POSITIVE SOLUTIONS FOR NONLINEAR DIFFERENCE EQUATIONS INVOLVING THE P-LAPLACIAN WITH SIGN CHANGING NONLINEARITY

YANBIN SANG, HUA SU

Abstract

By means of fixed point index, we establish sufficient conditions for the existence of positive solutions to p-Laplacian difference equations. In particular, the nonlinear term is allowed to change sign.

1. Introduction

The aim of the paper is to prove the existence of positive solutions to the problem

$$
\begin{gather*}
\Delta\left[\phi_{p}(\Delta u(t-1))\right]+a(t) f(u(t))=0, \quad t \in[1, T+1] \\
\Delta u(0)=u(T+2)=0 \tag{1.1}
\end{gather*}
$$

where ϕ_{p} is p-Laplacian operator, i.e. $\phi_{p}=|s|^{p-2} s, p>1,\left(\phi_{p}\right)^{-1}=\phi_{q}, \frac{1}{p}+\frac{1}{q}=1$, $T \geq 1$ is a fixed positive integer, Δ denotes the forward difference operator with step size 1 , and $[a, b]=\{a, a+1, \ldots, b-1, b\} \subset \mathbb{Z}$ the set of integers.

Our work focuses on the case when the nonlinear term $f(u)$ can change sign. By means of fixed point index, some new results are obtained for the existence of at least two positive solutions to the BVP $\sqrt{1.11}$, the method of this paper is motivated by [10, 16, 20. Due to the wide application in many fields such as science, economics, neural network, ecology, cybernetics,etc., the theory of nonlinear difference equations has been widely studied since the 1970s: see, for example [1, 2, 11, 12]. At the same time, boundary value problem (BVP) of difference equations have received much attention from many author: see [1, 2, 3, 4, 5, 6, 8, 9, 14, 15, 17, 18, 19] and the reference therein.

The approach is mainly based on fixed point theorem. For example, using the Guo-Krasnosel'skii fixed point theorem in cone and a fixed point index theorem, He [9] considered the existence of one or two positive solutions of (1.1). Li and Lu [14] studied (1.1) and obtained at least two positive solutions by an application of a fixed point theorem due to Avery and Henderson. Motivated by 9, 14 Wang and Guan [17], showed that (1.1) has at least three positive solutions by applying the Avery Five Functionals Fixed Point Theorem.

[^0]On the other hand, the application of critical point theory in difference equations has also been studied by Pasquale Candito [6] who considered the problem

$$
\begin{gather*}
-\Delta\left[\phi_{p}(\Delta u(k-1))\right]=\lambda f(k, u(k)), \quad k \in[1, T], \\
u(0)=u(T+1)=0, \tag{1.2}
\end{gather*}
$$

he established the existence of at least three solutions and two positive solutions to (1.2) using critical point theory. However, almost all of these works only considered the p-Laplacian equations with nonlinearity f being nonnegative. Therefore, it is a natural problem to consider the existence of positive solution of p-Laplacian equations with sign changing nonlinearity.

Throughout this paper, we assume that the following two conditions are satisfied:
(H1) $a:[1, T+1] \rightarrow(0,+\infty)$;
(H2) $f:[0,+\infty) \rightarrow \mathbb{R}$ is continuous.

2. Preliminaries

Let $E=\{u:[0, T+2] \rightarrow \mathbb{R}: \Delta u(0)=u(T+2)=0\}$, with norm $\|u\|=$ $\max _{t \in[0, T+2]}|u(t)|$, then $(E,\|\cdot\|)$ is a Banach space. We define two cones by

$$
P=\{u \in E: u(t) \geq 0, t \in[0, T+2]\}
$$

$P^{\prime}=\{u \in E: u$ is concave, nonnegative and decreasing on $[0, T+2]\}$.
Lemma 2.1 ($9,14,17])$. If $u \in P^{\prime}$, then $u(t) \geq \frac{T+2-t}{T+2}\|u\|$ for $t \in[0, T+2]$.
Let

$$
\begin{aligned}
K= & \{u \in E: u \text { is nonnegative and decreasing on }[0, T+2], \\
& u(t) \geq \gamma\|u\|, t \in[0, l]\},
\end{aligned}
$$

where $\gamma=\frac{T+2-l}{T+2} \gamma_{1}$, and for $l \in \mathbb{Z}$ with $l=T+1$,

$$
\gamma_{1}=\frac{(T+2-l) \phi_{q}\left[\sum_{i=1}^{l} a(i)\right]}{\sum_{s=0}^{T+1} \phi_{q}\left[\sum_{i=1}^{s} a(i)\right]}
$$

