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EXISTENCE OF GLOBAL SOLUTIONS TO NONLINEAR MIXED
VOLTERRA-FREDHOLM INTEGRODIFFERENTIAL EQUATIONS

WITH NONLOCAL CONDITIONS

HARIBHAU L. TIDKE

Abstract. In this paper, we investigate the existence of global solutions to

first-order initial-value problems, with nonlocal condition for nonlinear mixed

Volterra-Fredholm integrodifferential equations in Banach spaces. The tech-
nique used in our analysis is based on an application of the topological transver-

sality theorem known as Leray-Schauder alternative and rely on a priori bounds
of solution.

1. Introduction

Let Rn be the Euclidean n-space with norm ‖ · ‖. Let B = C([0, b], Rn) be the
Banach space of all continuous functions from [0, b] into Rn endowed with supremum
norm

‖x‖B = sup{‖x(t)‖ : t ∈ [0, b]}.
Now we study the mixed Volterra-Fredholm integrodifferential equations of the form

x′(t) = f(t, x(t),
∫ t

0

k(t, s, x(s))ds,

∫ b

0

h(t, s, x(s))ds), t ∈ [0, b], (1.1)

x(0) + g(x) = x0, (1.2)

where f : [0, b]×Rn×Rn×Rn → Rn, is a function, k, h : [0, b]× [0, b]×Rn → Rn are
continuous functions and g : B → Rn is given function, and x0 is a given element
of Rn.

Several authors have investigated the problems of existence, uniqueness and other
properties of solutions of the special forms of (1.1)-(1.2), see [1, 3, 4, 5, 7, 9, 10, 11]
and some of the references given therein. The equations of the form (1.1)-(1.2) play
an important role for abstract formulation of many initial, boundary value prob-
lems of perturbed differential equations, partial differential equations and partial
integrodifferential equations which arise in various applications like chemical reac-
tion kinetics. population dynamics, heat-flow in material with memory, viscoelastic
and reaction diffusion problems.
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The work in nonlocal initial value problem( IVP for short) was initiated by
Byszewski. In [2] Byszewski using the method of semigroups and the Banach fixed
point theorem proved the existence and uniqueness of mild, strong and classical
solution of first order IVP. For the importance of nonlocal conditions in different
fields, the interesting reader is referred to [2] and the references cited therein. Re-
cently, in an interesting paper Dhakne and Kendre [5] studied the existence of global
solutions to (1.1) when g = 0, x(0) = 0.

The aim of the this paper is to study the existence of global solutions to (1.1)-
(1.2). The main tool used in our analysis is based on an application of the topolog-
ical transversality theorem known as Leray-Schauder alternative, rely on a priori
bounds of solutions. The interesting and useful aspect of the method employed here
is that it yields simultaneously the global existence of solutions and the maximal
interval of existence. We are motivated by the work of Dhakne and Kendre [5] and
influenced by the work of Byszewski [2].

The paper is organized as follows: In Section 2, we present the preliminaries and
hypotheses. Section 3 deals with the main result. Finally, in Section 4, we give an
example to illustrate the application of our theorem.

2. Preliminaries and Hypotheses

Before proceeding to the main result, we shall set forth some preliminaries and
hypotheses that will be used in our subsequent discussion.

Definition 2.1. Let f ∈ L1(0, b; Rn). The function x ∈ B given by

x(t) = x0 − g(x) +
∫ t

0

f(s, x(s),
∫ s

0

k(s, τ, x(τ))dτ,

∫ b

0

h(s, τ, x(τ))dτ)ds, (2.1)

for t ∈ [0, b] is called the solution of the initial value problem (1.1)-(1.2).

Our results are based on the following lemma, which is a version of the topological
transversality theorem given by Granas [6, p. 61].

Lemma 2.2 (Leray-Schauder Alternative). Let S be a convex subset of a normed
linear space E and assume 0 ∈ S. Let F : S → S be a completely continuous
operator, and let

ε(F ) = {x ∈ S : x = λFx for some 0 < λ < 1}.
Then either ε(F ) is unbounded or F has a fixed point.

