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NAVIER-STOKES EQUATION WITH SLIP-LIKE BOUNDARY
CONDITION

KEN’ICHI HASHIZUME, TETSUYA KOYAMA, MITSUHARU ÔTANI

Abstract. The aim of this note is to investigate a time-discretized 2-dimensional

Navier-Stokes equation with a slip-like boundary condition, which arises in the
melting ice problem. We prove the existence and uniqueness of a weak solution.

1. Introduction

Consider an ice plate, placed upright, whose vertical face is exposed to the air
and melting. So this face is covered by the layer of flowing water, and the shapes of
the ice and the water-layer vary as time t goes on. Therefore, in the water region,
this system can be described by Navier-Stokes equations with two free boundaries of
the ice-water interface Γ1 and the water-air interface Γ2, whose movements would
depend on the unknown functions. However, as a first step of analysis, we here
consider the discretized Navier-Stokes equation in the time variable t with the
discretizing parameter τ > 0 in the fixed domain Ω with given interfaces Γ1 and
Γ2. Experiments for this kind of problems can be found in [4] and mathematical
treatments for problems similar to ours are discussed by several authors (see e.g.
[1, 2]).
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Figure 1. The water region and its boundaries
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Fix the x-axis vertically and downward, the y-axis in the direction of the thick-
ness and outward, and the z-axis orthogonally to the x and y axes. The ice-water
interface and the water-air interface are represented by y = l(x, z) and y = d(x, z)
respectively. Further suppose that the size of ice plate in z-direction is so large that
we can regard l and d as constant in z. So our problem can be formulated in the
following 2-dimensional setting.

Define the domain Ω which is occupied by water by

Ω = {(x, y) : 0 < x < 1, l(x) < y < d(x)},

where l, d ∈ C0,1([0, 1]); that is, l and d are Lipschitsz continuous on [0, 1] and

0 ≤ l(x) < d(x) ≤ 1 for all 0 ≤ x ≤ 1. (1.1)

Hence Ω is of class C0,1. Define the ice-water interface Γ1, the water-air interface
Γ2, the lower boundary Γ3, and the upper boundary Γ4 by

Γ1 = {(x, y) : 0 ≤ x ≤ 1, y = l(x)},
Γ2 = {(x, y) : 0 ≤ x ≤ 1, y = d(x)},

Γ3 = {(x, y) : x = 1, l(1) ≤ y ≤ d(1)},
Γ4 = {(x, y) : x = 0, l(0) ≤ y ≤ d(0)}

respectively.
Our objective is to study the equations:

1
τ

(u− u0) + (u · ∇)u +
1
ρ
∇p− ν∆u = g in Ω,

div u = 0 in Ω,
(1.2)

for the fixed discretizing parameter τ > 0 with the boundary conditions

u = 0 on Γ1, (1.3)

UY = VY = 0 on Γ2, (1.4)

v = 0 on Γ3, (1.5)

u = 0 on Γ4. (1.6)

J
J

J
J

J
JJ

�
�

�
�

�� Y

n

t

X

Figure 2. The local coordinates

Here, the velocity vector u = (u, v) and the pressure p are unknown functions of
(x, y). The initial velocity u0, the gravity force g, the density ρ, and the kinematic
viscosity ν are given data. The unit time τ is to be determined later. Put U = u ·t,
V = u · n, where n designates the outer unit normal vector of Γ2 and t designates
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the downward unit tangential vector of Γ2. Denote by (X, Y ) the local coordinate
with directions t and n. The original slip boundary condition is stated as

UY + VX = 0 on Γ2,

(see [3]) and condition (1.4) is its linearized version. In the original problem, both
Γ1 and Γ2 move after the unit time τ . But in our setting, the interfaces stay
invariant.

