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NONNEGATIVE SOLUTIONS TO AN INTEGRAL EQUATION
AND ITS APPLICATIONS TO SYSTEMS OF BOUNDARY

VALUE PROBLEMS

IOANNIS K. PURNARAS

Abstract. We study the existence of positive eigenvalues yielding nonnega-
tive solutions to an integral equation. Also we study the positivity of solutions

on specific sets. These results are obtained by using a fixed point theorem in

cones and are illustrated by application to systems of boundary value problems.

1. Introduction

In this paper we study the existence of positive eigenvalues that yield nonnegative
solutions to the integral equation

u(t) = λ

∫ 1

0

k1(t, s)a(s)f
(
µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr
)
ds, 0 ≤ t ≤ 1, (1.1)

under the following assumptions:
(A) f , g ∈ C([0,∞), [0,∞)),
(B) a, b ∈ C([0, 1], [0,∞)), and each does not vanish identically on any subin-

terval of [0, 1],
(C) ki(t, s) : R+ × R+ → R+, i = 1, 2 are continuous functions and there are

points ξ, η ∈ [0, 1] with ξ < η for which maxξ≤r≤η[minξ≤t≤η ki(t, r)] > 0,
i = 1, 2, and positive numbers γi, i = 1, 2 such that

min
ξ≤r≤η

ki(r, s) ≥ γiki(t, s) for (t, s) ∈ [0, 1]2, i = 1, 2.

Throughout this paper we will use the notation

γ = min{γ1, γ2}.
Clearly from (C) we have γ1, γ2 ∈ (0, 1] and so γ ∈ (0, 1].

A (nonnegative) solution of (1.1) is a function u in C([0, 1], [0,∞)) that satisfies
(1.1) for all t ∈ [0, 1]. A solution u will be called positive on the set J ⊆ [0, 1] if
u(t) > 0 for all t ∈ J .

The present work is motivated by some recent results on the existence of pos-
itive solutions to systems of boundary value problems (BVP, for short) (see, [2] -
[12], [26], [30], [31], [34], [35]). The study on the existence of positive solutions
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to BVP was initiated mainly by the work of Il’in and Moiseev (see, [16]). Since
then, existence of positive solutions to boundary value problems have attracted the
attention of many researches resulting in the publishing of a considerable number
of papers on problems concerning differential equations. For some recent results on
BVP for differential equations we refer to [19], [22], [27], [29], [32] (for second order
equations), to [15], [21], [23] (for third order equations), to [25] (for fourth order
equations), to [1], [13], [18], [20], [33] (for higher order equations), while for some
results on BVP concerning equations on time scales we refer to [24] and the refer-
ences cited therein. However the majority of the results obtained concern mainly
BVP refering to a single differential equation along various types of boundary con-
ditions and only very recently this study has been expanded to systems of BVP.
In this paper we investigate the existence of positive eigenvalues yielding nonneg-
ative solutions to an integral equations which includes, as special cases, a variety
of systems of BVP (see, the applications in Section 4). Thus, we may apply our
results to a variety of systems of BVP to obtain generalizations and extensions of
several known results as well as to establish new results for systems of BVP which
have not yet been considered as, for example, a mixed system considered in Section
4. For some existence results concerning integral equations and which are close to
the results of this paper we refer to [17]. The main tool in this investigation is a
fixed point theorem in cones and the technique used may be viewed as an extended
version of the one developed in [28].

The paper is organized in six sections. Section 2 consists of some preliminary
results needed for the proof of the main results of the paper which are given in
Section 3. In Section 4 we discuss the positivity of a solution on a specific set (this
notion has already been introduced in this section) and make comments concerning
the main results of the paper as well as the assumptions posed on the functions
involved (1.1). Section 5 is devoted to the application of the main results of the
paper to systems of boundary value problems. Some of the results obtained in
Section 5 are new while some others extend and generalize already known results.
The last section of the paper, Section 6, contains a generalization of the main
results of the paper to an integral equation which is more general than (1.1), and
an application of these results to a system of n boundary-value problems.

2. Preliminaries

For our investigation we consider the set B = C([0, 1], R) equipped with the
usual supremum norm ‖ · ‖, and its subset B+ = C([0, 1], R+). Furthermore, we
define the set P ⊂ B by

P =
{
x ∈ B : x(t) ≥ 0 on [0, 1] and min

t∈[ξ,η]
x(t) ≥ γ‖x‖

}
. (2.1)

Clearly, (B, ‖ · ‖) is a Banach space and P is a cone in B. Let T : B+ → B be the
integral operator defined by

T u(t) := λ

∫ 1

0

k1(t, s)a(s)f
(
µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr
)
ds, u ∈ P. (2.2)

Now we state a useful observation concerning the image of the operator T .

Lemma 2.1. Let λ, µ be positive numbers and P be the cone defined by (2.1).
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(i) If u ∈ B+ and v : [0, 1] → [0,∞) is defined by

v(t) = µ

∫ 1

0

k2(t, r)b(r)g(u(r))dr, t ∈ [0, 1], (2.3)

then v ∈ P.
(ii) If T is the integral operator defined by (2.2), then T (B+) ⊂ P. In particular,

T (P) ⊂ P.

Proof. Let µ be a positive number, u be an arbitrary element in B+ and v be defined
by (2.3).

(i) By the nonnegativity of k2, b and g it follows that v(t) ≥ 0, t ∈ [0, 1]. In view
of (A), (B), we have

k2(s, r) ≥ min
s∈[ξ,η]

k2(s, r), s ∈ [ξ, η], r ∈ [0, 1]

and ∫ 1

0

k2(s, r)b(r)g(u(r))dr ≥
∫ 1

0

min
s∈[ξ,η]

k2(s, r)b(r)g(u(r))dr, s ∈ [ξ, η]

from which we take

min
s∈[ξ,η]

∫ 1

0

k2(s, r)b(r)g(u(r))dr ≥
∫ 1

0

min
s∈[ξ,η]

k2(s, r)b(r)g(u(r))dr.

Consequently, employing (C) we have for t ∈ [0, 1] and s ∈ [ξ, η]∫ 1

0

k2(s, r)b(r)g(u(r))dr ≥
∫ 1

0

min
s∈[ξ,η]

k2(s, r)b(r)g(u(r))dr

≥
∫ 1

0

γ2k2(t, r)b(r)g(u(r))dr,

hence, in view of the fact that γ2 ≥ min{γ1, γ2} = γ and µ > 0 we take

µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr ≥ γµ

∫ 1

0

k2(t, r)b(r)g(u(r))dr, (2.4)

for s ∈ [ξ, η], and t ∈ [0, 1].
Since (2.4) is true for any s ∈ [ξ, η] and any t ∈ [0, 1], it follows that

min
s∈[ξ,η]

v(s) ≥ γv(t) t ∈ [0, 1],

and so mins∈[ξ,η] v(s) ≥ γ‖v‖, which proves our assertion.
(ii) From (i) we have that v ∈ P, and so, as k1, a, f and v are nonnegative and

λ > 0, following arguments similar to the ones used for the proof of (2.4), one has

min
s∈[ξ,η]

∫ 1

0

k1(s, r)a(r)f(v(r))dr ≥ γ
[ ∫ 1

0

k1(t, r)a(r)f(v(r))dr
]
, t ∈ [0, 1],

that is,
min

s∈[ξ,η]
T u(s) ≥ γT u(t) for t ∈ [0, 1],

and so,
min

s∈[ξ,η]
T u(s) ≥ γ‖T u‖,

which shows that T u ∈ P and completes the proof. �
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From Lemma 2.1 and the definition of T we have immediately the following
result.

Lemma 2.2. A function u ∈ C([0, 1], [0,∞)) is a solution of (1.1) if and only if u
is a fixed point of the integral operator T in the cone P.

Proof. If u is a solution of (1.1), then by the definition of T we have that u = T u,
and by Lemma 2.1 it follows that T u ∈ P. �

We close this section by stating the well-known Guo-Krasnosel’skii fixed point
theorem [14] which is the basic tool for establishing our results.

Theorem 2.3. Let B be a Banach space, and let P ⊂ B be a cone in B . Assume
Ω1 and Ω2 are open subsets of B with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

T : P ∩ (Ω2 \ Ω1) → P
be a completely continuous operator such that, either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \ Ω1).

3. Main results

Throughout this paper we adopt the notation

f0 = lim sup
u→0+

f(u)
u

, g0 := lim sup
u→0+

g(u)
u

,

f∞ = lim inf
u→∞

f(u)
u

, g∞ := lim inf
u→∞

g(u)
u

(3.1)

and

f0 = lim inf
u→0+

f(u)
u

, g0 := lim inf
u→0+

g(u)
u

,

f∞ = lim sup
u→∞

f(u)
u

, g∞ := lim sup
u→∞

g(u)
u

.

(3.2)

Before we state and prove the main results of the paper, we note that by (C) it
follows that ∫ η

ξ

min
ξ≤t≤η

k1(t, r)a(r)dr > 0,

∫ η

ξ

min
ξ≤t≤η

k2(t, r)b(r)dr > 0

and so [
∫ η

ξ
minξ≤t≤η k1(t, r)a(r)dr]−1 and [

∫ η

ξ
minξ≤t≤η k2(t, r)b(r)dr]−1 used in

stating Theorems 3.1 and 3.2 below are well defined positive real numbers (see,
also, the discussion in Section 4).

For our first result, we assume that

f0, g0 ∈ [0,∞) and f∞, g∞ ∈ (0,∞], (3.3)

wheref0, g0, f∞, g∞ are defined by (3.1), and set

Lf
1 :=

{
[γ1f∞

∫ η

ξ
minξ≤t≤η k1(t, r)a(r)dr]−1, if f∞ ∈ (0,∞),

0, if f∞ = ∞,

Lg
1 :=

{
[γ2g∞

∫ η

ξ
minξ≤t≤η k2(t, r)b(r)dr]−1, if g∞ ∈ (0,∞),

0, if g∞ = ∞,

(3.4)
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and

Lf
2 :=

{
[f0

∫ 1

0
max0≤t≤1 k1(t, r)a(r)dr]−1, if f0 ∈ (0,∞),

+∞, if f0 = 0,

Lg
2 :=

{
[g0

∫ 1

0
max0≤t≤1 k2(t, r)b(r)dr]−1, if g0 ∈ (0,∞),

+∞, if g0 = 0.

(3.5)

For our convenience, we will use the notation If = (Lf
1 , Lf

2 ) and Ig = (Lg
1, L

g
2).

