidates that may form the fundamental system of solutions to (7.6)
will be the following:

ϕ1(θ) = 1,

ϕ2(θ) = −4
∫

sin(2θ)
3+cos(4θ)dθ = arctan (cos(2θ)) ,

ϕ3(θ) = 4
√

2
∫

cos(2θ)
3+cos(4θ)dθ = arctanh

(√
2

2 sin(2θ)
)
,
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ϕ4(θ) = 4
√

2
∫

1
3+cos(4θ)dθ =

{
arctan

(√
2

2 tan(2θ)
)

+ `π, θ ∈
(

2`−1
4 π, 2`+1

4 π
)
,

2θ θ = 2`+1
4 π,

with ` = 0, . . . , 4. Formula for ϕ4 is given on the interval θ ∈
(
− 1

4π, 2π + 1
4π

)
in

order to have the concise explicit form.
The Wronskian W of ϕ1, . . . , ϕ4 is proportional to

(
cos4(θ) + sin4(θ)

)−3
and is

non-zero on θ ∈ (0, 2π]. Hence, {ϕm}4m=1 defined as above is a fundamental system
of solutions to (7.6).

7.2.2. Case λ = 0. For λ = 0 the equation (7.1) reads as:
1
4 (3 + cos(4θ))Φ′′′′ − 2 sin(4θ)Φ′′′ + 1

2 (3− 7 cos(4θ))Φ′′

− 2 sin(4θ)Φ′ + 3
4 (1− 5 cos(4θ))Φ = 0,

(7.7)

and can be split as follows:(
d2

dθ2 + 1
) (

1
4 (3 + cos(4θ))

(
d2

dθ2 + 1
))

Φ = 0.

So, Φ solves
Φ′′ + Φ = A sin(θ)

3+cos(4θ) +B cos(θ)
3+cos(4θ) ,

and after integrating this equation we obtain

Φ(θ)

= A1 sin(θ) +A2 cos(θ) +A3

(
1
2 sin(θ) arctan (cos(2θ)) + 4 cos(θ)

∫ θ

0

sin2(y)
3+cos(4y)dy

)
+A4

(
1
2 cos(θ) arctan (cos(2θ)) + 4 sin(θ)

∫ θ

0

cos2(y)
3+cos(4y)dy

)
.

The candidates that may form the fundamental system of solutions to (7.7) will be
the following:

ϕ1(θ) = sin(θ), ϕ2(θ) = cos(θ),

ϕ3(θ) = 1
2 sin(θ) arctan (cos(2θ)) + 4 cos(θ)

∫ θ

0

sin2(y)
3+cos(4y)dy,

ϕ4(θ) = 1
2 cos(θ) arctan (cos(2θ)) + 4 sin(θ)

∫ θ

0

cos2(y)
3+cos(4y)dy.

The Wronskian W of ϕ1, . . . , ϕ4 is proportional to
(
cos4(θ) + sin4(θ)

)−2
and is non-

zero on θ ∈ (0, 2π]. Hence, {ϕm}4m=1 defined as above is a fundamental system of
solutions to (7.7).

7.2.3. Case λ = 1. For λ = 1 the equation (7.1) reads as:
1
4 (3 + cos(4θ))Φ′′′′ − sin(4θ)Φ′′′ + (3 + cos(4θ))Φ′′ − 4 sin(4θ)Φ′ = 0. (7.8)

We set Φ(θ) =
∫
F (θ)dθ and obtain the equation for F :

1
4 (3 + cos(4θ))F ′′′ − sin(4θ)F ′′ + (3 + cos(4θ))F ′ − 4 sin(4θ)F = 0.

It holds that

(3 + cos(4θ))F ′′′ − 4 sin(4θ)F ′′ = −2g(θ),

(3 + cos(4θ))F ′ − 4 sin(4θ)F =
1
2
g(θ).
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and we obtain, respectively,

F ′′(θ) = −4
R

g(θ)dθ+C1

3+cos(4θ) , F (θ) =
R

g(θ)dθ+C2

3+cos(4θ) .

Comparing the expressions for F ′′(θ) and F (θ) we deduce that F solves

F ′′ + 4F =
c0

3 + cos(4θ)
. (7.9)

The solution of (7.9) reads as

F (θ) = c1 sin(2θ) + c2 cos(2θ) + c0

(
1
4 cos(2θ) arctan (cos(2θ))

+
√

2
8 sin(2θ)arctanh

(√
2

2 sin(2θ)
))
,

which being integrated yields

Φ(θ) = A1 +A2 cos(2θ) +A3 sin(2θ)

+A4

∫ θ

0

(
cos(2y) arctan (cos(2y)) +

√
2

2 sin(2y)arctanh
(√

2
2 sin(2y)

))
dy

(7.10)
The candidates that may form the fundamental system of solutions to (7.8) will be
the following:

ϕ1(θ) = 1, ϕ2(θ) = sin(2θ), ϕ3(θ) = cos(2θ),

ϕ4(θ) =
∫ θ

0

(
cos(2y) arctan (cos(2y)) +

√
2

2 sin(2y)arctanh
(√

2
2 sin(2y)

))
dy.

The Wronskian W of ϕ1, . . . , ϕ4 is proportional to
(
cos4(θ) + sin4(θ)

)−1
and is non-

zero on θ ∈ (0, 2π]. Hence, {ϕm}4m=1 defined as above is a fundamental system of
solutions to (7.7).

7.3. The explicit formulas for P−1, P0, P1, For λ ∈ {±1, 0} we obtain:

P−1(ω) = − 32
π sin(2ω)

∫ ω

0

sin2(θ)
3+cos(4θ)dθ + (1− cos(2ω))

(
1− 4

π arctan (cos(2ω))
)
,

P0(ω) = π arctan (cos(2ω))− 2 arctan2 (cos(2ω))

+ 128
∫ ω

0

sin2(θ)
3+cos(4θ)dθ

∫ ω

0

cos2(θ)
3+cos(4θ)dθ,

P1(ω) = − sin(2ω)
(
sin(2ω)− 8

πϕ4(ω)
)

+ (1− cos(2ω))
(
cos(2ω)− 4

πϕ
′
4(ω)

)
,

where ϕ4(θ) is given by corresponding formula from the case λ = 1.

8. Analytical tools for the numerical computation

8.1. Implicit function and discretization. Consider a rectangle U = [a, b] ×
[c, d]. For n,m ∈ N+ and i = 0, . . . , n, j = 0, . . . ,m we set

xi = a+ i∆x, yj = c+ j∆y,

where ∆x = b−a
n , ∆y = d−c

m .
Let F ∈ C1(U,R) such that F (xi, yj) > 0 for all i = 0, . . . , n and j = 0, . . . ,m.

The question to resolve is how fine should we take the discretization of U in order
to be sure that F > 0 on U . The following result holds.
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Lemma 8.1. Supposemin(xi,yj)∈U F (xi, yj) > 0. If

max {∆x,∆y} ≤
√

2
min(xi,yj)∈U F (xi, yj)

supU |DF (x, y)|
, (8.1)

then F is strictly positive on U .

Proof. For every (x, y) ∈ U there is (xi, yj) with |x−xi| ≤ 1
2∆x and |y−yj | ≤ 1

2∆y.
By the mean value theorem there exists (ξ1, ξ2) ∈ [(x, y), (xi, yj)] such that

F (x, y) = F (xi, yj) +DF (ξ1, ξ2) · (x− xi, y − yj).

The following chain of estimates then holds

F (x, y) = F (xi, yj) +DF (ξ1, ξ2) · (x− xi, y − yj)

≥ min
(xi,yj)∈U

F (xi, yj)− sup
U
|DF (x, y)||(x− xi, y − yj)|

≥ min
(xi,yj)∈U

F (xi, yj)−
√

2
2

sup
U
|DF (x, y)|max {∆x,∆y} .

This last expression is positive if (8.1) holds. �

8.2. A version of the Morse theorem. Let V ⊂ R2 be open and bounded,
F ∈ C∞(V,R). For the gradient of F we use DF and D2F is the Hessian matrix.

Definition 8.2. A point a ∈ V is said to be a critical point of F if DF (a) = 0.
Moreover, the critical point a ∈ V is said to be non-degenerate if detD2F (a) 6= 0.

To study the level set Γ defined in subsection 4.4.1 we need the Morse theorem.
The original version of the theorem reads as (see [21]):

Let V be a Banach space, O a convex neighborhood of the origin
in V and f : O → R a Ck+2 function (k ≥ 1) having the origin
as a non-degenerate critical point, with f(0) = 0. Then there is a
neighborhood U of the origin and a Ck diffeomorphism φ : U → O
with φ(0) = 0 and Dφ(0) = I, the identity map of V, such that for
x ∈ U , f(φ(x)) = 1

2 (D2f(0)x, x).
Below we give our formulation of the theorem. This formulation is more conve-

nient for our purposes. We will give a constructive proof that allows us to find an
explicit neighborhood of a critical point where the diffeomorphism exists.

