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A UNIQUENESS RESULT FOR ORDINARY DIFFERENTIAL
EQUATIONS WITH SINGULAR COEFFICIENTS

YIFEI PAN, MEI WANG

Abstract. We consider the uniqueness of solutions of ordinary differential
equations where the coefficients may have singularities. We derive upper

bounds on the order of singularities of the coefficients and provide examples

to illustrate the results.

1. Results and examples

Classical results on the existence and uniqueness of ordinary differential equa-
tions are mostly concerned with continuous coefficients [2]. Here we consider the
uniqueness of ordinary differential equation solutions of coefficients with singular-
ities. We study upper bounds on the order of singularities of the coefficients that
guarantee the uniqueness of the solution.

Main theorems are stated below. Two examples are given to illustrate and to
address the sharpness aspect of the results. Proofs are provided in the subsequent
section.

Theorem 1.1. Let f(x) ∈ C∞(−a, a) be a solution (real or complex) of

y(n) + an−1(x, y)y(n−1) + · · ·+ a0(x, y)y = 0, x ∈ (−a, a), a > 0 (1.1)

with initial conditions

f(0) = f ′(0) = · · · = f (n−1)(0) = 0.

If

lim
x→0

|x|n−k|ak(x, y)| ≤ 1
e
, k = 0, 1, . . . , n− 1, (1.2)

where e is the Euler’s number, then there exists δ > 0 such that f ≡ 0 on [−δ, δ].

Remarks:
• For fixed n, the inequality (1.2) can be relaxed to

lim
x→0

|x|n−k|ak(x, y)| < 1
Bn

, k = 0, 1, . . . , n− 1, Bn =
n−1∑
k=0

1
k!

. (1.3)
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• Notice that the coefficients ak(x, y) in (1.1) can be functions of y(k) for any
k, even for k > n, as evidently shown in the proofs in the next section.

Corollary 1.2. Let f(x) ∈ C∞(−a, a) be a solution of (1.1) with initial conditions

f(0) = f ′(0) = · · · = f (n−1)(0) = 0.

If |ak(x, y)| = o( 1
|x|n−k ) as x → 0, k = 0, 1, . . . , n− 1, then there exists δ > 0 such

that f ≡ 0 on [−δ, δ].

Corollary 1.3. Let f(x) ∈ C∞(−a, a) be a solution of (1.1) with initial conditions

f(0) = f ′(0) = · · · = f (n−1)(0) = 0.

If |ak(x, y)| ≤ M as x → 0, k = 0, 1, . . . , n − 1 for some M > 0, then exists δ > 0
such that f ≡ 0 on [−δ, δ].

Example 1.4. The uniqueness in Theorem 1.1 may not be true for solutions not
sufficiently smooth. For α ∈ (0, 1), the function

y =

{
xα sin(x), x ∈ [0,∞)
(−x)α sin(−x), x ∈ (−∞, 0)

satisfies the differential equation

y′′ − 2α

x
y′ +

(
1 +

α2 + α

x2

)
y = 0 with y(0) = y′(0) = 0. (1.4)

Let α = 1/2e. Then condition (1.2) in Theorem 1.1 is satisfied (for n = 2):

lim
x→0

|x||a1(x, y)| = 1
e
, lim

x→0
|x|2|a0(x, y)| = 1

2e

(
1 +

1
2e

)
<

1
e
.

But y 6≡ 0. Thus solutions to equation (1.4) are not unique. Notice that y ∈ C1,α

(first derivative of Hölder continuity of order α), y 6∈ C∞. The example also shows
that the non-uniqueness cannot be remedied by using a smaller bound in (1.2),
because for any given ε > 0, we may choose α < ε/2 such that

lim
x→0

|x|2−k|ak(x, y)| ≤ max
α
{2α, α2 + α} < ε, k = 0, 1.