Note that u is a solution of 1.1 if and only if

$$
u(t)=\sum_{s=t}^{T+1} \phi_{q}\left[\sum_{i=1}^{s} a(i) f(u(i))\right], \quad t \in[0, T+2] .
$$

We define the operators $F: P \rightarrow E$ and $S: K \rightarrow E$ as follows

$$
\begin{align*}
(F u)(t)=\sum_{s=t}^{T+1} \phi_{q}\left[\sum_{i=1}^{s} a(i) f(u(i))\right], & t \in[0, T+2], \tag{2.1}\\
(S u)(t)=\sum_{s=t}^{T+1} \phi_{q}\left[\sum_{i=1}^{s} a(i) f^{+}(u(i))\right], & t \in[0, T+2], \tag{2.2}
\end{align*}
$$

where $f^{+}(u(t))=\max \{f(u(t)), 0\}, t \in[0, T+2]$. It is obvious that $S: K \rightarrow K$ is completely continuous (see [9, Theorem 3.1]).
Lemma 2.2 (7$]$). Let K be a cone in a Banach space X. Let D be an open bounded subset of X with $D_{K}=D \cap K \neq \phi$ and $\overline{D_{K}} \neq K$. Assume that $A: \overline{D_{K}} \rightarrow K$ is a completely continuous map such that $x \neq A x$ for $x \in \partial D_{K}$. Then the following results hold:
(1) If $\|A x\| \leq\|x\|, x \in \partial D_{K}$, then $i_{K}\left(A, D_{K}\right)=1$;
(2) If there exists $x_{0} \in K \backslash\{\theta\}$ such that $x \neq A x+\lambda x_{0}$, for all $x \in \partial D_{K}$ and all $\lambda>0$, then $i_{K}\left(A, D_{K}\right)=0$;
(3) Let U be an open set in X such that $\bar{U} \subset D_{K}$. If $i_{K}\left(A, D_{K}\right)=1$ and $i_{K}\left(A, U_{K}\right)=0$, then A has a fixed point in $D_{K} \backslash \bar{U}_{K}$. The same results holds, if $i_{K}\left(A, D_{K}\right)=0$ and $i_{K}\left(A, U_{K}\right)=1$.

Lemma 2.3 ([13]). Let $K_{\rho}=\{u(t) \in K:\|u\|<\rho\}$ and $\Omega_{\rho}=\{u(t) \in K$: $\left.\min _{0 \leq t \leq l} u(t)<\gamma \rho\right\}$. Then the following properties are satsified:
(a) $K_{\gamma \rho} \subset \Omega_{\rho} \subset K_{\rho}$;
(b) Ω_{ρ} is open relative to K;
(c) $u \in \partial \Omega_{\rho}$ if and only if $\min _{0 \leq t \leq l} u(t)=\gamma \rho$;
(d) If $u \in \partial \Omega_{\rho}$, then $\gamma \rho \leq u(t) \leq \bar{\rho}$ for $t \in[0, l]$.

Let

$$
\begin{gather*}
m=\left\{\sum_{s=0}^{T+1} \phi_{q}\left[\sum_{i=1}^{s} a(i)\right]\right\}^{-1}, \tag{2.3}\\
M=\left\{(T+2-l) \phi_{q}\left[\sum_{i=1}^{l} a(i)\right]\right\}^{-1} . \tag{2.4}
\end{gather*}
$$