Theorem 8.3. Let V ⊂ R2 be open and bounded, F ∈ C∞(V,R). Suppose a =
(a1, a2) ∈ V is a non-degenerate critical point of F . There exists a neighborhood
Wa ⊂ V of a and a C∞-diffeomorphism h : Wa → U0, where U0 ⊂ R2 is a
neighborhood of 0, such that F in Wa is representable as:

F (x) = F (a)+h(x)
(

1
2D

2F (a)
)
h(x)T , (8.2)

where T stands for a transposition. Moreover, the neighborhood Wa is fixed by

Wa ⊂
{
x ∈ V : detB(x) ≥ 0 and b11(x) + 2

√
detB(x) + b22(x) > 0

}
.

where

B(x) =
(
b11(x) b12(x)
b21(x) b22(x)

)
=

(
1
2D

2F (a)
)−1

∫ 1

0

∫ 1

0

sD2F (a+ ts (x− a)) dt ds.
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Proof. Let a ∈ V be such that DF (a) = 0 and detD2F (a) 6= 0. First, for every
x ∈ V we have

F (x)− F (a) = F (a+ s(x− a)) |10 =
∫ 1

0

d
dsF (a+ s(x− a)) ds,

and due to d
dsF (a+ s(x− a)) = DF (a+ s(x− a)) (x− a)T it will follow that

F (x) = F (a)+
∫ 1

0

DF (a+ s(x− a)) ds(x− a)T .

Analogously, we obtain

DF (x) = DF (a)+
∫ 1

0

D2F (a+ t(x− a)) dt(x− a)T ,

where by assumption DF (a) = 0. As a result, for every x ∈ V , F is representable
in terms of D2F as:

F (x) = F (a)+(x− a)
∫ 1

0

∫ 1

0

sD2F (a+ ts(x− a)) dt ds(x− a)T ,

or shortly
F (x) = F (a)+(x− a)K(x)(x− a)T . (8.3)

Here K(x) =
∫ 1

0

∫ 1

0
sD2F (a+ ts(x− a)) dt ds is a symmetric matrix. With this

definition, K(a) = 1
2D

2F (a) is symmetric and invertible (detD2F (a) 6= 0 by as-
sumption).

Let us bring some intermediate results.
(1) For every x ∈ V , there exists matrix B such that

K(x) = K(a)B(x). (8.4)

Indeed, since K(a) is invertible, the matrix B(x) = K(a)−1K(x) is well-defined.
We write

B(x) =
(
b11(x) b12(x)
b21(x) b22(x)

)
,

Since F ∈ C∞(V,R), so are bij , i, j = 1, 2. Note that B(a) = I.
(2) Since x 7→ B(x) is C∞ in a neighborhood of a and B(a) = I, B(x) is positive

definite in a neighborhood of a, and hence allows a square root. In particular, it
holds that

C(x) =
√
B(x) := 1

2πi

∮
γ

√
z (Iz −B(x))−1

dz, (8.5)

where γ is a Jordan curve in C which goes around the eigenvalues λ1, λ2 ∈ C of
B(x) and does not intersect Re(z) ≤ 0, Im(z) = 0.

One may check that C, defined as follows

C(x) =


b11(x)+

√
det B(x)q

b11(x)+2
√

det B(x)+b22(x)

b12(x)q
b11(x)+2

√
det B(x)+b22(x)

b21(x)q
b11(x)+2

√
det B(x)+b22(x)

b22(x)+
√

det B(x)q
b11(x)+2

√
det B(x)+b22(x)

 ,

is indeed such that
C(x)2 = B(x). (8.6)
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With this definition, C(a) = I and C(a)2 = I = B(a) as required. Also, matrix C
is well defined when

detB(x) ≥ 0, b11(x) + 2
√

detB(x) + b22(x) > 0. (8.7)

(3) For those x one finds

K(a)B(x) = K(x) = K(x)K(a)−1K(a)

= K(x)T
(
K(a)−1

)T
K(a)

=
(
K(a)−1K(x)

)T
K(a) = BT (x)K(a).

Due to this equality, we deduce the following

(Iz −B(x))K(a)−1 = K(a)−1 (Iz −B(x))T
,

and hence

K(a) (Iz −B(x))−1 =
(
(Iz −B(x))K(a)−1

)−1
=

(
K(a)−1 (Iz −B(x))T

)−1

=
(
(Iz −B(x))T

)−1

K(a) =
(
(Iz −B(x))−1

)T

K(a).

Applying the integration (8.5) to the last identity we find

K(a)C(x) = C(x)TK(a). (8.8)

Combining (8.4), (8.6) and (8.8) we have

K(x) = K(a)B(x) = K(a)C(x)2 = C(x)TK(a)C(x),

and therefore (8.3) for those x results in

F (x) = F (a) + F (a)+h(x)K(a)h(x)T , (8.9)

where K(a) = 1
2D

2F (a) and

h(x)T = C(x)(x− a)T .

Note that by (8.7) the representation for F in (8.9) holds on a set Wa ⊂ V which
is star-shaped with respect to a and such that

Wa ⊂
{
x ∈ V : detB(x) ≥ 0 and b11(x) + 2

√
detB(x) + b22(x) > 0

}
. (8.10)

�

Remark 8.4. For each pair (F, a) one can obtain an explicit estimate for Wa in
(8.10). We will do this in the next subsection for the pair we are interested in.

8.3. The Morse Theorem applied. Let P be the function given by formula
(4.10) and which is defined on

V =
{
(ω, λ) :

[
70
180π,

110
180π

]
× [2.900, 5.100]

}
.

Let us recall it here:

P (ω, λ) =
(
1−

√
2

2 sin(2ω)
)λ

+
(
1 +

√
2

2 sin(2ω)
)λ

+
(

1
2 + 1

2 cos2(2ω)
) 1

2 λ
[
2 cos

(
λ

(
arctan

(√
2

2 tan(2ω)
)

+ π
))

− 4 cos
(
λ arctan

(
tan2(ω)

)) ]
.

(8.11)
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The point a = (1
2π, 4) is such that P (a) = 0 and DP (a) = 0. Theorem 8.3 gives us

the tool to study P in the vicinity of a. In particular, the following holds.

Proposition 8.5. Let a be as above. There is a closed ball WR(a) ⊂ V of a radius
R centered at a such that on WR(a) we have:

P (ω, λ) = − 1
2h2(ω, λ)

(
16
√

2h1(ω, λ) + πh2(ω, λ)
)
. (8.12)

Here h1, h2 ∈ C∞ (WR(a),R) are given by:

h1(ω, λ) =
(
ω − 1

2π
)
c11(ω, λ) + (λ− 4) c12(ω, λ), (8.13)

h2(ω, λ) =
(
ω − 1

2π
)
c21(ω, λ) + (λ− 4) c22(ω, λ), (8.14)

with cij ∈ C∞ (WR(a),R), i, j = 1, 2 are the entries of matrix C:

C(ω, λ) =
(
c11 c12
c21 c22

)
(ω, λ) =

 b11+
√

det B√
b11+2

√
det B+b22

b12√
b11+2

√
det B+b22

b21√
b11+2

√
det B+b22

b22+
√

det B√
b11+2

√
det B+b22

 (ω, λ),

(8.15)
while bij ∈ C∞(V,R), i, j = 1, 2 are as follows

B(ω, λ) =
(
b11 b12
b21 b22

)
(ω, λ)

=
(

1
2D

2P (a)
)−1

∫ 1

0

∫ 1

0

sD2P (a+ ts ((ω, λ)− a)) dt ds.
(8.16)

Note that B(a) = I and C(a) = I. The ball WR(a) is fixed by

WR(a) :=
{
(ω, λ) ∈ V : |

(
ω − 1

2π, λ− 4
)
| ≤ R

}
, (8.17)

with R = − 1
120π

2 −
√

2
18 π + 1

120π
√
π2 + 40

3

√
2π + 1568

9 ≈ 0.078 . . . (In ω-direction
we have that R ≈ 4.5 . . .◦).

8.3.1. Computational results I. It is straightforward for a =
(

1
2π, 4

)
that

∂2P
∂ω2 (a) = 0, ∂2P

∂ω∂λ (a) = −8
√

2π, ∂2P
∂λ2 (a) = −π2, (8.18)

and hence
detD2P (a) = −128π2. (8.19)

To simplify the notation, we use x instead of (ω, λ) when (ω, λ) stands for a argu-
ment. Now let us bring two alternatives representations for the entries of matrix B
given by (8.16), which we will use later on.

Representation I. We will need the explicit formula for the coefficients bij , i, j = 1, 2.
Let us find them in a straightforward way from (8.16). We write down the integral
term

∫ 1

0

∫ 1

0
sD2P (a+ ts (x− a)) dt ds in (8.16) as follows∫ 1

0

∫ 1

0

sD2P (a+ ts (x− a)) dt ds =
(
r1(x) r2(x)
r2(x) r3(x)

)
, (8.20)

where rj , j = 1, 2, 3 read as:

r1(x) =
∫ 1

0

∫ 1

0

s∂2P
∂ω2 (a+ ts(x− a))dt ds, (8.21)

r2(x) =
∫ 1

0

∫ 1

0

s ∂2P
∂ω∂λ (a+ ts(x− a))dt ds, (8.22)
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r3(x) =
∫ 1

0

∫ 1

0

s∂2P
∂λ2 (a+ ts(x− a))dt ds. (8.23)

Then the entries bij , i, j = 1, 2 of matrix B in terms of rj , j = 1, 2, 3 and due to
(8.18), (8.19) will read:

b11(x) = 2
det D2P (a)

(
∂2P
∂λ2 (a)r1(x)− ∂2P

∂ω∂λ (a)r2(x)
)

= 1
64r1(x)−

√
2

8π r2(x), (8.24)

b12(x) = 2
det D2P (a)

(
∂2P
∂λ2 (a)r2(x)− ∂2P

∂ω∂λ (a)r3(x)
)