Example 1.5. This example shows that a bound in condition (1.2) in Theorem
1.1 is necessary. Consider the Bessel differential equation (ref. [3])

y′′ +
1
x

y′ +
(
1− ν2

x2

)
y = 0. (1.5)

A real solution can be of the form

yν(x) =
∞∑

k=0

(−1)k

k!Γ(k + ν + 1)
(
x

2
)2k+ν = xνg(x)

where g(x) is real analytic, g(0) 6= 0. Let ν = m ≥ 2 be an integer. Then

ym(x) = xmg(x) ∈ C∞

is a solution to (1.5) with y′m(x) = mxm−1g(x) + xmg′(x) and ym(0) = y′m(0) = 0.
But ym(x) 6≡ 0. Thus solutions to equation (1.5) are not unique. Notice that the
only assumption not satisfied in Theorem 1.1 is Condition (1.2):

lim
x→0

|x|n|a0(x, y)| = lim
x→0

|x|2
∣∣1− m2

x2

∣∣ = m2 >
1
e
.
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Example 1.6. In the case of Cauchy-Euler or equi-dimensional equations,

xny(n) + an−1x
n−1y(n−1) + · · ·+ a0xy = 0, x ∈ (−a, a) (1.6)

where ak’s are constants, Condition (1.2) is simplified to

|ak| <
1
e
, k = 0, . . . , n− 1.

For n = 2, the solutions for (1.6) have the forms y = c1x
α + c2x

β , y = c1x
α ln(x) +

c2x
β or y = c1x

α cos(β ln(x)) + c2x
α sin(β ln(x)). These solutions do not fall into

the categories described in Example 1.4 or Example 1.5.

2. Proofs

We need our previous result ([1], Theorem 5) which is stated here as a lemma.

Lemma 2.1. Assume f (real or complex) is in C∞(a, b), 0 ∈ (a, b), and for n ≥ 2
and some constant C,

|f (n)(x)| ≤ C

n−1∑
k=0

|f (k)(x)|
|x|n−k

, x ∈ (a, b). (2.1)

Then f (k)(0) = 0, for all k ≥ 0 implies f ≡ 0.

First we prove a lemma that provides an upper bound on the vanishing order of
f near 0 when f 6≡ 0.

Lemma 2.2. Assume f(x) ∈ C∞(a, b), 0 ∈ (a, b), and (2.1) holds for n ≥ 2 and
some constant C. If f 6≡ 0 on (a, b), then at x = 0, f is of finite vanishing order
N ,

N ≤ BnC + n− 1, Bn =
n−1∑
k=0

1
k!

,

i.e., there exists N > 0 such that for x near 0,

f(x) = aNxN + O
(
xN+1

)
.

Proof. When f 6≡ 0, by Lemma 2.1, there must exist N > 0 and aN such that

f (j)(0) = 0, ∀j < N, j ≥ 0, and f (N)(0) = N !aN 6= 0.

Since f(x) ∈ C∞(a, b), Taylor’s theorem yields

f(x) = aNxN + O
(
xN+1

)
.

If N ≥ n− 1, then

|f (k)(x)|
|x|n−k

=
|N(N − 1) . . . (N − k + 1)aNxN−k + O(xN−k+1)|

|x|n−k

= N(N − 1) . . . (N − k + 1)|aNxN−n|+ O
(
|x|N−n+1

)
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for k = 1, 2, . . . , n− 1. By (2.1), for x ∈ (a, b), as x approach 0,

|f (n)(x)| = N(N − 1) . . . (N − n + 1)|aNxN−n|+ O(|x|N−n+1)

≤ C
n−1∑
k=0

|f (k)(x)|
|x|n−k

= C
(
1 +

n−1∑
k=1

N(N − 1) . . . (N − k + 1)
)
|aNxN−n|+ O(|x|N−n+1).

If N ≥ n− 1, dividing both sides by N(N − 1) . . . (N − n + 2)|aNxN−n| we obtain

N − n + 1 + O(|x|) ≤ C
1 +

∑n−1
k=1 N(N − 1) . . . (N − k + 1)

N(N − 1) . . . (N − n + 2)
+ O(|x|).