Theorem 3.1. Assume conditions (A), (B), (C), (3.3) are satisfied and define
Lf

1 , Lg
1 by (3.4) and Lf

2 , Lg
2 by (3.5). Then, for λ, µ with (λ, µ) ∈ If × Ig there

exists a nonnegative solution u of (1.1).

Proof. Let (λ, µ) ∈ (Lf
1 , Lf

2 )×(Lg
1, L

g
2) and consider the integral operator T : B+ →

B defined by (2.2). In view of Lemma 2.2, all we have to prove is that there exists
a (nonzero) fixed point of T in the cone P. We note that by Lemma 2.1, we have
TP ⊂ P while, by using standard arguments, it is not difficult to show that the
integral operator T is completely continuous.

By the definition of Lf
2 , Lg

2 and the choice of λ and µ, we may always consider
an ε > 0 such that

λ ≤
[
(f0 + ε)

∫ 1

0

max
0≤t≤1

k1(t, r)a(r)dr
]−1

(3.6)

µ ≤
[
(g0 + ε)

∫ 1

0

max
0≤t≤1

k2(t, r)b(r)dr
]−1

. (3.7)

We note that the assumption f0, g0 ∈ [0,∞) yields that for the positive number ε
considered, there exists an H1 > 0 such that

0 ≤ f(x)
x

< f0 + ε and 0 ≤ g(x)
x

< g0 + ε, for all x ∈ (0,H1]

from which, in view of the continuity of f, g at 0 we find

0 ≤ f(x) ≤ (f0 + ε)x and 0 ≤ g(x) ≤ (g0 + ε)x, for all x ∈ [0,H1].

Consequently, we have

f(t) ≤ (f0 + ε)t ≤ (f0 + ε)x for any t ∈ [0, x] ⊆ [0,H1], (3.8)

g(t) ≤ (g0 + ε)t ≤ (g0 + ε)x for any t ∈ [0, x] ⊆ [0,H1]. (3.9)

Setting

f∗(x) = sup
t∈[0,x]

f(t), x ∈ [0,∞),

from (3.8) it follows that

f(x) ≤ f∗(x) ≤ (f0 + ε)x for x ∈ [0,H1]. (3.10)

Set Ω1 = {x ∈ P : ‖x‖ < H1}, and let u be an (arbitrary) element in ∂Ω1. Then
u(r) ≤ ‖u‖ = H1 for any r ∈ [0, 1] and taking into consideration (3.9), (3.7) and
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the choice of ε we have for s ∈ [0, 1]

µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr ≤ µ

∫ 1

0

max
0≤s≤1

k2(s, r)b(r)g(u(r))dr

≤ µ

∫ 1

0

max
0≤s≤1

k2(s, r)b(r)(g0 + ε)u(r)dr

≤ µ

∫ 1

0

max
0≤s≤1

k2(s, r)b(r)dr(g0 + ε)‖u‖

≤ ‖u‖ = H1,

and so

µ max
0≤s≤1

∫ 1

0

k2(s, r)b(r)g(u(r))dr ∈ [0,H1], for all s ∈ [0, 1].

Consequently, in view of (3.6) and (3.10) and employing the nondecreasing character
of f∗, we obtain, for t ∈ [0, 1],

T u(t) = λ

∫ 1

0

k1(t, s)a(s)f
(
µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr
)
ds

≤ λ

∫ 1

0

k1(t, s)a(s)f∗
(
µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr
)
ds

≤ λ

∫ 1

0

max
0≤t≤1

k1(t, s)a(s)f∗
(
µ

∫ 1

0

max
0≤s≤1

k2(s, r)b(r)g(u(r))dr
)
ds

≤ λ

∫ 1

0

max
0≤t≤1

k1(t, s)a(s)f∗(H1)ds

≤ λ

∫ 1

0

max
0≤t≤1

k1(t, s)a(s)(f0 + ε)H1ds

=
[
λ

∫ 1

0

max
0≤t≤1

k1(t, s)a(s)(f0 + ε)ds
]
H1

≤ H1 = ‖u‖,
which implies

‖T u‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω1. (3.11)
Now let us note that, in case that f∞ and g∞ are positive real numbers, then

by the definition of Lf
1 and Lg

1 and the choice of λ, µ it follows that there exists a
positive number ε with 0 < ε < min{f∞, g∞} such that[

γ1

∫ η

ξ

k1(ξ, r)a(r)(f∞ − ε)dr
]−1

≤ λ,[
γ2

∫ η

ξ

k2(ξ, r)b(r)(g∞ − ε)dr
]−1

≤ µ.

Set

f̂∞ =

{
(f∞ − ε), if f∞ ∈ (0,∞)[
λγ1

∫ η

ξ
minξ≤t≤η k1(t, r)a(r)dr

]−1
, if f∞ = ∞,

ĝ∞ =

{
(g∞ − ε), if g∞ ∈ (0,∞)[
µγ2

∫ η

ξ
minξ≤t≤η k2(t, r)b(r)dr

]−1
, if g∞ = ∞.
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Clearly, f̂∞ and ĝ∞ are well defined and they are both positive real numbers regard-
less of f̂∞ and ĝ∞ being finite or not. Having in mind the way that ε is considered,
we observe that

f̂∞

[
λγ1

∫ η

ξ

min
ξ≤t≤η

k1(t, r)a(r)dr
]

=

{
1, if f∞ = ∞
[λγ1

∫ η

ξ
minξ≤t≤η k1(t, r)a(r)dr](f∞ − ε) ≥ 1, if f∞ ∈ (0,∞).

Consequently,

1 ≤ λγ1

[ ∫ η

ξ

min
ξ≤t≤η

k1(t, r)a(r)dr
]
f̂∞, (3.12)

and, by similar arguments,

1 ≤ µγ2

[ ∫ η

ξ

min
ξ≤t≤η

k2(t, r)b(r)dr
]
ĝ∞. (3.13)

In view of the definitions of f∞, g∞, and f̂∞, ĝ∞, it follows that we may always
find an H2 > 2H1 such that

f(x) ≥ f̂∞x for any x ≥ H2, (3.14)

g(x) ≥ ĝ∞x for any x ≥ H2. (3.15)

Set H2 = max{2H1,
H2
γ }, and consider an arbitrary u ∈ P with ‖u‖ = H2. Then,

by the way that the cone P is constructed we have

u(r) ≥ min
t∈[ξ,η]

u(t) ≥ γ‖u‖ ≥ H2 for r ∈ [ξ, η],

and so, by (3.15)
g(u(r)) ≥ ĝ∞u(r) for r ∈ [ξ, η].

Using once more the fact that u ∈ P implies u(r) ≥ γ‖u‖ for r ∈ [ξ, η], in view of
the last inequality we take for s ∈ [ξ, η]

µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr ≥ µ

∫ η

ξ

k2(s, r)b(r)g(u(r))dr

≥ µ

∫ η

ξ

min
ξ≤s≤η

k2(s, r)b(r)ĝ∞u(r)dr

≥ µ
[ ∫ η

ξ

min
ξ≤s≤η

k2(s, r)b(r)dr
]
ĝ∞γ‖u‖;

i.e.,

µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr ≥ µ
[ ∫ η

ξ

min
ξ≤s≤η

k2(s, r)b(r)dr
]
ĝ∞γ‖u‖, (3.16)

for s ∈ [ξ, η], and so, as γ‖u‖ ≥ H2, by (3.13), we obtain

µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr ≥ H2 for s ∈ [ξ, η]. (3.17)

Employing (3.17) and the fact that H2 ≥ H2, by ( 3.14) we find that

f
(
µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr
)
≥ f̂∞

[
µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr
]

for s ∈ [ξ, η].



8 I. K. PURNARAS EJDE-2009/58

In view of this inequality and by (3.16) we have

T u(ξ)

= λ

∫ 1

0

k1(ξ, s)a(s)f
(
µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr
)
ds

≥ λ

∫ η

ξ

k1(ξ, s)a(s)f
(
µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr
)
ds

≥ λ

∫ η

ξ

k1(ξ, s)a(s)f̂∞
[
µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr
]
ds

≥ λ

∫ η

ξ

k1(ξ, s)a(s)f̂∞
{

µ
[ ∫ η

ξ

min
ξ≤s≤η

k2(s, r)b(r)dr
]
ĝ∞γ‖u‖

}
ds

=
{

λγ1

[ ∫ η

ξ

k1(ξ, s)a(s)ds
]
f̂∞

}{
µγ2

[ ∫ η

ξ

min
ξ≤s≤η

k2(s, r)b(r)dr
]
ĝ∞

}
‖u‖

≥
{

λγ1

[ ∫ η

ξ

min
ξ≤t≤η

k1(t, s)a(s)ds
]
f̂∞

}{
µγ2

[ ∫ η

ξ

min
ξ≤s≤η

k2(s, r)b(r)dr
]
ĝ∞

}
‖u‖

which, by (3.12) and (3.13) gives

T u(ξ) ≥ ‖u‖ = H2.

Consequently, we may infer that ‖T u‖ ≥ ‖u‖ for u ∈ P with ‖u‖ = H2. Hence,
setting Ω2 = {x ∈ B : ‖x‖ < H2}, it follows that

‖T u‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2. (3.18)

In view of (3.11) and (3.18), from Theorem 2.3 it follows that the operator T
has a fixed point in P ∩ (Ω2 \ Ω1) i.e., the integral equation (1.1) has a solution in
the cone P. It is clear that this solution u is nontrivial as u ∈ P ∩ (Ω2 \Ω1) implies
that 0 < H1 ≤ ‖u‖. The proof is complete. �

For our second result, we assume that

f0, g0 ∈ (0,∞] and f∞, g∞ ∈ [0,∞), (3.19)

where f0, g0, f∞, g∞ are defined by (3.2) and set

Lf
3 :=

{[
γ1

∫ η

ξ
minξ≤t≤η k1(t, r)a(r)f0dr

]−1
, if f0 ∈ (0,∞),

0, if f0 = ∞,

Lg
3 :=

{[
γ2

∫ η

ξ
minξ≤t≤η k2(t, r)b(r)g0dr

]−1
, if g0 ∈ (0,∞),

0 if g0 = ∞,

(3.20)

and

Lf
4 :=

{[ ∫ 1

0
max0≤t≤1 k1(t, r)a(r)f∞dr

]−1
, if f∞ ∈ (0,∞),

+∞, if f∞ = 0 ,

Lg
4 :=

{[ ∫ 1

0
max0≤t≤1 k2(t, r)b(r)g∞dr

]−1
, if g∞ ∈ (0,∞),

+∞, if g∞ = 0.