We list the following hypotheses for our convenience.
(H1) There exists a constant G such that

‖g(x)‖ ≤ G, for x ∈ Rn.

(H2) There exists a continuous function p : [0, b] → R+ = [0,∞) such that

‖
∫ t

0

k(t, s, x(s))ds‖ ≤ p(t)‖x‖,

for every t, s ∈ [0, b] and x ∈ Rn.
(H3) There exists a continuous function q : [0, b] → R+ such that

‖
∫ b

0

h(t, s, x(s))ds‖ ≤ q(t)‖x‖,

for every t, s ∈ [0, b] and x ∈ Rn.
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(H4) There exists a continuous function l : [0, b] → R+ such that

‖f(t, x, y, z)‖ ≤ l(t)K(‖x‖+ ‖y‖+ ‖z‖),
for every t ∈ [0, b] and x, y, z ∈ Rn, where K : R+ → (0,∞) is continuous
nondecreasing function satisfying

K(α(t)x) ≤ α(t)K(x),

and α(t) is defined as the function p.

3. Existence of a Solution

Theorem 3.1. Suppose that (H1)-(H4) hold. Then the initial-value problem (1.1)-
(1.2) has a solution x on [0, b] provided b satisfies∫ b

0

M(s)ds <

∫ ∞

c

ds

K(s)
, (3.1)

where c = ‖x0‖+ G and M(t) = l(t)[1 + p(t) + q(t)] for t ∈ [0, b].

Proof. To prove the existence of a solution of nonlinear mixed Volterra-Fredholm in-
tegrodifferential equations (1.1)-(1.2), we apply topological transversality theorem.
First we establish the priori bounds on the solutions of the initial value problem

x′(t) = λf(t, x(t),
∫ t

0

k(t, s, x(s))ds,

∫ b

0

h(t, s, x(s))ds), t ∈ [0, b], (3.2)

under the initial condition (1.2) for λ ∈ (0, 1). Let x(t) be a solution of the problem
(3.2)-(1.2), then it satisfies the equivalent integral equation

x(t) = x0 − g(x) + λ

∫ t

0

f(s, x(s),
∫ s

0

k(s, τ, x(τ))dτ,

∫ b

0

h(s, τ, x(τ))dτ)ds, (3.3)

for t ∈ [0, b]. Using (3.3), hypotheses (H1)-(H4) and the fact that λ ∈ (0, 1), we
have

‖x(t)‖ ≤ ‖x0 − g(x)‖+ ‖
∫ t

0

f(s, x(s),
∫ s

0

k(s, τ, x(τ))dτ,

∫ b

0

h(s, τ, x(τ))dτ)ds‖

≤ [‖x0‖+ G] +
∫ t

0

‖f(s, x(s),
∫ s

0

k(s, τ, x(τ))dτ,

∫ b

0

h(s, τ, x(τ))dτ)‖ds

≤ [‖x0‖+ G] +
∫ t

0

l(s)K(‖x(s)‖+ p(s)‖x(s)‖+ q(s)‖x(s)‖)ds

≤ [‖x0‖+ G] +
∫ t

0

l(s)(1 + p(s) + q(s))K(‖x(s)‖)ds.

(3.4)
Denoting by u(t) the right-hand side of the above inequality, we have

u(t) = [‖x0‖+ G] +
∫ t

0

l(s)(1 + p(s) + q(s))K(‖x(s)‖)ds.