We remark that by (H1), $0<m, M<+\infty$ and

$$
M \gamma=M \frac{T+2-l}{T+2} \gamma_{1}=m \frac{T+2-l}{T+2}<m
$$

Lemma 2.4. If f satisfies the condition

$$
\begin{equation*}
f(u) \leq \phi_{p}(m \rho), \quad \text { for } u \in[0, \rho], u \neq S u, u \in \partial K_{\rho} \tag{2.5}
\end{equation*}
$$

then $i_{K}\left(S, K_{\rho}\right)=1$.
Proof. If $u \in \partial K_{\rho}$, then from $(2.2),(2.3)$ and 2.5$)$, we have

$$
\begin{aligned}
(S u)(t) & =\sum_{s=t}^{T+1} \phi_{q}\left[\sum_{i=1}^{s} a(i) f^{+}(u(i))\right] \\
& \leq \sum_{s=0}^{T+1} \phi_{q}\left[\sum_{i=1}^{s} a(i) \phi_{p}(m \rho)\right] \\
& =\sum_{s=0}^{T+1} m \rho \phi_{q}\left[\sum_{i=1}^{s} a(i)\right]=\rho .
\end{aligned}
$$

This implies that $\|S u\| \leq\|u\|$ for $u \in \partial K_{\rho}$. By Lemma 2.2(1), we have $i_{K}\left(S, K_{\rho}\right)=$ 1. The proof is complete.

Lemma 2.5. If f satisfies the condition

$$
\begin{equation*}
f(u) \geq \phi_{p}(M \gamma \rho), \quad \text { for } u \in[\gamma \rho, \rho], u \neq S u, u \in \partial \Omega_{\rho}, \tag{2.6}
\end{equation*}
$$

then $i_{K}\left(S, \Omega_{\rho}\right)=0$.
Proof. Let $e(t) \equiv 1, t \in[0, T+2]$. Then $e \in \partial K_{1}$. Next we shall prove that

$$
u \neq S u+\lambda e, \quad u \in \partial \Omega_{\rho}, \lambda>0
$$

In fact, if it is not so, then there exist $u_{0} \in \partial \Omega_{\rho}$, and $\lambda_{0}>0$ such that $u_{0}=$ $S u_{0}+\lambda_{0} e$. Then from (2.2), 2.4 and 2.6), we obtain

$$
\begin{aligned}
u_{0}(t) & =\left(S u_{0}\right)(t)+\lambda_{0} \\
& \geq\left(S u_{0}\right)(l)+\lambda_{0} \\
& =\sum_{s=l}^{T+1} \phi_{q}\left[\sum_{i=1}^{s} a(i) f^{+}\left(u_{0}(i)\right)\right]+\lambda_{0} \\
& \geq(T+2-l) \phi_{q}\left[\sum_{i=1}^{l} a(i) f^{+}\left(u_{0}(i)\right)\right]+\lambda_{0} \\
& \geq(T+2-l) \phi_{q}\left[\sum_{i=1}^{l} a(i) \phi_{p}(M \gamma \rho)\right]+\lambda_{0} \\
& =(T+2-l) M \gamma \rho \phi_{q}\left[\sum_{i=1}^{l} a(i)\right]+\lambda_{0} \\
& =\gamma \rho+\lambda_{0} .
\end{aligned}
$$

This together with Lemma 2.3.c) implies that $\gamma \rho \geq \gamma \rho+\lambda_{0}$, a contradiction. Hence, it follows from Lemma $2.2(2)$ that $i_{K}\left(S, \Omega_{\rho}\right)=0$. The proof is complete.

3. Existence of positive solutions

Theorem 3.1. Assume (H1), (H2) and that one of the following two conditions holds:
(H3) There exist $\rho_{1}, \rho_{2} \in(0,+\infty)$ with $\rho_{1}<\gamma \rho_{2}$ and $\rho_{2}<\rho_{3}$ such that
(i) $f(u) \leq \phi_{p}\left(m \rho_{1}\right)$, for $u \in\left[0, \rho_{1}\right]$;
(ii) $f(u) \geq 0$, for $u \in\left[\gamma \rho_{1}, \rho_{3}\right]$, moreover, $f(u) \geq \phi_{p}\left(M \gamma \rho_{2}\right)$, for $u \in$ $\left[\gamma \rho_{2}, \rho_{2}\right], x \neq S x, x \in \partial \Omega_{\rho_{2}}$;
(iii) $f(u) \leq \phi_{p}\left(m \rho_{3}\right)$, for $u \in\left[0, \rho_{3}\right]$.
(H4) There exist ρ_{1}, ρ_{2} and $\rho_{3} \in(0,+\infty)$ with $\rho_{1}<\rho_{2}<\gamma \rho_{3}$ such that
(i) $f(u) \geq \phi_{p}\left(M \gamma \rho_{1}\right)$, for $u \in\left[\gamma^{2} \rho_{1}, \rho_{2}\right]$;
(ii) $f(u) \leq \phi_{p}\left(m \rho_{2}\right)$, for $u \in\left[0, \rho_{2}\right], x \neq S x, x \in \partial K_{\rho_{2}}$;
(iii) $f(u) \geq 0$, for $u \in\left[\gamma \rho_{2}, \rho_{3}\right]$, moreover, $f(u) \geq \phi_{p}\left(M \gamma \rho_{3}\right)$, for $u \in$ $\left[\gamma \rho_{3}, \rho_{3}\right]$.
Then (1.1) has at least two positive solutions u_{1} and u_{2}.
Proof. Assuming (H3), we show that S has a fixed point u_{1} either in $\partial K_{\rho_{1}}$ or u_{1} in $\Omega_{\rho_{2}} \backslash \overline{K_{\rho_{1}}}$. If $u \neq S u, u \in \partial K_{\rho_{1}} \cup \partial K_{\rho_{3}}$, by Lemmas 2.4 and 2.5 , we have