= 1
64r2(x)−

√
2

8π r3(x), (8.25)

b21(x) = 2
det D2P (a)

(
∂2P
∂ω2 (a)r2(x)− ∂2P

∂ω∂λ (a)r1(x)
)

= −
√

2
8π r1(x), (8.26)

b22(x) = 2
det D2P (a)

(
∂2P
∂ω2 (a)r3(x)− ∂2P

∂ω∂λ (a)r2(x)
)

= −
√

2
8π r2(x). (8.27)

Representation II. On the other hand, let us obtain for rj , j = 1, 2, 3 the following
representations:

r1(x) = 1
2

∂2P
∂ω2 (a) + q1(x), r2(x) = 1

2
∂2P

∂ω∂λ (a) + q2(x), r3(x) = 1
2

∂2P
∂λ2 (a) + q3(x),

where

q1(x) =
∫ 1

0

∫ 1

0

∫ 1

0

ts2
(

∂3P
∂ω3 (a+ tsσ(x− a)), ∂3P

∂ω2∂λ (a+ tsσ(x− a))
)

× (x− a)T dσdt ds,

(8.28)

q2(x) =
∫ 1

0

∫ 1

0

∫ 1

0

ts2
(

∂3P
∂ω2∂λ (a+ tsσ(x− a)), ∂3P

∂ω∂λ2 (a+ tsσ(x− a))
)

× (x− a)T dσdt ds,

(8.29)

q3(x) =
∫ 1

0

∫ 1

0

∫ 1

0

ts2
(

∂3P
∂ω∂λ2 (a+ tsσ(x− a)), ∂3P

∂λ3 (a+ tsσ(x− a))
)

× (x− a)T dσdt ds.

(8.30)

This will yield another representation formulas for bij , i, j = 1, 2 of matrix B,
namely,

b11(x) = 1 + 2
det D2P (a)

(
∂2P
∂λ2 (a)q1(x)− ∂2P

∂ω∂λ (a)q2(x)
)

= 1 + 1
64q1(x)−

√
2

8π q2(x),
(8.31)

b12(x) = 2
det D2P (a)

(
∂2P
∂λ2 (a)q2(x)− ∂2P

∂ω∂λ (a)q3(x)
)

= 1
64q2(x)−

√
2

8π q3(x), (8.32)

b21(x) = 2
det D2P (a)

(
∂2P
∂ω2 (a)q2(x)− ∂2P

∂ω∂λ (a)q1(x)
)

= −
√

2
8π q1(x), (8.33)

b22(x) = 1 + 2
det D2P (a)

(
∂2P
∂ω2 (a)q3(x)− ∂2P

∂ω∂λ (a)q2(x)
)

= 1−
√

2
8π q2(x). (8.34)

This representation, together with the estimates from above for |qj |, j = 1, 2, 3 on
V given below, will be useful in the proof of Proposition 8.5.

Estimates for |qj |, j = 1, 2, 3 on V . Let qj , j = 1, 2, 3 be given by (8.28) – (8.30).
We will need the estimates for |qj |, j = 1, 2, 3 on V . Let us also use the notations

∂3P
∂(ω,λ)αj ,

∂3P

∂(ω,λ)βj
for the corresponding differentiations in each qj , j = 1, 2, 3. For

example for q1 it will be ∂3P
∂(ω,λ)αj = ∂3P

∂ω3 and ∂3P

∂(ω,λ)βj
= ∂3P

∂ω2∂λ , etc. For every qj ,
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j = 1, 2, 3 we then in general have:

|qj(x)| =
∣∣ ∫ 1

0

∫ 1

0

∫ 1

0

ts2
(

∂3P
∂(ω,λ)αj (a+ tsσ(x− a)), ∂3P

∂(ω,λ)βj
(a+ tsσ(x− a))

)
× (x− a)T dσdt ds

∣∣
≤

∫ 1

0

∫ 1

0

∫ 1

0

ts2 sup
x∈V

|
(

∂3P
∂(ω,λ)αj (x), ∂3P

∂(ω,λ)βj
(x)

)
|dσdt ds|x− a|

= 1
6 sup

x∈V
|
(

∂3P
∂(ω,λ)αj (x), ∂3P

∂(ω,λ)βj
(x)

)
||x− a| ≤Mj |x− a|.

(8.35)
where Mj is an upper bound for function 1

6 |
(

∂3P
∂(ω,λ)αj (x), ∂3P

∂(ω,λ)βj
(x)

)
| on V . In

particular, one shows by explicit and tedious computations that for M1 = 180,
M2 = 75, M3 = 30, the estimate (8.35) for the corresponding |qj |, j = 1, 2, 3 holds
true. We depict the results in Table 3.

|q1(x)| < 180|x− a| |q2(x)| < 75|x− a| |q3(x)| < 30|x− a|
Table 3. Estimates from above for |qj |, j = 1, 2, 3 on V

Now we proceed with a proof of Proposition 8.5.

8.3.2. Checking the range for Morse.

Proof of Proposition 8.5. Representation (8.12) is a consequence of Theorem 8.3.
It is straightforward for a =

(
1
2π, 4

)
that P (a) = 0. We also find that DP (a) = 0,

meaning a is a critical point of P . Due to ( 8.19) we conclude that a is a non-
degenerate critical point of P .

By Theorem 8.3 in a vicinity Wa ⊂ V of a which is defined in (8.10), we obtain

P (x) = (h1(x), h2(x)) · 1
2D

2P (a) · (h1(x), h2(x))
T

= − 1
2h2(x)

(
16
√

2h1(x) + πh2(x)
)
,

(8.36)

where h1, h2 ∈ C∞ (Wa,R). Their explicit formulas read as (8.13), (8.14).
We show that Wa in our case can be taken as a closed ball WR(a) centered at a

of radius R and the numerical approximation for its range is given by (8.17). We
will do this in two steps.

(1) Let us solve the inequality detB(x) ≥ 0 on V . Due to (8.31) – (8.34) we will
get

detB(x) = b11(x)b22(x)− b12(x)b21(x)

= 1−
√

2
4π q2(x) + 1

64q1(x)−
1

32π2 q1(x)q3(x) + 1
32π2 q

2
2(x)

≥ 1−
√

2
4π |q2(x)| −

1
64 |q1(x)| −

1
32π2 |q1(x)||q3(x)| ≥ . . .

we use estimates for |q1(x)|, |q2(x)| and |q3(x)| from Table 3 to get

· · · ≥ 1− 75
√

2
4π |x− a| − 180

64 |x− a| − 5400
32π2 |x− a|2.

The above expression is positive for all x ∈ V such that |x− a| ≤ R1, with

R1 = − 1
120π

2 −
√

2
18 π + 1

120π

√
π2 + 40

3

√
2π + 1568

9 .
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The numerical approximation is R1 ≈ 0.078 . . . . Hence, the first estimate for a
range of Wa is |x− a| ≤ R1.

(2) Let us solve b11(x) + 2
√

detB(x) + b22(x) > 0 on V . We have

b11(x) + 2
√

detB(x) + b22(x) ≥ b11(x) + b22(x) = . . .

due to formulas (8.31), (8.34) we obtain

2−
√

2
4π q2(x) + 1

64q1(x) ≥ 2−
√

2
4π |q2(x)| −

1
64 |q1(x)| ≥ . . .

we use the estimates for |q1(x)| and |q2(x)| from Table 3 to get

· · · ≥ 2− 75
√

2
4π |x− a| − 180

64 |x− a|.

The above expression is strictly positive for all x ∈ V such that

|x− a| < R2 with R2 = 32π

(300
√

2+45π) ,

and this is the second estimate for Wa.
Comparing the approximations to R1 ≈ 0.078 . . . and R2 ≈ 0.178 . . . we set

R := R1 and Wa := WR(a) = {x ∈ V : |x− a| ≤ R}. Result (8.17) follows. �

Remark 8.6. Let the rectangle U ⊂ WR(a) containing the point a =
(

1
2π, 4

)
be

defined as follows:

U :=
{
(ω, λ) :

[
1
2π −

2
180π,

1
2π + 2

180π
]
× [4− 0.060, 4 + 0.060]

}
. (8.37)

Proposition 8.5 holds true for the given U .

8.4. On the insecting curves from Morse. Here we consider h2(ω, λ) = 0 and
16
√

2h1(ω, λ)+πh2(ω, λ) = 0 in U with hi, i = 1, 2 as in Proposition 8.5. Consider
in U given by (8.37) the two implicit functions:

h2(ω, λ) = 0, (8.38)

16
√

2h1(ω, λ) + πh2(ω, λ) = 0. (8.39)

At (ω, λ) = a it holds that h1(a) = h2(a) = 0; that is,

h2(a) = 0,

16
√

2h1(a) + πh2(a) = 0.