(3.21)

Theorem 3.2. Assume conditions (A), (B), (C), (3.19) are satisfied and define
Lf

3 , Lg
3 by (3.20) and Lf

4 , Lg
4 by (3.21). Moreover, assume that g(0) = 0. Then, for
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λ, µ with (λ, µ) ∈ (Lf
3 , Lf

4 )× (Lg
3, L

g
4) the integral equation (1.1) has a nonnegative

solution.

Proof. Let (λ, µ) ∈ (Lf
3 , Lf

4 ) × (Lg
3, L

g
4) and T be the integral operator defined by

(2.2). By Lemma 2.2 it suffices to prove that T has a fixed point in the cone P. We
note that completely continuity of the operator T follows by standard arguments
while by Lemma 2.1 we have T P ⊂ P.

We observe that if f0, g0 are positive real numbers then by the definition of Lf
3

and Lg
3 and the choice of λ, µ it follows that there exists a positive number ε such

that 0 < ε < min{f0, g0} and[
γ1

∫ η

ξ

min
ξ≤t≤η

k1(t, r)a(r)(f0 − ε)dr
]−1

≤ λ, (3.22)[
γ2

∫ η

ξ

min
ξ≤t≤η

k2(t, r)b(r)(g0 − ε)dr
]−1

≤ µ. (3.23)

Set

f̃0 =

{
(f0 − ε), if f0 ∈ (0,∞),
[λγ1

∫ η

ξ
minξ≤t≤η k1(t, r)a(r)dr]−1, if f0 = ∞,

g̃0 =

{
(g0 − ε), if g0 ∈ (0,∞),[
µγ2

∫ η

ξ
minξ≤t≤η k2(t, r)b(r)dr

]−1
, if g0 = ∞,

and note that f̃0 and g̃0 are positive real numbers regardless if some (or none) of
f0, g0 are finite or not. In view of (3.22) and (3.23) and by arguments similar to
the ones used in Theorem 3.1, one may see that

1 ≤ λγ1

[ ∫ η

ξ

min
ξ≤t≤η

k1(t, r)a(r)dr
]
f̃0, (3.24)

1 ≤ µγ2

[ ∫ η

ξ

min
ξ≤t≤η

k2(t, r)b(r)dr
]
g̃0. (3.25)

By assumption (3.19) it follows that for the ε chosen we can always find an H3 > 0
such that for any x ≤ H3 it holds

f(x)
x

≥

{
(f0 − ε), if f0 ∈ (0,∞)[
λγ1

∫ η

ξ
minξ≤t≤η k1(t, r)a(r)dr

]−1 if f0 = ∞,

g(x)
x

≥

{
(g0 − ε), if g0 ∈ (0,∞)[
µγ2

∫ η

ξ
minξ≤t≤η k2(t, r)b(r)dr

]−1 if g0 = ∞,

hence, in view of the definitions of the positive numbers f̃0 and g̃0 we have

f(x) ≥ f̃0x for any x ∈ [0, H3], (3.26)

g(x) ≥ g̃0x for any x ∈ [0, H3]. (3.27)

As g is continuous at zero with g(0) = 0, it follows that there exists an H3 ≤ H3

such that

g(x) ≤ H3

µ
∫ η

ξ
minξ≤t≤η k2(t, r)b(r)dr

for all x ∈ [0,H3]. (3.28)
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Let u ∈ P with ‖u‖ = H3. Clearly, u(r) ≤ ‖u‖ = H3 for all r ∈ [0, 1] and so by
(3.27) we take

g(u(r)) ≥ g̃0u(r), r ∈ [0, 1], (3.29)

while, by (3.28) it holds

g(u(r)) ≤ H3

µ
∫ η

ξ
minξ≤t≤η k2(t, r)b(r)dr

for all r ∈ [0, 1]. (3.30)

Consequently, for s ∈ [0, 1], we have

µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr ≤ µ

∫ 1

0

k2(s, r)b(r)
H3

µ
∫ 1

0
k2(s, w)b(w)dw

dr = H3,

which, in view of (3.26) implies

f
(
µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr
)
≥ f̃0

[
µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr
]
, (3.31)

for s ∈ [0, 1]. Hence, taking into consideration (3.31), (3.29), and the facts that
γ1γ2 ≤ γ ≤ 1 and u ∈ P, we have

T u(ξ) = λ

∫ 1

0

k1(ξ, s)a(s)f
(
µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr
)
ds

≥ λ

∫ 1

0

k1(ξ, s)a(s)f̃0

[
µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr
]
ds

≥ λ

∫ η

ξ

k1(ξ, s)a(s)f̃0

[
µ

∫ η

ξ

k2(s, r)b(r)g̃0u(r)dr
]
ds

≥ λ

∫ η

ξ

k1(ξ, s)a(s)f̃0

[
µ

∫ η

ξ

k2(s, r)b(r)g̃0γ‖u‖dr
]
ds

≥ λ

∫ η

ξ

k1(ξ, s)a(s)f̃0

[
µ

∫ η

ξ

min
ξ≤s≤η

k2(s, r)b(r)g̃0(γ1γ2)dr
]
ds‖u‖

=
{

γ1

[
λ

∫ η

ξ

k1(ξ, s)a(s)ds
]
f̃0

}{
γ2

[
µ

∫ η

ξ

min
ξ≤s≤η

k2(s, r)b(r)dr
]
g̃0

}
‖u‖,

thus, by (3.24) and (3.25) we obtain T u(ξ) ≥ ‖u‖. Consequently, we may conclude
that for u ∈ P with ‖u‖ = H3 it holds ‖T u‖ ≥ ‖u‖, so by setting Ω3 = {x ∈ B :
‖x‖ < H3}, it follows that

‖T u‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω3. (3.32)

Since f∞, g∞ ∈ [0,∞) by the choice of λ and µ it follows that there exists a
positive number ε such that

λ ≤
[ ∫ 1

0

max
0≤t≤1

k1(t, r)a(r)(f∞ + ε)dr
]−1

,

µ ≤
[ ∫ 1

0

max
0≤t≤1

k2(ξ, r)b(r)(g∞ + ε)dr
]−1

.
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Set

f̃∞ =

{
(f∞ + ε), if f∞ ∈ (0,∞)
[λ

∫ 1

0
max0≤t≤1 k1(t, r)a(r)dr]−1, if f∞ = 0,

g̃∞ =

{
(g∞ + ε), if g∞ ∈ (0,∞)[
µ

∫ 1

0
max0≤t≤1 k2(t, r)b(r)dr

]−1 if g∞ = 0,

and note that f̃∞ and g̃∞ are always positive numbers for which it holds

λ
[ ∫ 1

0

max
0≤t≤1

k1(t, r)a(r)dr
]
f̃∞ ≤ 1, (3.33)

µ
[ ∫ 1

0

max
0≤t≤1

k2(t, r)b(r)dr
]
g̃∞ ≤ 1. (3.34)

We consider the functions f∗, g∗ : R+ → R+ defined by

f∗(x) = sup
0≤t≤x

f(t) and g∗(x) = sup
0≤t≤x

g(t),

and observe that, these two functions are nondecreasing and such that

f(x) ≤ f∗(x) for x ≥ 0 and g(x) ≤ g∗(x) for x ≥ 0.

In addition, it is not difficult to verify that

lim sup
x→∞

f∗(x)
x

= f∞ and lim sup
x→∞

g∗(x)
x

= g∞,

and so, by the definition of f̃∞ and g̃∞, it follows that we can always find an
H4 > 2H3 such that

f∗(x) ≤ f̃∞x for any x ≥ H4, (3.35)

g∗(x) ≤ g̃∞x for any x ≥ H4. (3.36)

Let u ∈ P with ‖u‖ = H4. Taking into consideration the nondecreasing character
of g∗ and employing (3.36), for s ∈ [0, 1], we have

µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr ≤ µ

∫ 1

0

max
0≤s≤1

k2(s, r)b(r)g(u(r))dr

≤ µ

∫ 1

0

max
0≤s≤1

k2(s, r)b(r)g∗(u(r))dr

≤ µ

∫ 1

0

max
0≤s≤1

k2(s, r)b(r)g∗(‖u‖)dr

≤ µ

∫ 1

0

max
0≤s≤1

k2(s, r)b(r)g̃∞‖u‖dr

= µ[
∫ 1

0

max
0≤s≤1

k2(s, r)b(r)dr]g̃∞‖u‖

which by (3.34) implies

µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr ≤ ‖u‖, s ∈ [0, 1].
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In view of the above inequality and the nondecreasing character of f∗, we may
employ (3.35) to obtain for t ∈ [0, 1],

T u(t) = λ

∫ 1

0

k1(t, s)a(s)f
(
µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr
)
ds

≤ λ

∫ 1

0

k1(t, s)a(s)f∗
(
µ

∫ 1

0

k2(s, r)b(r)g(u(r))dr
)
ds

≤ λ

∫ 1

0

max
0≤t≤1

k1(t, s)a(s)f∗(‖u‖)ds

≤ λ
[
[
∫ 1

0

max
0≤t≤1

k1(t, s)a(s)f̃∞ds
]
‖u‖

which by (3.33) implies

T u(t) ≤ ‖u‖, for all t ∈ [0, 1],

and so ‖Tu‖ ≤ ‖u‖. Therefore, by setting Ω4 = {x ∈ P : ‖x‖ < H4}, we have

‖T u‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω4. (3.37)

In view of (3.32) and (3.37), from Theorem 2.3 it follows that the operator T has
a fixed point in P ∩ (Ω4 \Ω3), and so (1.1) has a solution in the cone P. The proof
is now complete. �

4. Discussion

In this section we discuss the positivity of the (nonnegative) solutions yielded by
Theorems 3.1 and 3.2 in Section 3. We, also, present some remarks on the intervals
where the eigenvalues λ and µ may belong. Noting the similarity of the results in
Theorems 3.1 and 3.2 we will focus our discussion mainly on the results of Theorem
3.1. We, also, note that a large part of the discussion below is closely related with
the remarks in [28].

Though Theorems 3.1 and 3.2 yield the existence of a (nontrivial) nonnegative
solution to (1.1), however it is not guaranteed that such a solution is positive on
the whole interval [0, 1]: indeed, if for some t0 ∈ [0, 1] it holds k1(t0, r) = 0 for
all r ∈ [0, 1], then u(t0) = 0. Thus, if there exists a subset J1 ⊆ [0, 1] such that
k1(t, r) = 0 for (t, r) ∈ J1 × [0, 1], then u(t) = 0 for all t ∈ J1. Consequently, a
necessary condition so that a solution u is positive at some point t0 (respectively,
on some set J1) is that maxr∈[0,1] k1(t0, r) 6= 0 (resp., maxr∈[0,1] k1(t, r) 6= 0 for
all t ∈ J1). Similarly, as one can easily verify by the definition of v by (2.2), a
necessary condition so that the function v is positive at some point t0 (respectively,
on some interval J2) is that maxr∈[0,1] k2(t0, r) 6= 0 (resp., maxr∈[0,1] k2(t, r) 6= 0
for all t ∈ J2).