Then ‖x(t)‖ ≤ u(t) and u(0) = [‖x0‖+ G] = c. Therefore,

u(t) = c +
∫ t

0

l(s)(1 + p(s) + q(s))K(‖x(s)‖)ds

u(t) ≤ c +
∫ b

0

l(s)(1 + p(s) + q(s))K(u(s))ds.
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Differentiating u(t) and using the fact that K is increasing continuous, we get

u′(t) ≤ l(t)(1 + p(t) + q(t))K(u(t)) ≤ l(t)(1 + p(t) + q(t))K(u(t)),

u′(t)
K(u(t))

≤ M(t).
(3.5)

Integrating from 0 to t and using change of variables t → s = u(t) and the condition
(3.1), we obtain∫ u(t)

c

ds

K(s)
≤

∫ t

0

M(s)ds ≤
∫ b

0

M(s)ds <

∫ ∞

c

ds

K(s)
. (3.6)

From this inequality and the mean value theorem we observe that there exists a
constant γ, independent of λ ∈ (0, 1) such that u(t) ≤ γ for t ∈ [0, b] and hence
‖x(t)‖ ≤ γ for t ∈ [0, b] and consequently, we have

‖x‖B = sup{‖x(t)‖ : t ∈ [0, b]} ≤ γ.

Now, we rewrite (1.1)-(1.2) as follows: If y ∈ B and x(t) = x0 − g(x) + y(t),
t ∈ [0, b], where y(t) satisfies

y(t) =
∫ t

0

f(s, y(s) + x0 − g(y),
∫ s

0

k(s, τ, y(τ) + x0 − g(y))dτ,∫ b

0

h(s, τ, y(τ) + x0 − g(y))dτ)ds, t ∈ [0, b]

if and only if x(t) satisfies

x(t) = x0−g(x)+
∫ t

0

f(s, x(s),
∫ s

0

k(s, τ, x(τ))dτ,

∫ b

0

h(s, τ, x(τ))dτ)ds, t ∈ [0, b].

We define the operator F : B0 → B0, B0 = {y ∈ B : y(0) = 0} by

(Fy)(t) =
∫ t

0

f(s, y(s) + x0 − g(y),
∫ s

0

k(s, τ, y(τ) + x0 − g(y))dτ,∫ b

0

h(s, τ, y(τ) + x0 − g(y))dτ)ds, t ∈ [0, b].
(3.7)

Then F is clearly continuous.
Next, we prove that F is completely continuous. Let {wm} be a bounded se-

quence in B0, i.e. ‖wm‖B ≤ d for all m, where d is a positive constant. From the
definition of operator F and using the hypotheses (H1) − (H4) and the fact that
‖wm‖B ≤ d, we obtain

‖(Fwm)(t)‖ ≤
∫ t

0

‖f(s, wm(s) + x0 − g(wm),
∫ s

0

k(s, τ, wm(τ) + x0 − g(wm))dτ,∫ b

0

h(s, τ, wm(τ) + x0 − g(wm))dτ)‖ds

≤
∫ t

0

l(s)[1 + p(s) + q(s)]K(‖wm(s) + x0 − g(wm)‖)ds

≤
∫ t

0

l(s)[1 + p(s) + q(s)]K(d + c)ds

≤ M∗K(d + c)b,
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where M∗ = sup{M(t) : t ∈ [0, b]}. This implies that the set {(Fwm)(t) : ‖wm‖B ≤
d, 0 ≤ t ≤ b} is uniformly bounded in Rn.

Now we shall show that the sequence Fwm is equicontinuous. Let t1, t2 ∈ [0, b],
Then from the definition of operator F and using the hypotheses (H1)− (H4) and
the fact that ‖wm‖B ≤ d, we have

‖(Fwm)(t1)− (Fwm)(t2)‖

≤
∫ t2

t1

‖f(s, wm(s) + x0 − g(wm),
∫ s

0

k(s, τ, wm(τ) + x0 − g(wm))dτ,∫ b

0

h(s, τ, wm(τ) + x0 − g(wm))dτ)‖ds

≤
∫ t2

t1

l(s)[1 + p(s) + q(s)]K(‖wm(s) + x0 − g(wm)‖)ds

≤
∫ t2

t1

l(s)[1 + p(s) + q(s)]K(d + c)ds

≤ M∗K(d + c)(t2 − t1),

(3.8)

where M∗ = sup{M(t) : t ∈ [0, b]}. From (3.8) we conclude that {Fwm} is equicon-
tinuous and hence by Arzela-Ascoli theorem the operator F is completely continu-
ous.