Below, by means of Lemma 8.1 and some numerical computations, we will show
that the following holds on U :

∂h2
∂λ (ω, λ) > 0,

16
√

2∂h1
∂λ (ω, λ) + π ∂h2

∂λ (ω, λ) > 0,

and hence we can apply the Implicit Function Theorem proving that every function
(8.38) and (8.39) allows its local parametrization ω 7→ λ(ω) in U . This fact is used
in Lemma 4.11. Now some preparatory technical steps are required.
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8.4.1. Computational results II. Upper bounds for |rj |, j = 1, 2, 3 on U . Let rj ,
j = 1, 2, 3 be given by (8.21)–(8.23). We will find the upper bounds for |rj |,
j = 1, 2, 3 on U . Setting again ∂2P

∂(ω,λ)αj for the corresponding differentiations in
each rj , j = 1, 2, 3, we in general deduce that

|rj(x)| = |
∫ 1

0

∫ 1

0

s ∂2P
∂(ω,λ)αj (a+ ts(x− a))dt ds|

≤
∫ 1

0

∫ 1

0

s sup
x∈U

| ∂2P
∂(ω,λ)αj (x)|dt ds

= 1
2 sup

x∈U
| ∂2P
∂(ω,λ)αj (x)| ≤ Qj ,

where Qj , j = 1, 2, 3 is an upper bound for the function 1
2 |

∂2P
∂(ω,λ)αj (x)| on U .

In an analogous way we find the upper bounds for |∂rj

∂ω |, |
∂rj

∂λ | and | ∂2rj

∂ω∂λ |, |
∂2rj

∂λ2 |,
j = 1, 2, 3 on U , we will need later on. Explicit bounds are given in Table 4. Note
that we skip the derivatives ∂2rj

∂ω2 since there will be no need for them.

|r1(x)| < 5 |∂r1
∂ω (x)| < 43, |∂r1

∂λ (x)| < 25 | ∂2r1
∂ω∂λ (x)| < 175, |∂

2r1
∂λ2 (x)| < 65

|r2(x)| < 19 |∂r2
∂ω (x)| < 25, |∂r2

∂λ (x)| < 6 | ∂2r2
∂ω∂λ (x)| < 65, |∂

2r2
∂λ2 (x)| < 33

|r3(x)| < 6 |∂r3
∂ω (x)| < 6, |∂r3

∂λ (x)| < 4 | ∂2r3
∂ω∂λ (x)| < 33, |∂

2r3
∂λ2 (x)| < 16

Table 4. Estimates from above for the absolute value of rj , j =
1, 2, 3 and some higher order derivatives on U

Upper bounds for |qj |, j = 1, 2, 3 on U . Let qj , j = 1, 2, 3 by given by (8.28) – (8.30).
Earlier we found the estimates for |qj |, j = 1, 2, 3 on V of the type |qj | ≤Mj |x−a|,
j = 1, 2, 3 (see Table 3). Here, we will obtain the constants which are the upper
bounds for |qj |, j = 1, 2, 3 on U .

Setting ∂3P
∂(ω,λ)αj ,

∂3P

∂(ω,λ)βj
for the corresponding differentiations in each qj , j =

1, 2, 3, analogously to (8.35), we have that

|qj(x)| = |
∫ 1

0

∫ 1

0

∫ 1

0

ts2
(

∂3P
∂(ω,λ)αj (a+ tsσ(x− a)), ∂3P

∂(ω,λ)βj
(a+ tsσ(x− a))

)
× (x− a)T dσdt ds|

≤ 1
6 sup

x∈U
|
(

∂3P
∂(ω,λ)αj (x), ∂3P

∂(ω,λ)βj
(x)

)
|max

U
|x− a| ≤Mj max

U
|x− a|,

(8.40)
where Mj is an upper bound for the function 1

6 |
(

∂3P
∂(ω,λ)αj (x), ∂3P

∂(ω,λ)βj
(x)

)
| on U .

In particular, it holds that

max
U

|x− a| = |x− a|
∣∣
∂U

=
√(

ω − 1
2π

)2 + (λ− 4)2
∣∣
(ω,λ)=(

1
2π− 2

180π,4−0.060)

=
√

( 1
90π)2 + 0.0602,

(8.41)
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and
M1 = 44, M2 = 27, M3 = 11.

The explicit upper bounds are given in Table 5.

|q1(x)| < 3.1 |q2(x)| < 1.9 |q3(x)| < 0.8

Table 5. Estimates from above for |qj |, j = 1, 2, 3 on U

Lower bounds for F (x) = detB(x) and G(x) = b11(x) + 2
√

detB(x) + b22(x) on
U . Let us set

F (x) = detB(x),

G(x) = b11(x) + 2
√

detB(x) + b22(x),
(8.42)

bij , i, j = 1, 2 are given in (8.31)–(8.34) and find the lower bounds for F and G
on U . By construction of the ball WR(a) ⊃ U from Proposition 8.5 we know that
F ≥ 0 and G > 0 on WR(a). More precisely, for every x ∈ WR(a) (and hence for
every x ∈ U) it holds that

F (x) ≥ 1−
√

2
4π |q2(x)| −

1
64 |q1(x)| −

1
32π2 |q1(x)||q3(x)|,

G(x) ≥ 2−
√

2
4π |q2(x)| −

1
64 |q1(x)|.

Due to results of Table 5 we finally obtain that on U ,
F (x) ≥ 0.730 · · · > 0.7,

G(x) ≥ 1.738 · · · > 1.7.
(8.43)

Upper bounds for |bij |, i, j = 1, 2 on U . Let bij , i, j = 1, 2 be given by (8.24) –
(8.27), namely,

b11(x) = 1
64r1(x)−

√
2

8π r2(x),

b12(x) = 1
64r2(x)−

√
2

8π r3(x),

b21(x) = −
√

2
8π r1(x), b22(x) = −

√
2

8π r2(x),

with rj , j = 1, 2, 3 as in (8.21)–(8.23).
Using the results of Table 4 we will find the following upper bounds for the

absolute values of bij , i, j = 1, 2 and some higher order derivatives on U (see Table
6).

|b11(x)| < 1.2 |∂b11
∂ω (x)| < 2.1, |∂b11

∂λ (x)| < 0.8 |∂
2b11

∂ω∂λ (x)| < 6.4, |∂
2b11
∂λ2 (x)| < 2.9

|b12(x)| < 0.7 |∂b12
∂ω (x)| < 0.8, |∂b12

∂λ (x)| < 0.4 |∂
2b12

∂ω∂λ (x)| < 2.9, |∂
2b12
∂λ2 (x)| < 1.5

|b21(x)| < 0.3 |∂b21
∂ω (x)| < 2.5, |∂b21

∂λ (x)| < 1.5 |∂
2b21

∂ω∂λ (x)| < 9.9, |∂
2b21
∂λ2 (x)| < 3.7

|b22(x)| < 1.1 |∂b22
∂ω (x)| < 1.5, |∂b22

∂λ (x)| < 0.4 |∂
2b22

∂ω∂λ (x)| < 3.7, |∂
2b22
∂λ2 (x)| < 1.9

Table 6. Estimates from above for the absolute value of bij , i, j =
1, 2 and some higher order derivatives on U

Upper bounds for F (x) = detB(x) and G(x) = b11(x) + 2
√

detB(x) + b22(x) on
U . Recall that F and G are given by (8.42). They are positive functions on U
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with lower bounds as in (8.43). Here we find their upper bounds together with the
upper bounds for some higher order derivatives.

In particular, in order to obtain the estimates for F , |∂F
∂ω |, |

∂F
∂λ | and | ∂2F

∂ω∂λ |, |
∂2F
∂λ2 |

on U , we use the results of Table 6. The estimates found are presented in the first
row of Table 7.

To find the estimates for |∂G
∂ω |, |

∂G
∂λ | and | ∂2G

∂ω∂λ |, |
∂2G
∂λ2 | we use

• the lower bound for Fon U , namely, F (x) > 0.7,
• the results of Table 6 and
• the results from the first row of Table 7.

E.g., for |∂G
∂ω | we will have that on U

|∂G
∂ω (x)| = |∂b11

∂ω (x) +
∂F
∂ω (x)√

F (x)
+ ∂b22

∂ω (x)|

≤ sup
U
|∂b11

∂ω (x)|+ supU |∂F
∂ω (x)|

infU

√
F (x)

+ sup
U
|∂b22

∂ω (x)|

< 2.1 + 6.1√
0.7

+ 1.5 ≈ 10.891 · · · < 11.

The other estimates on U for the derivatives of G listed above are obtained in an
analogous way and presented in Table 7.

F (x) < 1.53
|∂F
∂ω (x)| < 6.10,
|∂F

∂λ (x)| < 2.53
| ∂2F
∂ω∂λ (x)| < 23.52,
|∂

2F
∂λ2 (x)| < 10.35

− |∂G
∂ω (x)| < 11,
|∂G

∂λ (x)| < 4.3
| ∂2G
∂ω∂λ (x)| < 51.4,
|∂

2G
∂λ2 (x)| < 22.7

Table 7. Estimates from above for F and G on U

Upper bounds for |cij |, i, j = 1, 2 on U . Let cij , i, j = 1, 2 be given by given by
(8.15). It is convenient for further computations to set

cij(x) = bij(x)+A
√

F (x)√
G(x)

, (8.44)

where F and G are as in (8.42) and

A =

{
1 if (i, j) = {(1, 1), (2, 2)},
0 if (i, j) = {(1, 2), (2, 1)}.

To obtain the estimates for |∂cij

∂ω |, |
∂cij

∂λ | and | ∂
2cij

∂ω∂λ |, |
∂2cij

∂λ2 |, i, j = 1, 2 on U we use
• the lower bound for F and G on U , defined by formula (8.43),
• the results of Table 6 and
• the results of Table 7.