2. Main results

Set

V = {u ∈
(
H1(Ω)

)2
: div u = 0, u = 0 on Γ1 and Γ4,v = 0 on Γ3},

H = {u ∈ (L2(Ω))2 : div u = 0},
Pσis the orthogonal projection from (L2(Ω))2 onto H,

L4 = {u ∈ (L4(Ω))2 : div u = 0}

and let (·, ·) and | · | denote the inner product and the norm of the space H.
Define a bounded positive bilinear form a(·, ·) on V by

a(u, δu) :=
∫

Ω

(∇u · ∇ δu +∇ v · ∇ δv) dx

for u = (u, v), δu = (δu, δv) ∈ V. Also define a trilinear form b(·, ·, ·) on (L4)2×V
by

b(ũ,u, δu) :=
∫

Ω

(ũuxδu + ũvxδv + ṽuyδu + ṽvyδv) dx

for ũ = (ũ, ṽ) ∈ L4, u = (u, v) ∈ V, δu = (δu, δv) ∈ L4, where x = (x, y). We note
that Hölder’s inequality gives

|b(ũ,u, δu)| ≤ |ũ|4|∇u||δu|4 for ũ ∈ L4, u ∈ V, δu ∈ L4. (2.1)

Here | · |4 denotes the norm of L4 and

|∇u| = |(|∇u|, |∇v|)|, |∇u| =
( ∣∣∣∣∂u

∂x

∣∣∣∣2 +
∣∣∣∣∂u

∂y

∣∣∣∣2 )1/2

.

In this paper, we are concerned with weak solutions of (1.2) with boundary condi-
tions (1.3)-(1.6) in the following sense:

u ∈ V is said to be a weak solution of (1.2) with boundary conditions (1.3)-(1.6),
if the following relation holds.(1

τ
(u− u0)− g, δu

)
+ b(u,u, δu) + νa(u, δu) = 0 for all δu ∈ V. (2.2)

We remark that if a sufficiently smooth function u, say in (C2(Ω̄))2∩V, satisfies
(2.2), then u should satisfy equation (1.2) and boundary condition (1.4) on Γ2. In
fact, let u ∈ (C2(Ω̄))2∩V and let f = − 1

ν

(
1
τ (u− u0)− g + Pσ(u · ∇)u

)
∈ H, then

(2.2) gives

a(u, δu) = (f , δu) for all δu ∈ V.



4 K. HASHIZUME, T. KOYAMA, M. ÔTANI EJDE-2009/62

Here we note that since v ≡ 0, div u = ux + vy ≡ 0 on Γ3, vy ≡ 0 and hence ux ≡ 0
on Γ3. Consequently, integration by parts yields

a(u, δu) = (f , δu)

=
∫

Ω

(−∆uδu−∆vδv)dx +
∫

Γ2

(uY δu + vY δv)dS +
∫

Γ3

uxδudS

=
∫

Ω

(−∆uδu−∆vδv)dx +
∫

Γ2

(UY δU + VY δV )dS,

(2.3)

where δU and δV are t and n components of δu on Γ2.
If we take δu ∈ (C∞

0 (Ω))2 ∩V, then the term of the integration on Γ2 in (2.3)
vanishes, whence follows

(f , δu) = (−∆u, δu) for all δu ∈ (C∞
0 (Ω))2 ∩V.

This says that f = −Pσ∆u in the sense of distribution. Hence f = −Pσ∆u holds
a.e. in Ω, which implies that u gives a solution of (1.2). Furthermore, plugging
this relation into (2.3), we get∫

Γ2

(UY δU + VY δV )dS = 0 for any δu ∈ V,

whence easily follows that u should satisfy (1.4).
Our main result is stated as follows.

Theorem 2.1. Let u0 ∈ V and g ∈ H. There exists a positive number τ0 =
τ0(|g|, |∇u0|) such that for all τ ∈ (0, τ0], (2.2) admits a unique weak solution
u ∈ V.

3. Proof of main theorem

By the Gagliardo-Nirenberg estimate and Poincare’s lemma, there is a constant
K1 which depends only on Ω such that

|u|4 ≤ K1|∇u|1/2|u|1/2 for all u ∈ V. (3.1)

Also, by the Sobolev embedding theorem, there is a constant K2 such that

|u|4 ≤ K2|∇u| for all u ∈ V. (3.2)

Lemma 3.1. Let u0, ũ ∈ V and g ∈ H. Define τ1 = τ1(ν,K1, |ũ|4) by

τ1 =

{
16
27K−4

1 ν3|ũ|−4
4 for ũ 6= 0,

any positive number for ũ = 0,
(3.3)

where K1 is the constant appearing in (3.1). Then, for all τ ∈ (0, τ1], the problem(
1
τ

(u− u0)− g, δu
)

+ b(ũ,u, δu) + νa(u, δu) = 0 for all δu ∈ V (3.4)

has a unique weak solution u ∈ V.