As maxξ≤s≤η[minξ≤t≤η k1(t, s)] > 0 by (C), employing the continuity of k1 we
see that there exists an interval J ⊆ [ξ, η] such that

min
ξ≤t≤η

k1(t, s) > 0 for all s ∈ J,

which, in view of (B), implies that minξ≤t≤η k1(t, r)a(s) > 0 on some interval
J ′ ⊆ J , thus

λ

∫ η

ξ

k1(s, r)a(r)dr > 0
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hence [
∫ η

ξ
k1(s, r)a(r)dr]−1 is a well defined positive real number.

We note that if for some s1 ∈ [0, 1] there exists some t1 ∈ [ξ, η] with k1(t1, s1) = 0,
then minξ≤t≤η k1(t, s1) = 0, and so from (C) it follows that k1(t, s1) = 0 for all
t ∈ [0, 1]. Clearly, if minξ≤t≤η k1(t, s) = 0 for all s ∈ [0, 1], then k1 ≡ 0. Therefore,
if we are looking for some suitable interval [ξ, η] ⊆ [0, 1] such that (C) is fulfilled,
then [ξ, η] should be selected so that there exists an s ∈ [0, 1] such that k1(t, s) > 0
for all t ∈ [ξ, η].

Now let us suppose that xf(x) > 0 for x 6= 0, and let u0 be a (nontrivial)
nonnegative solution of (1.1) belonging to P. Then there exists a constant H > 0
such that ‖u0‖ = H. As u ∈ P by Lemma 2.2, we have

u0(t) ≥ min
ξ≤r≤η

u0(r) ≥ γ‖u0‖ ≥ γH for any t ∈ [ξ, η],

and so
γH ≤ u0(r) ≤ H for all r ∈ [ξ, η].

In view of Lemma 2.1, we see that for the function v0 : [0, 1] → R+ with

v0(t) = µ

∫ 1

0

k2(t, r)b(r)g(u0(r))dr, t ∈ [0, 1],

we have v0 ∈ P and so there exists an H ′ > 0 such that

γH ′ ≤ v0(s) ≤ H ′ for all s ∈ [ξ, η].

Employing the continuity of f and the assumption that f is positive on (0,∞), we
may see that there exist some mf ,Mf > 0 such that

mf ≤ f(w) ≤ Mf for all w ∈ [γH ′,H ′],

and so
mf ≤ f(v0(s)) ≤ Mf for all s ∈ [ξ, η].

Then for t̃ ∈ [0, 1] we have

u0(t̃) = λ

∫ 1

0

k1(t̃, s)a(s)f
(
µ

∫ 1

0

k2(s, r)b(r)g(u0(r))dr
)
ds

= λ

∫ η

ξ

k1(t̃, s)a(s)f(v0(s))ds,

hence,

u0(t̃) ≥
[
λ

∫ η

ξ

k1(t̃, s)a(s)ds
]
mf .

In view of assumption (B) and Lemma 2.2, from the last relation it follows that if
for some given t̃ ∈ [0, 1] there exists some s̃ ∈ [ξ, η] such that k1(t̃, s̃) > 0, then the
continuity of k1 implies that u0(t̃) > 0. Consequently,

max
ξ≤s≤η

k1(t, s) > 0, for t ∈ J1 (4.1)

is a sufficient condition for u0(t) > 0, for all t ∈ J1 ⊆ [0, 1]. We, thus, have the
following result.

Assume that xf(x) > 0, x 6= 0. Then (4.1) is a sufficient condition
for a nonnegative nontrivial solution u ∈ P of the integral equation
(1.1) to be positive on J1.
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In other words, if the kernel k1 is not identically zero on each {t} × [ξ, η] for
t ∈ J1 ⊆ [0, 1], then any (nontrivial) solution u ∈ P of (1.1) is positive on J .
Concerning the function v defined by (2.2), by similar arguments we may obtain
the following result.

Assume that xg(x) > 0 for x 6= 0. If u ∈ P is a nonnegative
nontrivial solution of (1.1), then

max
ξ≤s≤η

k2(t, s) > 0 for t ∈ J2 ⊆ [0, 1] (4.2)

is a sufficient condition so that the function v defined by (2.2) be
positive on J2.

We note that by (C) and the continuity of ki (i = 1, 2) it follows that (4.1) and (4.2)
are always fulfilled on [ξ, η]. In view of the above, from Theorem 3.1 (respectively,
Theorem 3.2) we have the following proposition.

Proposition 4.1. Assume conditions (A), (B), (C), (3.3) (resp,. Theorem 3.2) are
satisfied and define Lf

1 , Lg
1 by (3.4) and Lf

2 , Lg
2 by (3.5) (resp. Lf

3 , Lg
3 by (3.20) and

Lf
4 , Lg

4 by (3.21)). Furthermore, assume that xf(x) > 0 for x 6= 0. If (4.1) holds
true on some subset J ⊆ [0, 1], then, for λ, µ with (λ, µ) ∈ If × Ig there exists a
nonnegative solution u of the integral equation (1.1) which is positive on J .

It is not difficult to see that (C) is satisfied if we assume that
ki(t, s) : R+×R+ → R+, i = 1, 2 are continuous functions and there
are points ξi, ηi, ri ∈ [0, 1], (i = 1, 2) with ξ = max{ξ1, ξ2} < r1,
r2 < min{η1, η2} = η, for which [minξ≤t≤η ki(t, ri)] > 0, i = 1, 2,
and positive numbers γi, i = 1, 2 such that

min
ξi≤r≤ηi

ki(r, s) ≥ γiki(t, s) for (t, s) ∈ [0, 1]2, i = 1, 2.

Obviously, in order that the result of Theorem 3.1 makes sense, it is necessary that
the intervals If and Ig are nonvoid, i.e.,

Lf
1 < Lf

2 and Lg
1 < Lg

2.

In view of (3.3), Lf
1 and Lg

1 are nonnegative real numbers while Lf
2 and Lg

2 may be
positive real numbers or ∞. We briefly discuss the case of Lf

1 , Lf
2 , Lg

1, Lg
2 being

positive real numbers and the case where some of Lf
1 , Lf

2 and some of Lg
1, Lg

2 are
not positive real numbers. Conclusions for the other cases may be easily deducted.

Clearly, if f∞ = ∞ then Lf
1 = 0 < Lf

2 while if f0 = 0 then Lf
1 < ∞ = Lf

2 . Hence,
if f∞ = ∞ or f0 = 0, then If 6= ∅. As f∞ = ∞ implies limx→∞

f(x)
x = ∞ and

f0 = 0 implies limx→0
f(x)

x = 0, from Theorem 3.1 we have the following corollary.

Corollary 4.2. Assume conditions (A), (B), (C) are satisfied.
(i) If

lim
x→∞

f(x)
x

= ∞ or lim
x→0

f(x)
x

= 0, and lim
x→∞

fg(x)
x

= ∞ or lim
x→0

g(x)
x

= 0

then there exist positive numbers λ and µ such that (1.1) has a nonnegative solution.
(ii) If

lim
x→∞

f(x)
x

= ∞ = lim
x→∞

g(x)
x

and lim
x→0

f(x)
x

= 0 = lim
x→0

g(x)
x

then (1.1) has a nonnegative solution for any positive numbers λ and µ.
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In the case that Lf
1 , Lf

2 , Lg
1, Lg

2 are positive real numbers, then the inequality
Lf

1 < Lf
2 may equivalently be written[

γ1f∞

∫ η

ξ

min
ξ≤t≤η

k1(t, r)a(r)dr
]−1

<
[
f0

∫ 1

0

max
0≤t≤1

k1(t, r)a(r)dr
]−1

;

i.e., [ ∫ 1

0

max
0≤t≤1

k1(t, r)a(r)dr
]
f0 < γ1

[ ∫ η

ξ

min
ξ≤t≤η

k1(t, r)a(r)dr
]
f∞, (4.3)

and so

1 ≤
∫ 1

0
max0≤t≤1 k1(t, r)a(r)dr∫ η

ξ
minξ≤t≤η k1(t, r)a(r)dr

< γ1

f∞

f0

.

Hence, a necessary condition for If and Ig to be nonvoid is
f0

f∞
< γ1 and

g0

g∞
< γ2. (4.4)

On the other hand, from (C) we have ki(t, s) ≤ 1
γi

min
ξ≤r≤η

ki(r, s) for (t, s) ∈ [0, 1]2,

i = 1, 2, and so

max
t∈[0,1]

ki(t, s) ≤
1
γi

min
ξ≤r≤η

ki(r, s) for s, t ∈ [0, 1], i = 1, 2,

from which we take∫ 1

0

max
0≤t≤1

k1(t, r)a(r)dr ≤ 1
γ1

∫ 1

0

min
ξ≤t≤η

k1(t, r)a(r)dr.

Hence from (4.3) and the last relation it follows that a sufficient condition for the
inequality Lf

1 < Lf
2 to hold is[ 1

γ1

∫ 1

0

min
ξ≤t≤η

k1(t, r)a(r)dr
]
f0 < γ1

[ ∫ η

ξ

min
ξ≤t≤η

k1(t, r)a(r)dr
]
f∞,

or, equivalently, ∫ 1

0
minξ≤t≤η k1(t, r)a(r)dr∫ η

ξ
minξ≤t≤η k1(t, r)a(r)dr

< (γ1)2
f∞

f0

.

Therefore, a sufficient condition for If and Ig to be nonvoid is∫ 1

0
minξ≤t≤η k1(t, r)a(r)dr∫ η

ξ
minξ≤t≤η k1(t, r)a(r)dr

< (γ1)2
f∞

f0

,

∫ 1

0
minξ≤t≤η k2(t, r)b(r)dr∫ η

ξ
minξ≤t≤η k2(t, r)b(r)dr

< (γ2)2
g∞

g0
.

(4.5)
In view of the above discussion, from Theorem 3.1 we have the following corollary.

Corollary 4.3. Assume that conditions (A), (B), (C) hold and that f0, f∞, g0,
g∞ are real numbers. Moreover, assume that (4.5) is satisfied. Then there exist
positive numbers λ and µ such that (1.1) has a nonnegative solution.