E.g., the estimate for |∂cij

∂λ | on U is found in the following way:

|∂cij

∂λ (x)| =
∣∣ ∂bij

∂λ (x)√
G(x)

+ 1
2A

∂F
∂λ (x)√

G(x)
√

F (x)
− 1

2

∂G
∂λ (x)

G3/2(x)

(
bij(x) +A

√
F (x)

) ∣∣
≤

∣∣ supU |
∂bij

∂λ (x)|

infU

√
G(x)

+ 1
2A

supU |∂F
∂λ (x)|

infU

“√
G(x)

√
F (x)

”
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+ 1
2

supU |∂G
∂λ (x)|

infU G3/2(x)

(
sup
U
|bij(x)|+A sup

U

√
F (x)

) ∣∣.
The other estimates on U for the derivatives of cij , i, j = 1, 2 listed are obtained in
an analogous way and listed in Table 8 below.

|∂c11
∂λ (x)| < 4.2

|∂
2c11

∂ω∂λ (x)| < 99.4
|∂

2c11
∂λ2 (x)| < 35

|∂c12
∂ω (x)| < 2.4

|∂c12
∂λ (x)| < 1

|∂
2c12

∂ω∂λ (x)| < 18.7
|∂

2c12
∂λ2 (x)| < 8.1

|∂c21
∂λ (x)| < 1.5

|∂
2c21

∂ω∂λ (x)| < 20.1
|∂

2c21
∂λ2 (x)| < 8.4

|∂c22
∂ω (x)| < 9.8

|∂c22
∂λ (x)| < 3.8

|∂
2c22

∂ω∂λ (x)| < 94.4
|∂

2c22
∂λ2 (x)| < 38.7

Table 8. Estimates from above for the absolute value of some
higher order derivatives of cij , i, j = 1, 2 on U

Upper bounds for |hi|, i = 1, 2 on U . Let hi, i = 1, 2 be given by formulas (8.13),
(8.14). First we compute the following derivatives of hi, i = 1, 2 we will need below:

∂h1
∂λ (x) = c12(x) +

(
∂c11
∂λ (x), ∂c12

∂λ (x)
)
(x− a)T

, (8.45)

∂2h1
∂ω∂λ (x) = ∂c12

∂ω (x) + ∂c11
∂λ (x) +

(
∂2c11
∂ω∂λ (x), ∂2c12

∂ω∂λ (x)
)

(x− a)T
, (8.46)

∂2h1
∂λ2 (x) = 2∂c12

∂λ (x) +
(

∂2c11
∂λ2 (x), ∂2c12

∂λ2 (x)
)

(x− a)T
, (8.47)

∂h2
∂λ (x) = c22(x) +

(
∂c21
∂λ (x), ∂c22

∂λ (x)
)
(x− a)T

, (8.48)

∂2h2
∂ω∂λ (x) = ∂c22

∂ω (x) + ∂c21
∂λ (x) +

(
∂2c21
∂ω∂λ (x), ∂2c22

∂ω∂λ (x)
)

(x− a)T
, (8.49)

∂2h2
∂λ2 (x) = 2∂c22

∂λ (x) +
(

∂2c21
∂λ2 (x), ∂2c22

∂λ2 (x)
)

(x− a)T
, (8.50)

where cij , i, j = 1, 2 are as in (8.44) and a =
(

1
2π, 4

)
.

Using the results of Table 8 we find the estimates for | ∂2hi

∂ω∂λ |, |
∂2hi

∂λ2 |, i = 1, 2 on
U . E.g., for | ∂2h1

∂ω∂λ | it holds that on U :

| ∂2h1
∂ω∂λ (x)| = |∂c12

∂ω (x) + ∂c11
∂λ (x) +

(
∂2c11
∂ω∂λ (x), ∂2c12

∂ω∂λ (x)
)

(x− a)T |

≤ sup
U
|∂c12

∂ω (x)|+ sup
U
|∂c11

∂λ (x)|

+ sup
U
|
(

∂2c11
∂ω∂λ (x), ∂2c12

∂ω∂λ (x)
)
|max

U
|x− a| < . . .

for maxU |x− a| see formula (8.41) and then

· · · < 2.4 + 4.2 +
√

99.42 + 18.72

√(
1
90π

)2 + 0.0602 ≈ 13.621 · · · < 13.7.

Analogously, the other estimates on U are obtained (see Table 9).
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| ∂2h1
∂ω∂λ (x)| < 13.7 | ∂2h2

∂ω∂λ (x)| < 18

|∂
2h1

∂λ2 (x)| < 4.5 |∂
2h2

∂λ2 (x)| < 10.4

Table 9. Estimates from above for the absolute value of some
higher order derivatives of hi, i = 1, 2 on U

8.4.2. Strict positivity of the functions ∂h2
∂λ (ω, λ) and 16

√
2∂h1

∂λ (ω, λ) + π ∂h2
∂λ (ω, λ)

on U . Let us fix the notations which are common for two lemmas.

Notation 8.7. Let U be as in (8.37), namely,

U :=
{
(ω, λ) :

[
88
180π,

92
180π

]
× [3.940, 4.060]

}
.

By {(ωi, λj)} i=0,...,n
j=0,...,m

we mean a discretization of U which is defined as follows

ωi = 88
180π + i∆ω, λj = 3.94 + j∆λ,

with

∆ω =
4

180π

n , ∆λ = 0.12
m .

Then we deduce the following two results.

Lemma 8.8. It holds that
∂h2

∂λ
(ω, λ) > 0 on U. (8.51)

Proof. Fix n = m = 2 and consider the discretization {(ωi, λj)}i,j of U given by
Notation 8.7. By straightforward computations it holds that

∂h2
∂λ (ωi, λj) > 0, (8.52)

for all i = 0, . . . , 2, j = 0, . . . , 2 and, moreover,

min
(ωi,λj)∈U

∂h2
∂λ (ωi, λj) = ∂h2

∂λ (ω0, λ0) ≈ 0.952 . . . . (8.53)

Next to this, we compute

a1 = max
{
∆ω,∆λ

}
= max

{ 4
180π

n , 0.12
m

}
= 0.12

2 = 0.060,

and, by taking into account the results of Table 9 and (8.53), we also find

a2 =
√

2
min(ωi,λj)∈U

∂h2
∂λ (ωi, λj)

supU |
(

∂2h2
∂ω∂λ (ω, λ), ∂2h2

∂λ2 (ω, λ)
)
|
≈ 0.065 . . . .

Since a1 < a2, by Lemma 8.1 we conclude that the constructed discretization
{(ωi, λj)}i=0,...,2

j=0,...,2
of U to be appropriate in the sense that condition (8.52) yields a

strict positivity of ∂h2
∂λ (ω, λ) on U . �

Lemma 8.9. Let U be as in (8.37). It holds that

16
√

2
∂h1

∂λ
(ω, λ) + π

∂h2

∂λ
(ω, λ) > 0 on U. (8.54)
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Proof. Fix n = 7, m = 12 and consider the discretization {(ωi, λj)}i,j of U given
by Notation 8.7. By straightforward computations it holds that

16
√

2∂h1
∂λ (ωi, λj) + π ∂h2

∂λ (ωi, λj) > 0, (8.55)

for all i = 0, . . . , 7, j = 0, . . . , 12 and, moreover,

min
(ωi,λj)∈U

(
16
√

2∂h1
∂λ (ωi, λj) + π ∂h2

∂λ (ωi, λj)
)

= 16
√

2∂h1
∂λ (ω0, λ0) + π ∂h2

∂λ (ω0, λ0) ≈ 2.936 . . . .
(8.56)

Next to this, we compute

b1 = max
{
∆ω,∆λ

}
= max

{ 4
180π

n , 0.12
m

}
= 0.12

12 = 0.010,

and, by taking into account the results of Table 9 and (8.56), we also find

b2 =
√

2
min(ωi,λj)∈U

(
16
√

2∂h1
∂λ (ωi, λj) + π ∂h2

∂λ (ωi, λj)
)

supU |
(
16
√

2 ∂2h1
∂ω∂λ (ω, λ) + π ∂2h2

∂ω∂λ (ω, λ), 16
√

2∂2h1
∂λ2 (ω, λ) + π ∂2h2

∂λ2 (ω, λ)
)
|

≈ 0.011 . . . .

Since b1 < b2, by Lemma 8.1 we conclude that the constructed discretization
{(ωi, λj)}i,j of U to be appropriate in the sense that condition (8.55) yields a strict
positivity of 16

√
2∂h1

∂λ (ω, λ) + π ∂h2
∂λ (ω, λ) on U . �

8.5. On P (ω, λ) = 0 in V away from a = (1
2π, 4). Recall here function P defined

on V =
{
(ω, λ) : [ 70

180π,
110
180π]× [2.900, 5.100]

}
:

P (ω, λ) =
(
1−

√
2

2 sin(2ω)
)λ

+
(
1 +

√
2

2 sin(2ω)
)λ

+
(

1
2 + 1

2 cos2(2ω)
) 1

2 λ
[
2 cos

(
λ

(
arctan

(√
2

2 tan(2ω)
)

+ π
))

− 4 cos
(
λ arctan

(
tan2(ω)

)) ]
.

(8.57)

8.5.1. Set of Claims I. In a set of claims below we describe some properties of the
first derivatives ∂P

∂ω and ∂P
∂λ on V away from the point a =

(
1
2π, 4

)
which are used

in Lemma 4.11.

Claim 8.10. Let H1 ⊂ V be H1 =
{
(ω, λ) :

[
84
180π,

90
180π

]
× [4.030, 4.970]

}
. It holds

that ∂P
∂ω (ω, λ) < 0 on H1.