Finally, the set

ε(F ) = {y ∈ B0 : y = λFy, λ ∈ (0, 1)}

is bounded in B, since for every y ∈ ε(F ), the function x(t) = x0 − g(x) + y(t)
is a solution of (3.2)-(1.2) for which we have proved that ‖x‖B ≤ γ and hence
‖y‖B ≤ γ + c. Consequently, by Lemma 2.2, the operator F has a fixed point
in B0. This means that the initial value problem (1.1)-(1.2) has a solution. This
completes the proof of the theorem. �

Remark 3.2. We note that in the special case, if we take (i) M(t) = 1 in condition
(3.1) and the integral on the right side in (3.1) is assumed to diverge, then the
solutions of equations (1.1)-(1.2) exist for every b < ∞.

4. Application

In this section we apply some of the results established in this paper. First, we
consider the partial firs-order differential equation with nonlocal condition

wt(u, t) = P (t, w(u, t),
∫ t

0

k1(t, s, w(u, s))ds,

∫ b

0

h1(t, s, w(u, s))ds), (4.1)

w(0, t) = w(π, t) = 0, 0 ≤ t ≤ b, (4.2)

w(u, 0) + g(w(u, t)) = w0(u), 0 ≤ u ≤ π, (4.3)

where P : [0, b] × R × R × R → R, is a function and k1, h1 : [0, b] × [0, b] × R → R
are continuous. We assume that the functions P, k1 and h1 in (4.1)-(4.3) satisfy the
following conditions.

(1) There exists a constant G such that |g(x)| ≤ G, for x ∈ R.
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(2) There exists a nonnegative function p1 defined on [0, b] such that∣∣ ∫ t

0

k1(t, s, x)ds
∣∣ ≤ p1(t)|x|

for t, s ∈ [0, b] and x ∈ R.
(3) There exists a nonnegative function q1 defined on [0, b] such that

|
∫ b

0

h1(t, s, x)ds| ≤ q1(t)|x|

for t, s ∈ [0, b] and x ∈ R.
(4) There exists nonnegative real valued continuous function l1 defined on [0, b]

and a positive continuous increasing function K1 defined on R+ such that

|P (t, x, y, z)| ≤ l1(t)K1(|x|+ |y|+ |z|)
for t ∈ [0, b] and x, y, z ∈ R.

Let us take X = L2[0, π]. Suppose that∫ b

0

l1(s)(1 + p1(s) + q1(s))ds <

∫ ∞

c

ds

K1(s)

is satisfied, where c = ‖w0‖+ G. Define the functions f : [0, b]×X ×X ×X → X,
k, h : [0, b]× [0, b]×X → X as follows

f(t, x, y, z)(u) = P (t, x(u, t), y(u, t), z(u, t)),

k(t, s, x)(u) = k1(t, s, x(u, t)) and

h(t, s, x)(u) = h1(t, s, x(u, t))

for t ∈ [0, b], x, y, z ∈ X and 0 ≤ u ≤ π. With these choices of the functions,
the equations (4.1)-(4.3) can be modelled abstractly as nonlinear mixed Volterra-
Fredholm integrodifferential equation with nonlocal condition in Banach space X:

x′(t) = f(t, x(t),
∫ t

0

k(t, s, x(s))ds,

∫ b

0

h(t, s, x(s))ds), t ∈ [0, b], (4.4)

x(0) + g(x) = x0. (4.5)

Since all the hypotheses of the Theorem 3.1 are satisfied, the Theorem 3.1 can be
applied to guarantee the solution of the nonlinear mixed Volterra-Fredholm partial
integrodifferential equation (4.1)-(4.3) with nonlocal condition.
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