Having in mind that γ1, γ2 ∈ [0, 1] we may see that in case that at least one of
the functions f and g is linear then the condition (4.4) is violated, hence Theorem
3.1 cannot be applied. Obviously, if f ≡ c0 6= 0 then (1.1) has always a (positive)
solution obtained by a simple integration u(t) = λc0

∫ 1

0
k1(t, s)a(s)ds, 0 ≤ t ≤ 1.

For such a case, we have f0 = ∞ and f∞ = 0, and so Theorem 3.1 does not apply.
However, as f0 = ∞ and f∞ = 0 we may consider that g is any appropriate function
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that satisfies (3.19) thus existence is yielded by Theorem 3.2. Next, let us suppose
that f is a polynomial of first degree, i.e.,

f(x) = c1x + b1, x ∈ [0,∞)

where c1 > 0 and b1 ≥ 0 are real numbers. Having in mind that Theorem 3.1 may
be applied provided that f0, g0 ∈ [0,∞) and f∞, g∞ ∈ (0,∞], we find

f0 := f0 = lim
u→0+

f(u)
u

= lim
u→0+

c1u + b1

u
=

{
+∞, if b1 > 0
c1, if b1 = 0,

(4.6)

and

f∞ := f∞ = lim
u→∞

f(u)
u

= lim
u→∞

c1u + b1

u
= c1. (4.7)

Hence, in order that Theorem 3.1 may be applied we must have b1 = 0 and in this
case f∞ = c1 = f0, and so

Lf
1 =

[
γ1c1

∫ η

ξ

min
ξ≤t≤η

k1(t, r)a(r)dr
]−1

, Lf
2 =

[
c1

∫ 1

0

max
0≤t≤1

k1(t, r)a(r)dr
]−1

.

It follows that Lf
1 < Lf

2 is equivalent to[
γ1c1

∫ η

ξ

min
ξ≤t≤η

k1(t, r)a(r)dr
]−1

<
[
c1

∫ 1

0

max
0≤t≤1

k1(t, r)a(r)dr
]−1

,

or ∫ 1

0

max
0≤t≤1

k1(t, r)a(r)dr < γ1

∫ η

ξ

min
ξ≤t≤η

k1(t, r)a(r)dr.

This inequality cannot hold even if ξ = 0, η = 1, γ1 = 1 and max0≤t≤1 k1(t, r) =
minξ≤t≤η k1(t, r) = k(r), r ∈ [0, 1]. Hence, in case that f is polynomial of first
degree, then Theorem 3.1 cannot be applied, and by similar arguments, neither
does it in the case of g being a polynomial of first degree. Therefore, we may
conclude that Theorem 3.1 cannot be applied in the case that some of the functions
f , g is a first degree polynomial

Now let us see if Theorem 3.2 can be applied. In order that (3.19) hold, we must
have f0, g0 ∈ (0,∞] and f∞, g∞ ∈ [0,∞). As c1 > 0, in view of (4.6) and (4.7) we
find that

Lf
3 =

{[
c1γ1

∫ η

ξ
minξ≤t≤η k1(t, r)a(r)dr

]−1
, if b1 = 0

0, if b1 > 0,

Lf
4 =

[
c1

∫ 1

0

max
0≤t≤1

k1(t, r)a(r)dr
]−1

> 0.

Consequently, if c1b1 > 0 then Lf
3 = 0 < Lf

4 and so (Lf
3 , Lf

4 ) is not void, while if
b1 = 0 then in order that Lf

3 < Lf
4 it is necessary that

c1

∫ 1

0

max
0≤t≤1

k1(t, r)a(r)dr < c1γ1

∫ η

ξ

min
ξ≤t≤η

k1(t, r)a(r)dr,

which contradicts the fact that γ1 ∈ [0, 1]. It follows that for c1 > 0 Theorem
3.2 applies if and only if b1 > 0, and in this case (Lf

3 , Lf
4 ) 6= ∅. Observe that if

g(x) = c2x + b2, x ≥ 0 then employing similar arguments we see that g0 ∈ (0,∞]
and g∞ ∈ [0,∞) only if c2 > 0 and b2 > 0, which contradicts the assumption
g(0) = 0 posed in Theorem 3.2. Therefore, in case that c1 > 0, Theorem 3.2 cannot
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be applied when both f and g are first degree polynomials. In conclusion, Theorem
3.2 can be applied if f(x) = c1x + b1, x ≥ 0 with either c1 = 0 or with c1b1 > 0,
and g is a nonlinear function for which it holds Lg

3 < Lg
4.

The next few lines are devoted to giving some weaker, but easier to verify alter-
natives of Theorems 3.1 and 3.2 by introducing the following assumption:

(K) There exist functions km
i : [ξ, η] → [0,∞) i = 1, 2 and kM

i : [0, 1] → [0,∞),
i = 1, 2 with

km
i (r) ≤ min

ξ≤t≤η
ki(t, r) for all r ∈ [ξ, η], i = 1, 2, (4.8)

max
0≤t≤1

ki(t, r) ≤ kM
i (r) for all r ∈ [0, 1], i = 1, 2. (4.9)

Assuming that (K) holds true, we may consider the positive numbers Kf
3 , Kg

3 and
Kf

4 , Kg
4 defined by

Kf
1 :=

{
[γ1

∫ η

ξ
km
1 (r)a(r)f∞dr]−1, if f∞ ∈ (0,∞)

0, if f∞ = ∞,

Kg
1 :=

{[
γ2

∫ η

ξ
km
2 (r)b(r)g∞dr

]−1
, if g∞ ∈ (0,∞)

0, if g∞ = ∞,

Kf
2 :=

{[ ∫ 1

0
kM
1 (r)a(r)f0dr

]−1
, if f0 ∈ (0,∞)

+∞, if f0 = 0 ,

Kg
2 :=

{[ ∫ 1

0
kM
2 (r)b(r)g0dr

]−1
, if g0 ∈ (0,∞)

+∞, if g0 = 0 .

Then it it is not difficult to see that Lf
i ≤ Kf

i and Lg
i ≤ Kg

i (i = 1, 2) and so from
Theorems 3.1 and 3.2 we have the following two results.

Theorem 4.4. Assume conditions (A), (B), (C), (3.3) are satisfied. Furthermore,
assume that (K) holds and that

Kf
1 < Kf

2 and Kg
1 < Kg

2 , (4.10)

where Kf
1 , Kg

1 and Kf
2 , Kg

2 are defined as above. Then, for λ, µ with (λ, µ) ∈
(Kf

1 ,Kf
2 )× (Kg

1 ,Kg
2 ) equation (1.1) has a nonnegative solution.

Theorem 4.5. Assume conditions (A), (B), (C), (3.19) are satisfied. Moreover,
assume that g(0) = 0 and (K) holds . If

Kf
3 < Kf

4 and Kg
3 < Kg

4 , (4.11)

where Kf
3 , Kg

3 and Kf
4 , Kg

4 are defined as above, then, for λ, µ with (λ, µ) ∈
(Kf

3 ,Kf
4 )× (Kg

3 ,Kg
4 ) equation (1.1) has a nonnegative solution.

In some cases it seems easier to use Theorems 4.4 and 4.5 than Theorems 3.1
and 3.2, respectively, as it is rather simpler to spot some functions km

i , kM
i , i = 1, 2

for which (4.8) and (4.9) hold than to calculate minξ≤t≤η ki(t, r), r ∈ [ξ, η], i = 1, 2
and max0≤t≤1 ki(t, r), r ∈ [0, 1], i = 1, 2. However, one may easily see that the
corresponding intervals (Kf

i ,Kf
i+1), (Kg

i ,Kg
i+1), i = 1, 3 get shorter or, in case that

some of (4.10) or (4.11) fail to hold, one or both of these intervals may not even
make sense, hence Theorems 4.4 or 4.5 do not apply.
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Finally, let us deal with the relation between the constants γi, i = 1, 2, the kernels
ki, i = 1, 2, and the intervals If and Ig in the case that f0, f∞, g0, g∞ ∈ (0,∞).
Assume, first, that there exist positive numbers mi and Mi (i = 1, 2) such that

mi ≤ ki(t, s) ≤ Mi for (t, s) ∈ [0, 1], i = 1, 2, (4.12)

and set
γi =

mi

Mi
, i = 1, 2 and ξ = 0, η = 1.

Then
γiki(t, s) ≤ γiMi = mi ≤ ki(t, s) for (t, s) ∈ [0, 1] i = 1, 2,

and so,

γi max
0≤t≤1

ki(t, s) ≤ γiMi = mi ≤ min
ξ≤t≤η

ki(t, s) for all s ∈ [0, 1], i = 1, 2,

from which it follows that for i = 1, 2 it holds

max
0≤t≤1

ki(t, s) ≤
Mi

mi
min

0≤t≤1
ki(t, s) ≤

Mi

mi
min

ξ≤t≤η
ki(t, s) s ∈ [0, 1],

and so∫ 1

0

max
0≤t≤1

ki(t, r)a(r)dr ≤ Mi

mi

∫ 1

0

min
0≤t≤1

ki(t, r)a(r)dr ≤ Mi

mi

∫ 1

0

min
ξ≤t≤η

ki(t, r)a(r)dr.

Having in mind that in case that f0, f∞ ∈ (0,∞) then Lf
1 < Lf

2 may equivalently
be written as

f0

f∞

∫ 1

0

max
0≤t≤1

k1(t, r)a(r)dr <
m1

M1

∫ 1

0

min
ξ≤t≤η

k1(t, r)a(r)dr,

it follows that a sufficient condition for Lf
1 < Lf

2 is

f0

f∞

(
M1

m1

)2

<

∫ 1

0
minξ≤t≤η k1(t, r)a(r)dr∫ 1

0
min0≤t≤1 k1(t, r)a(r)dr

. (4.13)

Similarly, if g0, g∞ ∈ (0,∞) then a sufficient condition for Lg
1 < Lg

2 is

g0

g∞

(
M2

m2

)2

<

∫ 1

0
minξ≤t≤η k2(t, r)b(r)dr∫ 1

0
min0≤t≤1 k2(t, r)b(r)dr

. (4.14)

We have the following corollary.

Corollary 4.6. Assume conditions (A), (B), (C) are satisfied and that f0, f∞, g0,
g∞ ∈ (0,∞). In addition, suppose that there exist positive numbers mi and Mi

(i = 1, 2) such that (4.12) holds true. If (4.13) and (4.14) are fulfilled then there
exist positive numbers λ and µ such that (1.1) has a nonnegative solution.

As min0≤t≤1 ki(t, r) ≤ minξ≤t≤η ki(t, r), r ∈ [0, 1] (i = 1, 2), from Corollary
4.6 we have the following result which gives weaker but easier to verify sufficient
conditions for If and Ig to be nonvoid.