$$
i_{K}\left(S, K_{\rho_{1}}\right)=1, \quad i_{K}\left(S, \Omega_{\rho_{2}}\right)=0, \quad i_{K}\left(S, K_{\rho_{3}}\right)=1
$$

By Lemma 2.3(b) and $\rho_{1}<\gamma \rho_{2}$, we have $\bar{K}_{\rho_{1}} \subset K_{\gamma \rho_{2}} \subset \Omega_{\rho_{2}}$. By Lemma 2.2 (3), we have S has a fixed point $u_{1} \in \Omega_{\rho_{2}} \backslash \overline{K_{\rho_{1}}}$. Similarly, S has a fixed point $u_{2} \in K_{\rho_{3}} \backslash \overline{\Omega_{\rho_{2}}}$. Clearly,

$$
\left\|u_{1}\right\|>\rho_{1}, \quad \min _{t \in[0, l]} u_{1}(t)=u_{1}(l) \geq \gamma\left\|u_{1}\right\|>\gamma \rho_{1}
$$

This implies $\gamma \rho_{1} \leq u_{1}(t) \leq \rho_{2}, t \in[0, l]$. By (H3)(ii), we have $f\left(u_{1}(t)\right) \geq 0$, $t \in[0, l]$; i.e., $f^{+}\left(u_{1}(t)\right)=f\left(u_{1}(t)\right)$. Combining with the fact that $S u=F u=0$ if $t=T+2$, we can get $S u_{1}=F u_{1}$. That means u_{1} is a fixed point of F. From
$u_{2} \in K_{\rho_{3}} \backslash \overline{\Omega_{\rho_{2}}}, \rho_{2}<\rho_{3}$ and Lemma 2.3 (b) we have $\bar{K}_{\gamma \rho_{2}} \subset \Omega_{\rho_{2}} \subset K_{\rho_{3}}$. Obviously, $\left\|u_{2}\right\|>\gamma \rho_{2}$. This implies that

$$
\min _{t \in[0, l]} u_{2}(t)=u_{2}(l) \geq \gamma\left\|u_{2}\right\|>\gamma^{2} \rho_{2}
$$

Therefore,

$$
\gamma^{2} \rho_{2} \leq u_{2}(t) \leq \rho_{3}, \quad t \in[0, l]
$$

By $\rho_{1}<\gamma \rho_{2}$ and (H3)(ii), we have $f\left(u_{2}(t)\right) \geq 0, t \in[0, l]$; i.e., $f^{+}\left(u_{2}(t)\right)=f\left(u_{2}(t)\right)$. So u_{2} is another fixed point of F. Thus, we have proved that 1.1) has at least two positive solutions u_{1} and u_{2}.

The proof under assumption (H4) is similar to the case above. This completes the proof.