Letting x → 0,

N − n + 1 ≤ C
1 +

∑n−1
k=1 N(N − 1) . . . (N − k + 1)

N(N − 1) . . . (N − n + 2)

= C
1 + N + N(N − 1) + · · ·+ N(N − 1) . . . (N − n + 2)

N(N − 1) . . . (N − n + 2)

= C
( 1

N(N − 1) . . . (N − n + 2)
+

1
(N − 1) . . . (N − n + 2)

+ . . .

+
1

N − n + 2
+ 1

)
≤ C

( 1
(n− 1)!

+
1

(n− 2)!
+ · · ·+ 1

2!
+

1
1!

+ 1
)

= CBn.

Notice that the last inequality achieves equality when N = n − 1. Thus when
N ≥ n−1, the order of f(x) = aNxN +O(xN+1) satisfies n−1 ≤ N ≤ BnC +n−1.
Combining with the case of N < n− 1, we obtain

N ≤ BnC + n− 1.

This completes the proof of Lemma (2.2). �

Next, we consider a proposition slightly more general than Corollary 1.2.

Proposition 2.3. Let f ∈ C∞(−a, a) be a solution of (1.1) such that

|ak(x, y)| = O
( 1
|x|n−k

)
as x → 0, k = 0, 1, . . . , n− 1. (2.2)

If
f (k)(0) = 0, ∀k ≤ BnCn + n− 1, (2.3)

where

Cn = max
0≤k≤n−1

lim sup
x→0

{|ak(x, y)||x|n−k}, Bn =
n−1∑
k=0

1
k!

,

then there exists δ > 0 such that f ≡ 0 on [−δ, δ].

Proof. It follows from the differential equation (1.1) that

|f (n)(x)| ≤
n−1∑
k=0

|ak(x, y)||f (k)(x)|, ∀x ∈ (−a, a).
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Then
Cn = max

0≤k≤n−1
ck, with ck = lim sup

x→0
{|x|n−k|ak(x, y)|},

and ck’s are finite by Assumption (2.2). Therefore, for any given ε > 0, there exists
δ > 0 such that

|f (n)(x)| ≤ (Cn + ε)
n−1∑
k=0

|f (k)(x)|
|x|n−k

, ∀x ∈ [−δ, δ].

If f 6≡ 0 on [−δ, δ], we would have f (N)(0) 6= 0 for some N ≤ Bn(Cn + ε)+n− 1 by
Lemma 2.2, and the arbitrariness of ε would imply f (N)(0) 6= 0 for some N ≤ M ,
where M = bBnCn + n − 1c is the largest integer ≤ BnCn + n − 1. However
Condition (2.3) implies f (k)(0) = 0,∀k ≤ M . Hence we must have f ≡ 0 on [−δ, δ]
for some δ > 0. This completes the proof of Proposition 2.3. �

Remarks: Notice that Example 1.5 satisfies Condition (2.2) in Proposition 2.3:

|a0(x, y)| = |1− m2

x2
| = O

( 1
|x|n−0

)
, |a1(x, y)| = | 1

x
| = O

( 1
|x|n−1

)
(2.4)

as x → 0 for k = 0, 1 (n = 2). However the uniqueness does not hold because
Condition (2.3) is not satisfied: y

(m)
m 6= 0, where m < M = BnCn + 1, Cn = m2.

The proof of Theorem 1.1 follows from Proposition 2.3, as stated below.

Proof of Theorem 1.1. By the assumption in this Theorem, Cn = 1/e. Since

BnCn + n− 1 = Bn
1
e

+ n− 1 < e
1
e

+ n− 1 = n,

the initial conditions f (k)(0) = 0, for all k < n imply

f (k)(0) = 0, ∀k ≤ BnCn + n− 1.

Therefore f ≡ 0 on |x| ≤ δ for some δ > 0 by the result in Proposition 2.3. This
completes the proof of Theorem 1.1. �

Similarly, Corollary 1.2 follows immediately.

Proof of Corollary 1.2. By the assumption, Cn = 0, BnCn + n− 1 = n− 1. Since
f (k)(0) = 0 for all k ≤ n − 1, the result of Corollary 1.2 follows from Proposition
2.3. �
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