Corollary 4.7. Assume conditions (A), (B), (C) are satisfied and that f0, f∞, g0,
g∞ ∈ (0,∞). In addition, suppose that there exist positive numbers mi and Mi

(i = 1, 2) such that (4.12) holds. If

f0

f∞
<

(m1

M1

)2

and
g0

g∞
<

(m2

M2

)2

,
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then there exist positive numbers λ and µ such that (1.1) has a nonnegative solution.

Now let us suppose that m1 = 0 and that

there exists t̂ ∈ [0, 1] such that k1(t̂, s) is nonzero for any s ∈ [0, 1]. (4.15)

In view of the continuity of the kernel k1 it follows that there exists some ξ̂1,
η̂1 ∈ [0, 1] with ξ̂1 < η̂1 such that k1(t, s) is positive on the block [ξ̂1, η̂1]× [0, 1] and
so there exist some real numbers m̂1, M̂1 with max

0≤t,s≤1
ki(t, s) = M̂1 > 0 and

m̂1 = min
r∈[bξ1,bη1]

k1(r, s), for all s ∈ [0, 1].

Thus, setting γ1 = m̂1/M̂1, we have

γ1k1(t, s) ≤ γ1M̂1 = m̃1 = inf
r∈[bξ1,bη1]

k1(r, s), for all t, s ∈ [0, 1]

i.e.,
min

r∈[bξ1,bη1]
k1(r, s) ≥ γ1k1(t, s) for (t, s) ∈ [0, 1]2.

Consequently, if (4.15) holds then max
ξ≤r≤η

[minξ≤t≤η k1(t, r)] > 0. We conclude that

(4.15) is a sufficient condition so that (C) is fulfilled. However, (4.15) is not a
necessary condition for (C) to hold as it may happen that for any t ∈ [ξ, η] we have
k1(t, s) > 0 for all s ∈ [ξ, η] while k1(t, st) = 0 for some st ∈ [0, 1] \ [ξ, η].

From the above discussion it follows that there may be more than one valid
choice of ξi, ηi, γi for each kernel ki (i = 1, 2) for which assumption (C) is fulfilled.
This is an advantage of the results of the present investigation as we are allowed to
look for the best choice of these parameters that optimize the eigenvalue intervals.
However, this may not be an easy task since the longer we take the interval [ξi, ηi]
the smaller the positive constant γi becomes.

Recalling the notation in (2.3), i.e., setting

v(t) = µ

∫ 1

0

k2(t, s)b(s)g(u(s))ds, 0 ≤ t ≤ 1,

one may see that (1.1) can equivalently be written as the system of integral equa-
tions

u(t) = λ

∫ 1

0

k1(t, s)a(s)f(v(t))ds, 0 ≤ t ≤ 1,

v(t) = µ

∫ 1

0

k2(t, r)b(r)g(u(r))dr, 0 ≤ t ≤ 1.

(4.16)

We say that a pair (u, v) of functions u, v ∈ C([0, 1], [0,∞)) is a (nonnegative)
solution of (4.16) if (u, v) satisfies (4.16) for all t ∈ [0, 1]. As it concerns the notion
of positivity for solutions to the system of integral equations (4.16), we will say
that a solution (u, v) of (4.16) is positive on the (nonvoid) set I × J ⊆ [0, 1]2 if
u(t) > 0 for t ∈ I and v(t) > 0 for t ∈ J . As it seems more convenient to work with
(1.1) than with the integral system (4.16), we have chosen to establish our results
for (1.1) and then show how these results may be applied on an integral system
such as (4.16). In particular, the next section contains applications of our results
to systems of BVP which may be formulated as systems of integral equations of the
type of (4.16).
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Finally, we note that our results may easily be applied to the special case of (1.1)
taken for λ = µ = 1, i.e., the integral equation

u(t) =
∫ 1

0

k1(t, s)a(s)f
( ∫ 1

0

k2(s, r)b(r)g(u(r))dr
)
ds, 0 ≤ t ≤ 1, (4.17)

or to the system of integral equations

u(t) =
∫ 1

0

k1(t, s)a(s)f(v(t))ds, 0 ≤ t ≤ 1,

v(t) =
∫ 1

0

k2(t, r)b(r)g(u(r))dr, 0 ≤ t ≤ 1.

(4.18)

As an example, we state the following result which is an immediate consequence of
Theorem 3.1.

Theorem 4.8. Assume conditions (A), (B), (C), (3.3) are satisfied and define
Lf

1 , Lg
1 by (3.4) and Lf

2 , Lg
2 by (3.5). If

Lf
1 < 1 < Lf

2 and Lg
1 < 1 < Lg

2

then (4.17) has a nonnegative solution u (or, equivalently, (4.18) has a nonnegative
solution (u, v)).

5. Applications to systems of boundary value problems

This section is devoted to applying our results to systems of BVP concerning
differential equations.

The applications below bend on the observation that a large class of BVP con-
cerning differential equations may be converted to integral equations by the use of
Green’s functions and so a system of BVP can equivalently be written as system of
integral equations. In case that the integral system can be formulated as a single
integral equation such as (1.1), then results valid for (1.1) may yield analogous re-
sults for the initial system of BVP. It is not difficult to see that the above argument
may still hold even in the case that the starting system consists of differential BVP
together with integral equations. In this section we show how existence results for
systems of BVP may be deducted from corresponding results obtained for (1.1).
It comes out that (1.1) is general enough to include a variety of systems of BVP
and so the results of this paper include (and in certain cases extend or generalize)
several known existence results concerning nonnegative/positive solutions (e.g., see
[5] - [9] ). We note that in a large number of such problems the assumptions (A),
(B) are always fulfilled while condition (C) comes as a property of the Green’s
function(s) for suitable values of the constants γ, ξ and η. Hence, our results may
easily be applied to a large class of integral equations or systems of BVP for which
the corresponding Green’s functions satisfy conditions (A), (B) and (C).

The systems of BVP considered in the applications below have been selected
mainly for two reasons: to illustrate the routine by which existence of nonnega-
tive/positive solutions may be obtained and to underline the variety of BVP for
which the results of the paper are applicable.

The first application concerns a system of two multi-point second-order BVP
where the sets of points at which the boundary conditions are considered may
be different and the cardinality of these sets may not be the same. The second
application deals with a system of two-point BVP of third order with different types
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of boundary conditions. We note that in this BVP the choice of the constants γ,
ξ and η is not unique as ξi and ηi (i = 1, 2) may arbitrarily be chosen. Finally,
in the third application we consider a system of two BVP that differ not only in
the boundary conditions but, also, in order. To the best of our knowledge, such
type of system has not been considered so far. The results obtained in the first two
applications improve known results.

5.1. A system of multi-point second-order bvp. Consider the system of BVP
consisting of the second order ordinary differential equations

u′′(t) + λa(t)f(v(t)) = 0, 0 < t < 1

v′′(t) + µb(t)g(u(t)) = 0, 0 < t < 1
(5.1)

along with the multi-point boundary value conditions (m,n ≥ 3 are positive inte-
gers)

u(0) = 0, u′(1) =
m−2∑
i=1

âiu
′(ζ̂i),

v(0) = 0, v′(1) =
n−2∑
j=1

ãiv
′(ζ̃j),

(5.2)

where 0 < âi, (i = 1, . . . ,m − 2), 0 < ζ̂1 < · · · < ζ̂m−2 < ζ̂m−1 = 1, ãj (j =
1, . . . , n− 2), 0 = ζ̃0 < ζ̃1 < · · · < ζ̃n−2 < ζ̃n−1 = 1. We assume that the functions
f, g and a, b satisfy (A) and (B).

We will make use of the following lemma taken from [19].

Lemma 5.1. Let 0 < ai, (i = 1, . . . , k − 2), 0 = ζ0 < ζ1 < · · · < ζk−2 < 1,
0 <

∑k−2
i=1 aiζi < 1 (k ≥ 3 is a positive integer). The Green’s function G2 for the

BVP

−u′′(t) = 0, 0 < t < 1

u(0) = 0, u′(1) =
k−2∑
i=1

aiu
′(ζi)

is given by

G2(t, s)

=

s +
Pw−1

i=1 ai

1−
Pk−2

i=1 ai
t, 0 ≤ t ≤ 1, ζw−1 ≤ s ≤ min{ζw, t}, w = 1, 2, . . . , k − 1

1−
Pk−2

i=w ai

1−
Pk−2

i=1 ai
t, 0 ≤ t ≤ 1, max{ζw−1, t} ≤ s ≤ ζw, w = 1, 2, . . . , k − 1.

It follows that a pair (u, v) is a solution of the system of BVP (5.1)-(5.2) if and
only if (u, v) is a solution of the system

u(t) = λ

∫ 1

0

G1
2(t, s)a(s)f(v(s))ds, 0 ≤ t ≤ 1,

v(t) = µ

∫ 1

0

G2
2(t, r)b(r)g(u(r))dr, 0 ≤ t ≤ 1.

i.e., if u satisfies (1.1) with k1 = G1
2 and k2 = G2

2. By Lemma 5.1, for t ∈ [ζk−2, 1]
and 0 ≤ s ≤ ζk−2 we have ζk−2 = min{ζk−2, t} and max{ζk−2, t} = t, and so, in
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view of the convention
∑k−2

j=k−1 aj = 0, we have for t ∈ [ζk−2, 1]

G2(t, s) =

s +
Pk−2

i=1 ai

1−
Pk−2

i=1 ai
t, 0 ≤ s ≤ t ≤ 1, t ∈ [ζk−2, 1]

1

1−
Pk−2

i=1 ai
t, ζk−2 ≤ t ≤ s ≤ 1,

from which we find

min
ζk−2≤t≤1

G2(t, s) =

s +
Pk−2

i=1 ai

1−
Pk−2

i=1 ai
ζk−2, 0 ≤ s ≤ t,

1

1−
Pk−2

i=1 ai
ζk−2, t ≤ s ≤ 1,

hence

min
ζk−2≤t≤1

G2(t, s) ≥
∑k−2

i=1 ai

1−
∑k−2

i=1 ai

ζk−2. (5.3)