Theorem 3.2. Assume (H1), (H2) that one of the following two conditions holds:
(H5) There exist $\rho_{1}, \rho_{2} \in(0,+\infty)$ with $\rho_{1}<\gamma \rho_{2}$ such that
(i) $f(u) \leq \phi_{p}\left(m \rho_{1}\right)$, for $u \in\left[0, \rho_{1}\right]$;
(ii) $f(u) \geq 0$, for $u \in\left[\gamma \rho_{1}, \rho_{2}\right]$, moreover, $f(u) \geq \phi_{p}\left(M \gamma \rho_{2}\right)$, for $u \in$ $\left[\gamma \rho_{2}, \rho_{2}\right]$.
(H6) There exist $\rho_{1}, \rho_{2} \in(0,+\infty)$ with $\rho_{1}<\rho_{2}$ such that
(i) $f(u) \geq \phi_{p}\left(M \gamma \rho_{1}\right)$, for $u \in\left[\gamma^{2} \rho_{1}, \rho_{2}\right]$;
(ii) $f(u) \leq \phi_{p}\left(m \rho_{2}\right)$, for $u \in\left[0, \rho_{2}\right]$.

Then (1.1) has at least one positive solution.

4. Example

In this section, we present a simple example to illustrate our results. Consider the following boundary-value problem

$$
\begin{gather*}
\Delta\left[\phi_{p}(\Delta u(t-1))\right]+a(t) f(u(t))=0, \quad t \in[1,4] \\
\Delta u(0)=u(5)=0 \tag{4.1}
\end{gather*}
$$

where $p=3 / 2, q=3, a(t) \equiv 1, T=3$ and

$$
f(u)= \begin{cases}\left(u-\frac{8}{75}\right)^{11}, & u \in\left[0, \frac{8}{75}\right] ; \\ \left(\frac{1}{30}\right)^{1 / 2} \sin \left(\frac{75}{67} \frac{\pi}{2} u-\frac{8}{67} \frac{\pi}{2}\right), & u \in\left[\frac{8}{75}, 1\right] ; \\ \left(\frac{1}{30}\right)^{1 / 2}\left(\frac{8}{3}-\frac{5}{3} u\right)+\left(\frac{1}{10}\right)^{1 / 2}\left(\frac{5}{3} u-\frac{5}{3}\right) & u \in\left[1, \frac{8}{5}\right] ; \\ \left(\frac{1}{10}\right)^{1 / 2}+\frac{25}{52 \times 67^{2}}\left(u-\frac{8}{5}\right)^{2}, & u \in\left[\frac{8}{5}, 15\right] ; \\ \left(\frac{1}{10}\right)^{1 / 2}+\frac{25}{52 \times 67^{2}}\left(15-\frac{8}{5}\right)^{2}+[1+(u-15)(25-u)], & u \in[15,+\infty)\end{cases}
$$

It is easy to check that $f:[0,+\infty) \rightarrow \mathbb{R}$ is continuous, $l=4$, it follows from a direct calculation that

$$
\gamma_{1}=\frac{\phi_{q}\left[\sum_{i=1}^{4} a(i)\right]}{\sum_{s=0}^{4}\left[\sum_{i=1}^{s} a(i)\right]}=\frac{(1+1+1+1)^{2}}{\sum_{s=0}^{4}[a(1)+\cdots+a(s)]^{2}}=\frac{8}{15}
$$

$$
\begin{aligned}
& m=\left\{\sum_{s=0}^{4} \phi_{q}\left[\sum_{i=1}^{s} a(i)\right]\right\}^{-1}=\left\{\sum_{s=0}^{4}[a(1)+a(2)+\cdots+a(s)]^{2}\right\}^{-1} \\
&=\left\{1^{2}+2^{2}+3^{2}+4^{2}\right\}^{-1}=\frac{1}{30} \\
& M=\left\{\phi_{q}\left[\sum_{i=1}^{4} a(i)\right]\right\}^{-1}=\left\{\phi_{q}[a(1)+a(2)+a(3)+a(4)]\right\}^{-1} \\
&=\left\{4^{2}\right\}^{-1}=\frac{1}{16}, \\
& \quad \gamma=\frac{T+2-l}{T+2} \gamma_{1}=\frac{3+2-4}{3+2} \cdot \frac{8}{15}=\frac{1}{5} \cdot \frac{8}{15}=\frac{8}{75}
\end{aligned}
$$