Proof. First we find the following estimates:

|∂
2P

∂ω2
(ω, λ)| < 162, | ∂2P

∂ω∂λ (ω, λ)| < 45 on H1. (8.58)

Then we fix n = 14, m = 120 and consider the discretization {(ωi, λj)}i,j of H1

such that
ωi = 84

180π + i∆ω, λj = 4.030 + j∆λ,
with

∆ω =
6

180π

n , ∆λ = 0.94
m .

By straightforward computations it holds that

−∂P
∂ω (ωi, λj) > 0, (8.59)
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for all i = 0, . . . , 14, j = 0, . . . , 120 and, moreover,

min
(ωi,λj)∈H1

(
−∂P

∂ω (ωi, λj)
)

= −∂P
∂ω (ω9, λ0) ≈ 1.022 . . . . (8.60)

Next to this, we compute

c1 = max {∆ω,∆λ} = max
{ 6

180π

n , 0.94
m

}
= 0.94

120 ≈ 0.00783 . . . ,

and, by taking into account (8.58) and (8.60), we also find

c2 =
√

2
min(ωi,λj)∈H1

(
−∂P

∂ω (ωi, λj)
)

supH1

∣∣(∂2P
∂ω2 (ω, λ), ∂2P

∂ω∂λ (ω, λ)
)∣∣ ≈ 0.00860 . . . .

Since c1 < c2, by Lemma 8.1 we conclude that the constructed discretization
{(ωi, λj)} i=0,...,14

j=0,...,120
of H1 to be appropriate in the sense that condition (8.59) yields

a strict positivity of −∂P
∂ω (ω, λ) on H1, or, in other words, ∂P

∂ω (ω, λ) < 0 on H1. �

Claim 8.11. Let H2 ⊂ V be H2 =
{
(ω, λ) :

[
87
180π,

101
180π

]
× [4.750, 5.100]

}
. It holds

that ∂P
∂λ (ω, λ) > 0 on H2.

Proof. First we find the following estimates:

| ∂2P
∂ω∂λ (ω, λ)| < 48, |∂

2P
∂λ2 (ω, λ)| < 25 on H2. (8.61)

Then we fix n = 40, m = 55 and consider the discretization {(ωi, λj)}i,j , i =
0, . . . , 40, j = 0, . . . , 55 of H2 such that

ωi = 87
180π + i∆ω, λj = 4.750 + j∆λ,

with

∆ω =
14
180π

n , ∆λ = 0.35
m .

By straightforward computations it holds that
∂P
∂λ (ωi, λj) > 0, (8.62)

for all i = 0, . . . , 40, j = 0, . . . , 55 and, moreover,

min
(ωi,λj)∈H2

∂P
∂λ (ωi, λj) = ∂P

∂λ (ω0, λ0) ≈ 0.245 . . . . (8.63)

Next to this, we compute

c1 = max {∆ω,∆λ} = max
{ 14

180π

n , 0.35
m

}
= 0.35

55 ≈ 0.00636 . . . ,

and, by taking into account (8.61) and (8.63), we also find

c2 =
√

2
min(ωi,λj)∈H2

∂P
∂λ (ωi, λj)

supH2

∣∣( ∂2P
∂ω∂λ (ω, λ), ∂2P

∂λ2 (ω, λ)
)∣∣ ≈ 0.00641 . . . .

Since c1 < c2, by Lemma 8.1 we conclude that the constructed discretization
{(ωi, λj)}i=0,...,40

j=0,...,55
of H2 to be appropriate in the sense that condition (8.62) yields

a strict positivity of ∂P
∂λ (ω, λ) on H2. �

Claim 8.12. Let H3 ⊂ V be H3 =
{
(ω, λ) :

[
100
180π,

108
180π

]
× [4.000, 4.850]

}
. It holds

that ∂P
∂ω (ω, λ) > 0 on H3.
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Proof. First we find the following estimates:

|∂
2P

∂ω2
(ω, λ)| < 166, | ∂2P

∂ω∂λ (ω, λ)| < 37 on H3. (8.64)

Then we fix n = 10, m = 60 and consider the discretization {(ωi, λj)}i,j of H3 such
that

ωi = 100
180π + i∆ω, λj = 4.000 + j∆λ,

with

∆ω =
8

180π

n , ∆λ = 0.85
m .

By straightforward computations it holds that
∂P
∂ω (ωi, λj) > 0, (8.65)

for all i = 0, . . . , 10, j = 0, . . . , 60 and, moreover,

min
(ωi,λj)∈H3

∂P
∂ω (ωi, λj) = ∂P

∂ω (ω0, λ11) ≈ 1.885 . . . . (8.66)

Next to this, we compute

c1 = max {∆ω,∆λ} = max
{ 8

180π

n , 0.85
m

}
= 0.85

60 ≈ 0.0142 . . . ,

and, by taking into account (8.64) and (8.66), we also find

c2 =
√

2
min(ωi,λj)∈H3

∂P
∂ω (ωi, λj)

supH3

∣∣(∂2P
∂ω2 (ω, λ), ∂2P

∂ω∂λ (ω, λ)
)∣∣ ≈ 0.0157 . . . .

Since c1 < c2, by Lemma 8.1 we conclude that the constructed discretization
{(ωi, λj)}i=0,...,10

j=0,...,60
of H3 to be appropriate in the sense that condition (8.65) yields

a strict positivity of ∂P
∂ω (ω, λ) on H3. �

Claim 8.13. Let H4 ⊂ V be H4 = {(ω, λ) : [ 91
180π,

102
180π]× [3.950, 4.100]}. It holds

that ∂P
∂λ (ω, λ) < 0 on H4.

Proof. First we find the following estimates:

| ∂2P
∂ω∂λ (ω, λ)| < 38, |∂

2P
∂λ2 (ω, λ)| < 11 on H4. (8.67)

Then we fix n = 50, m = 36 and consider the discretization {(ωi, λj)}i,j , i =
0, . . . , 50, j = 0, . . . , 36 of H4 such that

ωi = 91
180π + i∆ω, λj = 3.950 + j∆λ,

with

∆ω =
11
180π

n , ∆λ = 0.15
m .

By straightforward computations it holds that

−∂P
∂λ (ωi, λj) > 0, (8.68)

for all i = 0, . . . , 50, j = 0, . . . , 36 and, moreover,

min
(ωi,λj)∈H4

(
−∂P

∂λ (ωi, λj)
)

= −∂P
∂λ (ω0, λ0) ≈ 0.118 . . . . (8.69)

Next to this, we compute

c1 = max {∆ω,∆λ} = max
{ 11

180π

n , 0.15
m

}
= 0.15

36 = 0.00416 . . . ,
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and, by taking into account (8.67) and (8.69), we also find

c2 =
√

2
min(ωi,λj)∈H4

(
−∂P

∂λ (ωi, λj)
)

supH4

∣∣( ∂2P
∂ω∂λ (ω, λ), ∂2P

∂λ2 (ω, λ)
)∣∣ ≈ 0.00423 . . . .

Since c1 < c2, by Lemma 8.1 we conclude that the constructed discretization
{(ωi, λj)}i=0,...,50

j=0,...,36
of H4 to be appropriate in the sense that condition (8.68) yields

a strict positivity of −∂P
∂λ (ω, λ) on H4, or, in other words ∂P

∂λ (ω, λ) < 0 on H4. �

Claim 8.14. Let H5 ⊂ V be H5 =
{
(ω, λ) :

[
90
180π,

96
180π

]
× [3.030, 3.970]

}
. It holds

that ∂P
∂ω (ω, λ) > 0 on H5.

Proof. First we find the following estimates:

|∂
2P

∂ω2
(ω, λ)| < 105, | ∂2P

∂ω∂λ (ω, λ)| < 37 on H5. (8.70)

Then we fix n = 11, m = 94 and consider the discretization {(ωi, λj)}i,j , i =
0, . . . , 11, j = 0, . . . , 94 of H5 such that

ωi = 90
180π + i∆ω, λj = 3.030 + j∆λ,

with

∆ω =
6

180π

n , ∆λ = 0.94
m .

By straightforward computations it holds that
∂P
∂ω (ωi, λj) > 0, (8.71)

for all i = 0, . . . , 11, j = 0, . . . , 94 and, moreover,

min
(ωi,λj)∈H5

∂P
∂ω (ωi, λj) = ∂P

∂ω (ω0, λ0) ≈ 0.807 . . . . (8.72)

Next to this, we compute

c1 = max {∆ω,∆λ} = max
{ 6

180π

n , 0.94
m

}
= 0.94

94 ≈ 0.0100,

and, by taking into account (8.70) and (8.72), we also find

c2 =
√

2
min(ωi,λj)∈H5

∂P
∂ω (ωi, λj)

supH5

∣∣(∂2P
∂ω2 (ω, λ), ∂2P

∂ω∂λ (ω, λ)
)∣∣ ≈ 0.0102 . . . .

Since c1 < c2, by Lemma 8.1 we conclude that the constructed discretization
{(ωi, λj)}i=0,...,11

j=0,...,94
of H5 to be appropriate in the sense that condition (8.71) yields

a strict positivity of ∂P
∂ω (ω, λ) on H5. �

Claim 8.15. Let H6 ⊂ V be H6 =
{
(ω, λ) :

[
79
180π,

94
180π

]
× [2.900, 3.230]

}
.

It holds that ∂P
∂λ (ω, λ) < 0 on H6.