On the other hand for t ∈ [0, 1], we have

G2(t, s) =

s +
Pw−1

i=1 ai

1−
Pk−2

i=1 ai
t, ζw−1 ≤ s ≤ min{ζw, t}, w = 1, 2, . . . , k − 1

1−
Pk−2

i=w ai

1−
Pk−2

i=1 ai
t, max{ζw−1, t} ≤ s ≤ ζw, w = 1, 2, . . . , k − 1

≤

t +
Pk−2

i=1 ai

1−
Pk−2

i=1 ai
t, ζw−1 ≤ s ≤ min{ζw, t}, w = 1, 2, . . . , k − 1

1

1−
Pk−2

i=1 ai
t, max{ζw−1, t} ≤ s ≤ ζw, w = 1, 2, . . . , k − 1

≤ 1

1−
∑k−2

i=1 ai

t,

i.e.,

G2(t, s) ≤
1

1−
∑k−2

i=1 ai

t, for s, t ∈ [0, 1]. (5.4)

From (5.3) and (5.4), for s, t ∈ [0, 1], we find

G2(t, s) ≤
1

1−
∑k−2

i=1 ai

t

≤ t

ζk−2

∑k−2
i=1 ai

∑k−2
i=1 ai

1−
∑k−2

i=1 ai

ζk−2

=
1

ζk−2

∑k−2
i=1 ai

min
ζk−2≤t≤1

G2(t, s)

which implies

G2(t, s) ≤
1

ζk−2

∑k−2
i=1 ai

min
ζk−2≤t≤1

G2(t, s) for all (t, s) ∈ [0, 1]. (5.5)

From (5.5) it follows that

G1
2(t, s) ≤ γ1 minbζm−2≤t≤1

G1
2(t, s) for all (t, s) ∈ [0, 1],

G2
2(t, s) ≤ γ2 mineζn−2≤t≤1

G2
2(t, s) for all (t, s) ∈ [0, 1],

where
γ1 =

1

ζ̂m−2

∑m−2
i=1 âi

, γ2 =
1

ζ̃n−2

∑n−2
j=1 ãj

,
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and so condition (C) is fulfilled with ξ = max{ζ̂m−2, ζ̂n−2}, η = 1 and γ =
min{γ1, γ2}.

From the definition of G2 in Lemma 5.1 it follows that condition (4.1) is satisfied
on the interval I = (0, 1]. In connection to the discussion at the beginning of Section
3, we note that u(0) = 0 is yielded by the fact that G2(0, s) = 0, s ∈ [0, 1] while
u(1) > 0 follows from the fact that G2(1, s) > 0 for s ∈ [ζm−2, 1]. Applying
Corollary 4.2 we have the following Proposition.

Proposition 5.2. Assume conditions (A), (B) are satisfied. Moreover, assume
that f0, g0 ∈ [0,∞), f∞, g∞ ∈ (0,∞] where f0, g0, f∞ and g∞ are defined by (3.1)
and define `A

f,1, `A
f,2 and `A

g,1 and `A
g,2 by

`A
f,1 :=


[
γ1f∞

min{1−
Pm−2

i=j baj ,
Pj−1

i=1 baj}
1−

Pm−2
i=1 ai

∫ 1

ξ
a(r)dr

]−1
, if f∞ ∈ (0,∞)

0, if f∞ = ∞,

`A
f,2 :=


[
f0

max{1−
Pm−2

i=j aj ,
Pj−1

i=1 aj}
1−

Pm−2
i=1 ai

∫ 1

0
a(r)dr

]−1
, if f0 ∈ (0,∞)

+∞, if f0 = 0,

`A
g,1 :=


[
γ2g∞

min{1−
Pn−2

i=j aj ,
Pj−1

i=1 aj}
1−

Pm−2
i=1 ai

∫ 1

ξ
b(r)dr

]−1
, if g∞ ∈ (0,∞)

0, if g∞ = ∞,

`A
g,2 :=


[
g0

max{1−
Pm−2

i=j aj ,
Pj−1

i=1 aj}
1−

Pm−2
i=1 ai

∫ 1

0
b(r)dr

]−1
, if g0 ∈ (0,∞)

+∞, if g0 = 0.

Then, for any λ ∈ (`A
f,1, `

A
f,2) and µ ∈ (`A

g,1, `
A
g,2) there exists a nonnegative solution

(u, v) of (5.1)-(5.2). Furthermore, if in addition it holds xf(x) > 0 for x 6= 0 and
xg(x) > 0 for x 6= 0 then u(x) > 0 and v(x) > 0 for x ∈ (0, 1].

The existence of positive eigenvalues for the special case of the system (5.1)-
(5.2) taken for m = n and ζ̂i = ζ̃i i = 1, . . . ,m − 1, has also been discussed in
[9]. However, Proposition 5.2 (as well as the analogous proposition corresponding
to Theorem 3.2) improves and generalizes these existence results discussed in [9]
not only by allowing the points in the boundary conditions to be arbitrarily chosen
(and not necessarily of the same number) but also by replacing lim by lim sup or
lim inf.

5.2. A system of third order bvp. In this subsection we show how our results
may be applied to a system of BVP consisting of two differential equations of third
order but different boundary conditions concerning the same points (endpoints) of
the interval [0, 1]. It is interesting that the points ξ, η may arbitrarily be chosen in
the interval (0, 1) (provided that ξ < η). More precisely, we consider the system
consisting of the third order differential equations

u′′′(t) + λa(t)f(v(t)) = 0, 0 < t < 1

v′′′(t) + µb(t)g(u(t)) = 0, 0 < t < 1
(5.6)

along with the two-point boundary conditions

u′(0) = u′′(0) = u(1) = 0, (5.7)

v(0) = v′(0) = v′′(1) = 0. (5.8)



24 I. K. PURNARAS EJDE-2009/58

Concerning the BVP (5.6)-(5.7) we have the following lemma taken from [34].

Lemma 5.3. For any y ∈ C([0, 1], R), the boundary value problem consisting of
the third order differential equation

u′′′(t) + y(t) = 0, t ∈ (0, 1) (5.9)

along with the initial condition (5.7) has the unique solution

u(t) =
∫ 1

0

G1
3(t, s)y(s)ds, t ∈ [0, 1],

where

G1
3(t, s) =

1
2

{
(1− s)2 − (t− s)2, 0 ≤ s ≤ t ≤ 1,

(1− s)2, 0 ≤ t ≤ s ≤ 1.

It is not difficult to verify (see, [28]) that

G1
3(t, s) ≤

1
2
(1− s)2 ≤ 1

2
, for all (t, s) ∈ [0, 1]2.

For estimating mint∈[ξ1,η1] G
1
3(t, s) where 0 ≤ ξ1 < η1 < 1 we consider the two cases

below.
Case I. 0 ≤ s ≤ t ≤ 1. We have

min
t∈[ξ1,η1]

G1
3(t, s) = min

t∈[ξ1,η1]

1
2
[(1− s)2 − (t− s)2]

=
1
2
[(1− s)2 − (η1 − s)2]

=
1
2
(1− η1)(1 + η1 − 2s)

≥ 1
2
(1− η1)(1 + η1 − 2η1)

≥ 1
2
(1− η1)2

and so
min

t∈[ξ1,η1]
G1

3(t, s) ≥
1
2
(1− η1)2G1

3(t, s), for 0 ≤ s ≤ t ≤ 1. (5.10)

Case II. 0 ≤ t ≤ s ≤ 1. We have

min
t∈[ξ1,η1]

G1
3(t, s) =

1
2
(1− s)2 ≥ G1

3(t, s), for 0 ≤ t ≤ s ≤ 1. (5.11)

By (5.10) and (5.11) it follows that
1
2
(1− η1)2G1

3(t, s) ≤ inf
t∈[ξ1,η1]

G1
3(t, s), (t, s) ∈ [0, 1]2. (5.12)

Concerning the BVP (5.9)-(5.8) we have the next lemma taken from [21].

Lemma 5.4. For any y ∈ C([0, 1], R), the boundary value problem (5.9)-(5.8) has
the unique solution

u(t) =
∫ 1

0

G2
3(t, s)y(s)ds, t ∈ [0, 1]

where

G2
3(t, s) =

1
2

{
t2, 0 ≤ t ≤ s ≤ 1
t2 − (t− s)2, 0 ≤ s ≤ t ≤ 1.
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It follows that

G2
3(t, s) ≤ ts, for all (t, s) ∈ [0, 1]2. (5.13)

For estimating inf
t∈[ξ2,η2]

G2
3(t, s) where 0 ≤ ξ2 < η2 ≤ 1, we first note that

min
t∈[ξ2,η2]

G2
3(t, s) =

1
2
ξ2
2 , 0 ≤ t ≤ s ≤ 1 (5.14)

while for 0 ≤ s ≤ t ≤ 1, we have

min
t∈[ξ2,η2]

G2
3(t, s) = min

t∈[ξ2,η2]

1
2
[t2 − (t− s)2] = min

t∈[ξ2,η2]

1
2
(2t− s)s ≥ min

t∈[ξ2,η2]

1
2
ts

from which it follows that

min
t∈[ξ2,η2]

G2
3(t, s) ≥

1
2
ξ2s, for 0 ≤ s ≤ t ≤ 1. (5.15)

By (5.14) and (5.15) we have

min
t∈[ξ2,η2]

G2
3(t, s) ≥

1
2
ξ2 min{ξ2, s} for s ∈ [0, 1],

from which in view of min{ξ2, s} ≥ ξ2s we have

min
t∈[ξ2,η2]

G2
3(t, s) ≥

1
2
ξ2
2s, for s ∈ [0, 1].

Combining the last inequality with (5.13), we take for (t, s) ∈ [0, 1]2,

1
2η2

ξ2
2G2

3(t, s) ≤
1

2η2
ξ2
2ts ≤ min

t∈[ξ2,η2]
G2

3(t, s), (5.16)

thus

γ2G
2
3(t, s) ≤ min

t∈[ξ2,η2]
G2

3(t, s), (t, s) ∈ [0, 1]2 (5.17)

where γ2 = 1
2η2

ξ2
2 . Setting ξ = max {ξ1, ξ2}, η = min {η1, η2} and

γ =
1
2

min
{
(1− η1)2,

ξ2
2

η2

}
,

from (5.12) and (5.17)) we conclude that (C) is fulfilled on any nonvoid arbitrarily
chosen interval [ξ, η] ⊆ (0, 1), provided that ξ < η. Observing that (4.1) is satisfied
on I = (0, 1], from Corollary 4.2 we have the next proposition, which, to the best
of our knowledge, is a new result.