Proof. We show that the bilinear form

N(u, δu) := νa(u, δu) +
1
τ

(u, δu) + b(ũ,u, δu)

is bounded and coercive on V. In fact, the estimate

|b(ũ,u, δu)| ≤ |ũ|4|∇u||δu|4 ≤ K2|ũ|4|∇u||∇δu|
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assures the boundedness of N(·, ·) for any τ > 0 and also the coerciveness of N(·, ·)
for any τ > 0 when ũ = 0. For the case where ũ 6= 0, (3.1) and Young’s inequality
give

|b(ũ,u,u)| ≤ |ũ|4|∇u||u|4
≤ |ũ|4K1|∇u| 32 |u|1/2

≤ |ũ|4K1

(3
4
η|∇u|2 +

1
4
η−3|u|2

)
∀η > 0.

Hence choosing η = 2ν
3K1|ũ|4 , we get

N(u,u) = νa(u,u) +
1
τ

(u,u) + b(ũ,u,u)

≥
(
ν − |ũ|4

3
4
ηK1

)
|∇u|2 +

(1
τ
− |ũ|4

1
4
η−3K1

)
|u|2

=
ν

2
|∇u|2 +

(1
τ
− 27K4

1 |ũ|44
32ν3

)
|u|2

≥ ν

2
|∇u|2 +

1
2τ
|u|2 ∀τ ∈ (0, τ1],

which implies the coerciveness of N(·, ·). On the other hand,

δu 7→
(1

τ
u0 + g, δu

)
is a bounded linear functional on V. Therefore, the Lax-Milgram theorem assures
the existence of a unique weak solution of (3.4). �

Define an operator F : L4 → L4 by F (ũ) = u, where u is the unique weak
solution of (3.4), whose existence is assured in Lemma 3.1. Then F satisfies the
following a priori estimates.

Lemma 3.2. Let ũ ∈ L4 and let 0 < τ ≤ τ∗1 := min(1, τ1), then u = F (ũ) satisfies

|u− u0|4 ≤ K0 := 2K2

( |g|2
ν

+
|∇u0|2

2

)1/2

, (3.5)

|∇u| ≤ K0

K2
. (3.6)

Proof. By substitution δu = u− u0 in (3.4), we have

0 =
1
τ
|u− u0|2 + νa(u,u− u0) + b(ũ,u,u− u0)− (g,u− u0). (3.7)

Here, in view of the definition of τ1, we get

b(ũ,u,u− u0) ≤ |ũ|4|∇u|K1|∇u−∇u0|1/2|u− u0|1/2

≤ ν

4
|∇u|2 +

1
ν
|ũ|24K2

1 |∇u−∇u0||u− u0|

≤ ν

4
|∇u|2 +

ν

4
|∇u−∇u0|2 +

1
ν3
|ũ|44K4

1 |u− u0|2

≤ ν

4
|∇u|2 +

ν

4
|∇u−∇u0|2 +

16
27

1
τ1
|u− u0|2.
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Furthermore we note that

a(u,u− u0) =
1
2
a((u + u0) + (u− u0),u− u0)

=
1
2
|∇u|2 +

1
2
|∇u−∇u0|2 −

1
2
|∇u0|2,

|(g,u− u0)| ≤
1
4τ
|u− u0|2 + τ |g|2.

Therefore, by (3.7), we have

1
τ
|u− u0|2 +

ν

2
(|∇u|2 + |∇u−∇u0|2)

≤ ν

2
|∇u0|2 +

ν

4
(|∇u|2 + |∇u−∇u0|2) +

(
16
27

+
1
4

)
1
τ
|u− u0|2 + τ |g|2.

Hence we get

K−2
2 ν

4
|u− u0|24 +

ν

4
|∇u|2

≤ ν

4
(
|∇u−∇u0|2 + |∇u|2

)
+

17
108

1
τ
|u− u0|2 ≤ τ |g|2 +

ν

2
|∇u0|2,

whence follows

|u− u0|4 ≤
(4K2

2

ν
(|g|2 +

ν

2
|∇u0|2)

)1/2

= K0,

|∇u| ≤
(4

ν
|g|2 + 2|∇u0|2

)1/2

=
K0

K2
.