Proof. First we find the following estimates:

| ∂2P
∂ω∂λ (ω, λ)| < 33, |∂

2P
∂λ2 (ω, λ)| < 21 on H6. (8.73)

Then we fix n = 33, m = 41 and consider the discretization {(ωi, λj)}i,j , i =
0, . . . , 33, j = 0, . . . , 41 of H6 such that

ωi = 79
180π + i∆ω, λj = 2.900 + j∆λ,
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with

∆ω =
15
180π

n , ∆λ = 0.33
m .

By straightforward computations it holds that

−∂P
∂λ (ωi, λj) > 0, (8.74)

for all i = 0, . . . , 33, j = 0, . . . , 41 and, moreover,

min
(ωi,λj)∈H6

(
−∂P

∂λ (ωi, λj)
)

= −∂P
∂λ (ω33, λ41) ≈ 0.227 . . . . (8.75)

Next to this, we compute

c1 = max {∆ω,∆λ} = max
{ 15

180π

n , 0.33
m

}
= 0.33

41 = 0.00805 . . . ,

and, by taking into account (8.73) and (8.75), we also find

c2 =
√

2
min(ωi,λj)∈H6

(
−∂P

∂λ (ωi, λj)
)

supH6

∣∣( ∂2P
∂ω∂λ (ω, λ), ∂2P

∂λ2 (ω, λ)
)∣∣ ≈ 0.00820 . . . .

Since c1 < c2, by Lemma 8.1 we conclude that the constructed discretization
{(ωi, λj)}i=0,...,33

j=0,...,41
of H6 to be appropriate in the sense that condition (8.74) yields

a strict positivity of −∂P
∂λ (ω, λ) on H6, or, in other words ∂P

∂λ (ω, λ) < 0 on H6. �

Claim 8.16. Let H7 ⊂ V be H7 =
{
(ω, λ) :

[
72
180π,

80
180π

]
× [3.150, 4.000]

}
. It holds

that ∂P
∂ω (ω, λ) < 0 on H7.

Proof. First we find the following estimates:

|∂
2P

∂ω2
(ω, λ)| < 115, | ∂2P

∂ω∂λ (ω, λ)| < 21 on H7. (8.76)

Then we fix n = 5, m = 30 and consider the discretization {(ωi, λj)}i,j , i = 0, . . . , 5,
j = 0, . . . , 30 of H7 such that

ωi = 72
180π + i∆ω, λj = 3.150 + j∆λ,

with

∆ω =
8

180π

n , ∆λ = 0.85
m .

By straightforward computations it holds that

−∂P
∂ω (ωi, λj) > 0, (8.77)

for all i = 0, . . . , 5, j = 0, . . . , 30 and, moreover,

min
(ωi,λj)∈H7

(
−∂P

∂ω (ωi, λj)
)

= −∂P
∂ω (ω5, λ27) ≈ 2.663 . . . . (8.78)

Next to this, we compute

c1 = max {∆ω,∆λ} = max
{ 8

180π

n , 0.85
m

}
= 0.85

30 ≈ 0.0283 . . . ,

and, by taking into account (8.76) and (8.78), we also find

c2 =
√

2
min(ωi,λj)∈H7

(
−∂P

∂ω (ωi, λj)
)

supH7

∣∣(∂2P
∂ω2 (ω, λ), ∂2P

∂ω∂λ (ω, λ)
)∣∣ ≈ 0.0322 . . . .

Since c1 < c2, by Lemma 8.1 we conclude that the constructed discretization
{(ωi, λj)} i=0,...,5

j=0,...,30
of H7 to be appropriate in the sense that condition (8.77) yields

a strict positivity of −∂P
∂ω (ω, λ) on H7, or, in other words, ∂P

∂ω (ω, λ) < 0 on H7. �
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Claim 8.17. Let H8 ⊂ V be H8 =
{
(ω, λ) :

[
78
180π,

89
180π

]
× [3.900, 4.050]

}
. It holds

that ∂P
∂λ (ω, λ) > 0 on H8.

Proof. First we find the following estimates:

| ∂2P
∂ω∂λ (ω, λ)| < 36, |∂

2P
∂λ2 (ω, λ)| < 10 on H8. (8.79)

Then we fix n = 40, m = 30 and consider the discretization {(ωi, λj)}i,j , i =
0, . . . , 40, j = 0, . . . , 30 of H8 such that

ωi = 78
180π + i∆ω, λj = 3.900 + j∆λ,

with

∆ω =
11
180π

n , ∆λ = 0.15
m .

By straightforward computations it holds that
∂P
∂λ (ωi, λj) > 0, (8.80)

for all i = 0, . . . , 40, j = 0, . . . , 30 and, moreover,

min
(ωi,λj)∈H8

∂P
∂λ (ωi, λj) = ∂P

∂λ (ω40, λ30) ≈ 0.134 . . . . (8.81)

Next to this, we compute

c1 = max {∆ω,∆λ} = max
{ 11

180π

n , 0.15
m

}
= 0.15

30 = 0.00500,

and, by taking into account (8.79) and (8.81), we also find

c2 =
√

2
min(ωi,λj)∈H8

∂P
∂λ (ωi, λj)

supH8
sup

∣∣( ∂2P
∂ω∂λ (ω, λ), ∂2P

∂λ2 (ω, λ)
)∣∣ ≈ 0.00508 . . . .

Since c1 < c2, by Lemma 8.1 we conclude that the constructed discretization
{(ωi, λj)}i=0,...,40

j=0,...,30
of H8 to be appropriate in the sense that condition (8.80) yields

a strict positivity of ∂P
∂λ (ω, λ) on H8. �

8.5.2. Set of Claims II. Let H0 ⊂ V be as follows

H0 =
{
(ω, λ) :

[
84
180π,

94
180π

]
× [2.960, 3.060]

}
.

Consider a function G : H0 → R given by

G(ω, λ) = −∂2P
∂ω2 (ω, λ)

[
∂P
∂λ (ω, λ)

]−1
+ 2 ∂2P

∂ω∂λ (ω, λ)∂P
∂ω (ω, λ)

[
∂P
∂λ (ω, λ)

]−2

− ∂2P
∂λ2 (ω, λ)

[
∂P
∂ω (ω, λ)

]2 [
∂P
∂λ (ω, λ)

]−3
,

where P is as in (8.57).

Claim 8.18. It holds that G(ω, λ) > 0 on H0.

Proof. First we find the following estimates:

|∂G
∂ω (ω, λ)| < 25000, |∂G

∂λ (ω, λ)| < 14000 on H0. (8.82)

Then we fix n = 600, m = 300 and consider the discretization {(ωi, λj)}i,j , i =
0, . . . , 600, j = 0, . . . , 300 of H0 such that

ωi = 84
180π + i∆ω, λj = 2.960 + j∆λ,

with

∆ω =
10
180π

n , ∆λ = 0.1
m .
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By straightforward computations it holds that

G(ωi, λj) > 0, (8.83)

for all i = 0, . . . , 600, j = 0, . . . , 300 and, moreover,

min
(ωi,λj)∈H0

G(ωi, λj) = G(ω0, λ0) ≈ 8.380 . . . . (8.84)

Next to this, we compute

c1 = max {∆ω,∆λ} = max
{ 10

180π

n , 0.1
m

}
= 0.1

300 ≈ 0.000(3),

and, by taking into account (8.82) and (8.84), we also find

c2 =
√

2
min(ωi,λj)∈H0 G(ωi, λj)

supH0

∣∣(∂G
∂ω (ω, λ), ∂G

∂λ (ω, λ)
)∣∣ ≈ 0.000414 . . . .

Since c1 < c2, by Lemma 8.1 we conclude that the constructed discretization
{(ωi, λj)}i,j of H0 to be appropriate in the sense that condition (8.83) yields a
strict positivity of G(ω, λ) on H0. �

Let H? ⊂ V be as follows

H? =
{
(ω, λ) :

[
93.5
180 π,

95.5
180 π

]
× [3.030, 3.600]

}
.

Consider a function F : H? → R given by

F (ω, λ) = −∂2P
∂λ2 (ω, λ)

[
∂P
∂ω (ω, λ)

]−1
+ 2 ∂2P

∂ω∂λ (ω, λ)∂P
∂λ (ω, λ)

[
∂P
∂ω (ω, λ)

]−2

− ∂2P
∂ω2 (ω, λ)

[
∂P
∂λ (ω, λ)

]2 [
∂P
∂ω (ω, λ)

]−3
,

where P is as in (8.57).

Claim 8.19. It holds that F (ω, λ) < 0 on H?.

Proof. First we find the following estimates:

|∂F
∂ω (ω, λ)| < 180, |∂F

∂λ (ω, λ)| < 80 on H?. (8.85)

Then we fix n = 70, m = 1100 and consider the discretization {(ωi, λj)}i,j , i =
0, . . . , 70, j = 0, . . . , 1100 of H? such that

ωi = 93.5
180 π + i∆ω, λj = 3.030 + j∆λ,

with

∆ω =
2

180π

n , ∆λ = 0.57
m .

By straightforward computations it holds that

−F (ωi, λj) > 0, (8.86)

for all i = 0, . . . , 70, j = 0, . . . , 1100 and, moreover,

min
(ωi,λj)∈H?

(−F (ωi, λj)) = −F (ω70, λ1100) ≈ 0.0773 . . . . (8.87)

Next to this, we compute

c1 = max {∆ω,∆λ} = max
{ 2

180π

n , 0.57
m

}
= 0.57

1100 = 0.000518 . . . ,

and, by taking into account (8.85) and (8.87), we also find

c2 =
√

2
min(ωi,λj)∈H?