Proposition 5.5. Assume conditions (A), (B) are satisfied. Moreover, assume
that f0, g0 ∈ [0,∞) and f∞, g∞ ∈ (0,∞] where f0, g0, and f∞, g∞ are defined by
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(3.1) and define `B1
1 , `B1

2 , `B2
1 and `B2

2 by

`B1
1 :=

{[
(1− η1)2

∫ η

ξ
minξ≤t≤η G1

3(t, r)a(r)f∞dr
]−1

, if f∞ ∈ (0,∞)
0, if f∞ = ∞,

`B1
2 :=

{[ ∫ 1

0
max0≤t≤1 G1

3(t, r)a(r)f0dr
]−1

, if f0 ∈ (0,∞)
+∞, if f0 = 0,

`B2
1 :=

{[
1

2η2
ξ2
2

∫ η

ξ
minξ≤t≤η G2

3(t, r)a(r)f∞dr
]−1

, if f∞ ∈ (0,∞)
0, if f∞ = ∞,

`B2
2 :=

{[ ∫ 1

0
max0≤t≤1 G2

3(t, r)a(r)f0dr
]−1

, if f0 ∈ (0,∞)
+∞, if f0 = 0.

Then, for any (λ, µ) ∈ (`B1
1 , `B1

2 ) × (`B2
1 , `B2

2 ) there exists a nonnegative solution
(u, v) of (5.6)-(5.7)-(5.8). If, in addition, xf(x) > 0 for x 6= 0 and xg(x) > 0 for
x 6= 0 then there exists a nonnegative solution (u, v) of (5.6)-(5.7)-(5.8) such that
u(x) > 0 and v(x) > 0 for x ∈ (0, 1].

5.3. A system of mixed type. Here, we show that the results of this paper
can easily be applied to obtain eigenvalue intervals for systems of BVP where the
differential equations are not of the same order. For simplicity, we consider a system
of BVP consisting of types of BVP already mentioned, namely the differential
equations

u′′(t) + λa(t)f(v(t)) = 0, 0 < t < 1

v′′′(t) + µb(t)g(u(t)) = 0, 0 < t < 1
(5.18)

along the boundary value conditions

u(0) = 0, u′(1) =
k−2∑
i=1

aiu
′(ζi)

v(0) = v′(0) = v′′(1) = 0,

(5.19)

where 0 < ai, (i = 1, . . . , k − 2), 0 = ζ0 < ζ1 < · · · < ζk−2 < 1, 0 <
∑k−2

i=1 aiζi < 1,
i.e., the boundary condition (5.2) and the boundary condition (5.8).

Taking into consideration Lemma 5.1 and Lemma 5.3, it is not difficult to see
that (u, v) is a solution of the system (5.18)-(5.19) if and only if u is a solution of
the integral equation

u(t) = λ

∫ 1

0

G2(t, s)a(s)f
(
µ

∫ 1

0

G2
3(s, r)b(r)g(u(r))dr

)
ds, 0 ≤ t ≤ 1, (5.20)

and v is given by

v(t) = µ

∫ 1

0

G2
3(t, r)b(r)g(u(r))dr, 0 ≤ t ≤ 1,

with G2 and G2
3 given in Lemma 5.1 and Lemma 5.4, respectively.

Then for ξ, η ∈ [ζk−2, 1] with ξ < η, in view of (5.5) and (5.16) we may see that
(C) is satisfied with

γ = min
{ 1

ζk−2

∑k−2
i=1 ai

,
1
2η

ξ2
}
.

From Theorem 3.1, we have the following result concerning the system (5.18)-(5.19).



EJDE-2009/58 NONNEGATIVE SOLUTIONS TO AN INTEGRAL EQUATION 27

Proposition 5.6. Assume conditions (A), (B), are satisfied. Moreover, assume
that f0, g0 ∈ [0,∞) and f∞, g∞ ∈ (0,∞] where f0, g0, and f∞, g∞ are defined by
(3.1). Let `A

f,1, `A
f,2 and `B2

1 , `B2
2 be defined as in Proposition 5.2 and Proposi-

tion 5.5, respectively. Then, for any (λ, µ) ∈ (`A
f,1, `

A
f,2) × (`B2

1 , `B2
2 ) there exists a

nonnegative solution (u, v) of the system (5.18)-(5.19) (equivalently, a nonnegative
solution u of (5.20)). If, in addition, xf(x) > 0 for x 6= 0 and xg(x) > 0 for x 6= 0
then there exists a nonnegative solution (u, v) of (5.18)-(5.19) with u(x) > 0 and
v(x) > 0 for x ∈ (0, 1] (equivalently, a nonnegative solution u of (5.20) which is
positive on (0, 1]).

The above result is a new one and maybe the first of its kind as systems of BVP
concerning differential equations of different order seem not to have been considered
before.

6. A generalization

For the sake of simplicity, we have chosen to focus, in some detail, to nonnegative
solutions of (1.1) than to deal with the existence of positive eigenvalues λi (i =
1, . . . , n) yielding nonnegative solutions to the more general equation

u(t) = λ1

∫ 1

0

k1(t, s1)a1(s1)f1

(
λ2

∫ 1

0

k2(s1, s2)a2(s2)f2

(
. . .

fn−1

( ∫ 1

0

kn(sn−1, sn)an(sn)fn(u(sn))dsn

)
dsn−1

)
. . . ds2

)
ds1,

(6.1)

where 0 ≤ t ≤ 1 and n ≥ 2 is a positive integer. We study this equation under the
following assumptions:

(An) fi ∈ C([0,∞), [0,∞)), i = 1, . . . , n;
(Bn) ai ∈ C([0, 1], [0,∞)), i = 1, . . . , n, and each does not vanish identically on

any subinterval of [0, 1];
(Cn) ki(t, s) : R+ × R+ → R+, i = 1, . . . , n are continuous functions and there

are points ξi, ηi ∈ [0, 1], i = 1, . . . , n and positive numbers γi, i = 1, . . . , n
such that the kernels ki are nonzero on [ξi, ηi], i = 1, . . . , n and satisfy

min
ξi≤t,s≤ηi

ki(t, s) ≥ γiki(t, s) for (t, s) ∈ [0, 1]2, i = 1, . . . , n.

Clearly, the equation (6.1) may equivalently be written as the system of integral
equations

u1(t) = λ1

∫ 1

0

k1(t, s)a1(s)f1(u2(s))ds, 0 ≤ t ≤ 1,

u2(t) = λ2

∫ 1

0

k2(t, s)a2(s)f2(u3(s))ds, 0 ≤ t ≤ 1,

. . .

un(t) = λn

∫ 1

0

kn(t, s)an(s)fn(u1(s))ds, 0 ≤ t ≤ 1.

(6.2)

It is not difficult to see that following the arguments used to prove Theorems 3.1
and 3.2, one can obtain results on the nonnegative solutions to (6.1) that are similar
to the ones obtained for (1.1); these results also hold for the integral system (6.2).
Below we state only the generalization of Theorem 3.1 and leave the corresponding
one of Theorem 3.2 to the interested reader.
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Theorem 6.1. Assume conditions (An) (Bn), (Cn). Furthermore, we assume that

f i
0 ∈ [0,∞), f i

∞ ∈ (0,∞], i = 1, . . . , n, (6.3)

where

f i
0 = lim sup

u→0+

fi(u)
u

, f i
∞ = lim inf

u→∞

f(u)
u

, i = 1, . . . , n, (6.4)

and define Lfi

1 and Lfi

2 (i = 1, . . . , n) by

Lfi

1 :=


[
γi

∫ η

ξ
min

ξi≤t≤ηi

ki(t, r)ai(r)f i
∞dr

]−1
, if f i

∞ ∈ (0,∞),

0, if f i
∞ = ∞,

(6.5)

Lfi

2 :=

{[ ∫ 1

0
max0≤t≤1 ki(t, r)ai(r)f i

0dr
]−1

, if f i
0 ∈ (0,∞),

+∞, if f i
0 = 0.

(6.6)

Then, for λi with λi ∈ (Lfi

1 , Lfi

2 ), i = 1, . . . , n, there exists a nonnegative solution
u of (6.1) (or, equivalently, a nonnegative solution (u1, . . . , un), of (6.2)).

We note that comments similar to the ones made in Section 3 for (1.1) (also
valid for the integral system (4.16)) may easily be extended to (6.1) (also valid for
(6.2)).

Working in a similar way as in the applications in Section 3, one can apply
Theorem 4.4 to obtain existence results for the systems of BVP consisting of n
differential equations of arbitrary order. In particular, we may consider the system
of BVP consisting of n differential equations of second order

u′′i (t) + λiai(t)fi(ui+1(t)) = 0, t ∈ (0, 1) i = 1, . . . , n,

un+1(t) = u1(t), t ∈ [0, 1],
(6.7)

along with the boundary value conditions

ui(0) = 0 = ui(1), i = 1, . . . , n. (6.8)

The Green’s function for the associated problem

−u′′(t) = 0, t ∈ (0, 1)

u(0) = 0 = u(1)

is given by

Ĝ2(t, s) =

{
t(1− s), if 0 ≤ t ≤ s ≤ 1,

s(1− t), if 0 ≤ s ≤ t ≤ 1.

(see, [26]). It is easy to verify that

Ĝ2(t, s) ≤ Ĝ2(s, s) ≤
1
4
, (t, s) ∈ [0, 1]2. (6.9)
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and that for s ∈ [0, 1], it holds

min
r∈[ξ,η]

Ĝ2(r, s) = min
r∈[ξ,η]

{
r(1− s), if 0 ≤ r ≤ s ≤ 1
s(1− r), if 0 ≤ s ≤ r ≤ 1

=

{
ξ(1− s), if r ∈ [ξ, η] and ξ ≤ r ≤ s ≤ 1
s(1− η), if r ∈ [ξ, η] and 0 ≤ s ≤ r ≤ η

≥ ξ(1− η)(1− s)s

≥ ξ(1− η)Ĝ2(s, s)

and so by (6.9) we obtain

min
t∈[ξ,η]

Ĝ2(t, s) ≥ ξ(1− η)Ĝ2(t, s), (t, s) ∈ [0, 1]2.

In view of the above inequality, applying Theorem 6.1 we have the following result.

Proposition 6.2. Assume conditions (An), (Bn), (Cn) are satisfied. Moreover,
suppose that (6.3) (i = 1, . . . , n) hold, where f i

0 and f i
∞ (i = 1, . . . , n) are given

by (6.4) and define Lfi

1 , Lfi

2 by (6.5) and (6.6) with γi = ξ(1 − η) and ki = Ĝ2

(i = 1, . . . , n). Then, for λi, i = 1, . . . , n, with λi ∈ (Lfi

1 , Lfi

2 ), i = 1, . . . , n, there
exists a nonnegative solution (u1, . . . , un) of (6.7)-(6.8).

The existence of positive eigenvalues yielding nonnegative solutions to a BVP
concerning an iterative system of the type of (6.2) on a time scale T has been
investigated by the authors in [2]. The results of this paper extend some particular
results in [2] taken for the special case T = R by replacing lim by lim sup or lim inf.
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