Thus, (3.5) and (3.6) are verified. �

Lemma 3.3. Set

τ0 :=
27

16 · 17
τ∗0 , τ∗0 := min

(
1,

16
27

ν3

K4
1

1
(K0 + |u0|4)4

)
. (3.8)

Then, for any τ ∈ (0, τ0], F (·) becomes a contraction mapping from

LK0
4 := {v ∈ L4 : |v − u0|4 ≤ K0}

into itself, where K0 is the constant given in (3.5).

Proof. We first claim that F maps LK0
4 into itself for all τ ∈ (0, τ∗0 ]. In fact, for

any ũ ∈ LK0
4 , Lemma 3.2 assures that F (ũ) ∈ LK0

4 , provided that 0 < τ ≤ τ∗1 :=
min(1, τ1) with τ1 = 16

27ν3K−4
1 |ũ|−4

4 for ũ 6= 0 and τ1 < +∞ for ũ = 0. Since
ũ ∈ LK0

4 implies |ũ|4 ≤ |u0|4 + K0, we find

τ1 = τ1(|ũ|4) =
16
27

ν3 K−4
1 |ũ|−4

4 ≥ 16
27

ν3 K−4
1

1
(K0 + |u0|4)4

≥ τ∗0 .

Thus we conclude that F (ũ) ∈ LK0
4 for all τ ∈ (0, τ∗0 ].

Now we are going to show that F (·) is a contraction. Let ũi ∈ LK0
4 , ui = F (ũi)

(i = 1, 2), then as in the proof of Lemma 3.2, it is easy to see that u1−u2 satisfies

1
τ
|u1 − u2|2 + b(ũ1,u1,u1 − u2)− b(ũ2,u2,u1 − u2) + ν|∇u1 −∇u2|2 = 0. (3.9)
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We here note that
|b(ũ1,u1,u1 − u2)− b(ũ2,u2,u1 − u2)|
= |b(ũ1 − ũ2,u1,u1 − u2) + b(ũ2,u1 − u2,u1 − u2)|
≤ |ũ1 − ũ2|4|∇u1||u1 − u2|4 + |ũ2|4|∇u1 −∇u2||u1 − u2|4

(3.10)

holds. Therefore, by (3.6) and (3.1), we get

|ũ1 − ũ2|4|∇u1||u1 − u2|4
≤ |ũ1 − ũ2|4K−1

2 K0K1|∇u1 −∇u2|1/2|u1 − u2|1/2

≤ K−2
2 ν

4
|ũ1 − ũ2|24 +

1
ν

K2
0K2

1 |∇u1 −∇u2| |u1 − u2|

≤ K−2
2 ν

4
|ũ1 − ũ2|24 +

ν

4
|∇u1 −∇u2|2 +

1
ν3

K4
0K4

1 |u1 − u2|2.

(3.11)

Since |ũ2|4 ≤ |u0|4 + K0, (3.1) and Young’s inequality yield

|ũ2|4|∇u1 −∇u2||u1 − u2|4
≤ (|u0|4 + K0) K1|∇u1 −∇u2|

3
2 |u1 − u2|1/2

≤ 3
4

ν

4
|∇u1 −∇u2|2 +

ν−3

4
43 (|u0|4 + K0)

4
K4

1 |u1 − u2|2.

(3.12)

Then, in view of (3.9)-(3.12), we obtain
1
τ
|u1 − u2|2 + ν|∇u1 −∇u2|2

≤ K−2
2 ν

4
|ũ1 − ũ2|24 +

ν

2
|∇u1 −∇u2|2 + K̃|u1 − u2|2,

K̃ =
1
ν3

(
K4

0K4
1 + 16(|u0|4 + K0)4K4

1

)
.

Since τ ∈ (0, τ0] assures that 1
τ ≥

K4
1

ν3 17 (|u0|4 + K0)
4 ≥ K̃, we obtain

K−2
2 ν

2
|u1 − u2|24 ≤

ν

2
|∇u1 −∇u2|2 ≤

K−2
2 ν

4
|ũ1 − ũ2|24;

i.e., |F (ũ1)− F (ũ2)|4 ≤ 1√
2
|ũ1 − ũ2|4. �

Proof of Theorem 2.1. It is clear that LK0
4 is a closed convex subset of L4. Since

F (·) is a contraction mapping from LK0
4 into itself, F has a unique fixed point u in

LK0
4 , which gives the desired solution of (2.2). �
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