(−F (ωi, λj))

supH?

∣∣(∂F
∂ω (ω, λ), ∂F

∂λ (ω, λ)
)∣∣ ≈ 0.000555 . . . .
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Since c1 < c2, by Lemma 8.1 we conclude that the constructed discretization
{(ωi, λj)}i,j of H? to be appropriate in the sense that condition (8.74) yields a
strict positivity of −F (ω, λ) on H?, or, in other words F (ω, λ) < 0 on H?. �

9. Explicit formulas to the homogeneous problem in the cone when
ω ∈

{
1
2π, π,

3
2π, 2π

}
Here we give the explicit solutions to the homogeneous problem (4.1) in Kω when

ω ∈
{

1
2π, π,

3
2π, 2π

}
.

9.1. Case ω = 1
2π. The eigenvalues λ in this case are determined by the charac-

teristic equation (see subsection 4.1):

2 + 2 cos(πλ)− 4 cos
(

1
2πλ

)
= 0, λ /∈ {0,±1} .

The set of positive solutions of the above equation reads as:

{λj}∞j=1 = {λ3j−2, λ3j−1, λ3j}∞j=1 = {−1 + 4j, 4j, 1 + 4j}∞j=1 .

Here every values λ3j−2, λ3j has algebraic and geometric multiplicity 1, while λ3j−1

has algebraic and geometric multiplicity 2.

j λj κ(j) u
(j)
q = rλj+1Φ

(j)
q (θ)

1 3 1 x2y2

2-3 4 2

(
x3y2

x2y3

4 5 1 x3y3

5 7 1 x6y2 − x2y6

6-7 8 2

(
x7y2 − 7

3
x3y6

x2y7 − 7
3
x6y

8 9 1 x7y3 − x3y7

9 11 1 x10y2 − 14x6y6 + x2y10

10-11 12 2

(
x11y2 − 22x7y6 + 11

3
x3y10

x2y11 − 22x6y7 + 11
3

x10y3

12 13 1 x11y3 − 66
7

x7y7 + x3y11

etc.

Table 10. The first three groups of solutions u(j)
q , q = 0, . . . , κ(j)−

1 of problem (4.1) in Kω of measure ω = 1
2π.

In the table above we see that the functions that solve the homogeneous problem
(4.1) in Kω of measure ω = 1

2π are given by polynomials in x and y, which makes
a difference to the case when the operator of the problem is the bilaplacian ∆2.

9.2. Case ω = π. The eigenvalues λ in this case are determined by the character-
istic equation (see subsection 4.1):

sin2(πλ) = 0, λ 6= ±1,
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plus the values λ = ±1, which are determined by the conditions P−1(π) = P1(π) =
0. Hence, the set of positive solutions reads as

{λj}∞j=1 = j,

where λ1 = 1 has algebraic and geometric multiplicity 1, while λj for j ≥ 2 has
algebraic and geometric multiplicity 2.

j λj κ(j) u
(j)
q = rλj+1Φ

(j)
q (θ)

1 1 1 y2

2− 3 2 2
xy2

y3

4− 5 3 2
x2y2

xy3

6− 7 4 2
x3y2

x2y3

etc.

Table 11. Some first solutions u(j)
q , q = 0, . . . , κ(j)−1 of problem

(4.1) in Kω of measure ω = π.

Here, when the opening angle ω of Kω is π, as well as in the case ω = 1
2π, the

solutions (4.1) in Kω are given by polynomials in x and y. We can not achieve this
when the operator L of the problem is the bilaplacian ∆2.

9.3. Case ω = 3
2π. The characteristic equation P

(
3
2π, λ

)
= 0, λ 6= ±1, where P is

given in subsection 4.1, can be factorized and the eigenvalues λ are determined by
the system:

cos
(

1
2πλ

)
= 0, λ 6= ±1,

cos
(

1
2πλ

)
= 1, λ 6= ±1,

cos4
(

1
2πλ

)
+ cos3

(
1
2πλ

)
− 1

2 cos2
(

1
2πλ

)
− 1

2 cos
(

1
2πλ

)
+ 1

16 = 0, λ 6= ±1.

The solutions with positive real part of the system above read, respectively,

{λn1}
∞
n1=1 = {1 + 2n1}∞n1=1 , {λn2}

∞
n2=1 = {4n2}∞n2=1 ,

{λn3}
∞
n3=1 = {−1 + 2n3 + (−1)n3 (1− µ1)}

∞
n3=1 ,

{λn4}
∞
n4=1 = {−1 + 2n4 + (−1)n4 (1− µ2)}

∞
n4=1 ,

{λn5}
∞
n5=1 =

{
−1 + 2n5 + (−1)n5+1 (1− γ1)± iγ2

}∞

n5=1
,

where µ1, µ2 are the first two positive solutions of the equation

s4 + s3 − 1
2s

2 − 1
2s+ 1

16 = 0, (9.1)

with s = cos
(

1
2πµ

)
, while (γ1, γ2) is the first positive solution of (9.1) with s =

− cos
(

1
2πγ1

)
cosh

(
1
2πγ2

)
+i sin

(
1
2πγ1

)
sinh

(
1
2πγ2

)
. The numerical approximations

(up to three digits) are the following: µ1 ≈ 0.536 . . . , µ2 ≈ 0.926 . . . and γ1 ≈
0.345 . . . , γ2 ≈ 0.179 . . . .
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Note also that every λn2 = 4n2, n2 = 1, 2.3, . . . has algebraic and geometric
multiplicity 2, while every λnk

, for each k = 1, 3, 4, 5 has algebraic and geometric
multiplicity 1. The set {λj}∞j=1 is the combination of the found sets above.

j λj κ(j) Φ
(j)
q (θ) u

(j)
q = rλj+1Φ

(j)
q (θ)

1,2,3-4,5-6 ≈ 0.536 . . . ,≈ 0.926 . . . ,≈ 1.655 . . .± i0.179 . . . ,≈ 2.345 . . .± i0.179 . . .

7 3 1 sin2(θ) cos2(θ) x2y2

8, 9 ≈ 3.074 . . . ,≈ 3.464 . . .

10-11 4 2

(
sin2(θ) cos3(θ)

cos2(θ) sin3(θ)

(
x3y2

x2y3

12, 13 ≈ 4.536 . . . ,≈ 4.926 . . . ,

14 5 1 sin3(θ) cos3(θ) x3y3

15-16,17-18 ≈ 5.655 . . .± i0.179 . . . ,≈ 6.345 . . .± i0.179 . . . ,

19 7 1 sin2(θ) cos2(θ)
`
cos4(θ)− sin4(θ)

´
x6y2 − x2y6

20, 21 ≈ 7.074 . . . ,≈ 7.464 . . .

22− 23 8 2

(
sin2(θ) cos3(θ)

`
cos4(θ)− 7

3
sin4(θ)

´
cos2(θ) sin3(θ)

`
sin4(θ)− 7

3
cos4(θ)

´ (
x7y2 − 7

3
x3y6

x2y7 − 7
3
x6y

etc.

Table 12. The first solutions (λj ,Φ
(j)
q ), q = 0, . . . , κ(j) − 1 of

(4.4) and the solutions u(j)
q of (4.1) in Kω of measure ω = 3

2π. The
situation without explicit formula is marked by “ . . . ”.

9.4. Case ω = 2π. The eigenvalues λ in this case are determined by the charac-
teristic equation (see subsection 4.1):

cos4(πλ)− cos2(πλ) = 0, λ 6= ±1,

plus the values λ = ±1, which are determined by the conditions P−1(2π) =
P1(2π) = 0. The positive solutions are given by the set

{λj}∞j=1 = 1
2j,

where λ2 = 1 has algebraic and geometric multiplicity 1, while λj for j = 1 and
j ≥ 3 has algebraic and geometric multiplicity 2.
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MI, Universität zu Köln, D 50931 Cologne, Germany
E-mail address: gsweers@math.uni-koeln.de


	1. Introduction
	1.1. The model
	1.2. The setting
	1.3. The target
	1.4. The lineup

	2. Existence and uniqueness
	3. Kondratiev's weighted Sobolev spaces
	4. Homogeneous problem in an infinite sector, singular solutions
	4.1. Reduced problem
	4.2. Analysis of the eigenvalues 
	4.3. Intermezzo: a comparison with 2
	4.4. Analysis of the eigenvalues  (continued)
	4.5. The multiplicities of { j}j=1 and the structure of a singular solution

	5. Regularity results
	5.1. Regularity for the singular part of u
	5.2. Consequences

	6. Comparing (weighted) Sobolev spaces
	6.1. One-dimensional Hardy-type inequalities
	6.2. Imbeddings

	7. A fundamental system of solutions
	7.1. Derivation of system S
	7.2. Derivation of systems S-1, S0, S1
	7.3. The explicit formulas for P-1, P0, P1,

	8. Analytical tools for the numerical computation
	8.1. Implicit function and discretization
	8.2. A version of the Morse theorem
	8.3. The Morse Theorem applied
	8.4. On the insecting curves from Morse
	8.5. On P(,) =0 in V away from a=( 12,4)

	9. Explicit formulas to the homogeneous problem in the cone when { 12,,32 ,2} 
	9.1. Case =12
	9.2. Case =.
	9.3. Case =32.
	9.4. Case =2.
	Acknowledgements

	References