Choose $\rho_{1}=1, \rho_{2}=15, \rho_{3}=25$. Then $\gamma \rho_{1}<\rho_{1}<\gamma \rho_{2}<\rho_{2}<\rho_{3}$.
In addition, by the definition of f, we have
(i) $f(u) \leq \phi_{p}\left(m \rho_{1}\right)=\left(\frac{1}{30}\right)^{1 / 2}$, for $u \in[0,1]$;
(ii) $f(u) \geq 0$, for $u \in\left[\frac{8}{75} \cdot 1,25\right]$, moreover, $f(u) \geq \phi_{p}\left(M \gamma \rho_{2}\right)=\left(\frac{1}{16} \cdot \frac{8}{75} \cdot 15\right)^{1 / 2}=$ $\left(\frac{1}{10}\right)^{1 / 2}$, for $u \in\left[\frac{8}{75} \cdot 15,15\right] ;$
(iii) $f(u) \leq \phi_{p}\left(m \rho_{3}\right)=\left(\frac{1}{30} \cdot 25\right)^{1 / 2}=\left(\frac{5}{6}\right)^{1 / 2}$, for $u \in[0,25]$.

By (2.2), we have

$$
(S u)(t)=\sum_{s=t}^{4} \phi_{q}\left[\sum_{i=1}^{s} a(i) f^{+}(u(i))\right]=\sum_{s=t}^{4}\left[a(1) f^{+}(u(1))+\cdots+a(s) f^{+}(u(s))\right]^{2} .
$$

Since $f^{+}(u) \leq\left(\frac{1}{10}\right)^{1 / 2}+\frac{25}{52 \times 67^{2}}\left(15-\frac{8}{5}\right)^{2}, u \in[0,15]$.
For $u \in \partial \Omega_{15}$, we have

$$
\begin{aligned}
\|S u\|= & S u(0) \\
= & \sum_{s=0}^{4}\left[a(1) f^{+}(u(1))+\cdots+a(s) f^{+}(u(s))\right]^{2} \\
= & {\left[f^{+}(u(1))\right]^{2}+\left[f^{+}(u(1))+f^{+}(u(2))\right]^{2}+\left[f^{+}(u(1))+f^{+}(u(2))+f^{+}(u(3))\right]^{2} } \\
& +\left[f^{+}(u(1))+f^{+}(u(2))+f^{+}(u(3))+f^{+}(u(4))\right]^{2} \\
\leq & 30\left[f^{+}(u)\right]^{2} \\
< & 15=\|u\| .
\end{aligned}
$$

This implies $S u \neq u$, for $u \in \partial \Omega_{15}$. Thus, (H3) of Theorem 3.1 is satisfied. Then (4.1) has two positive solutions u_{1}, u_{2}.

References

[1] R. P. Agarwal; Difference Equations and Inequalities, Marcel Dekker, New York, 1992.
[2] R. P. Agarwal, M. Bohner, P. J. Y. Wong; Eigenvalues and eigenfunctions of discrete conjugate boundary value problems, Comput. Math. Appl. 38(3-4) (1999) 159-183.
[3] R. P. Agarwal, J. Henderson; Positive solutions and nonlinear eigenvalue problems for thirdorder difference equations, Comput. Math. Appl. 36(10-12) (1998) 347-355.
[4] R. P. Agarwal, F. H. Wong; Existence of positive solutions for higher order difference equations, Appl. Math. Lett. 10(5) (1997) 67-74.
[5] R. P. Agarwal, P. J. Y. Wong; Advanced Topics in Difference Equations, Kluer Academic, Dordrecht, 1997.
[6] Pasquale Candito, Nicola Giovannelli; Multiple solutions for a discrete boundary value problem involving the p-Laplacian, Comput. Math. Appl. 56 (2008) 959-964.
[7] D. Guo, V. Lakshmikanthan; Nonlinear problems in Abstract Cones, Academic Press, San Diego, 1988.
[8] J. Henderson; Positive solutions for nonlinear difference equations, Nonlinear Stud. 4(1) (1997) 29-36.
[9] Z. M. He; On the existence of positive solutions of p-Laplacian difference equations, J. Comput. Appl. Math. 161 (2003) 193-201.
[10] D. Ji, M. Feng, W. Ge; Multiple positive solutions for multipoint boundary value problems with sign changing nonlnearity, Appl. Math. Comput. 196 (2008) 515-520.
[11] W. G. Kelley, A. C. Peterson; Difference Equations, Academic Press, Boston, 1991.
[12] V. Lakshmikantham, D. Trigiante; Theory of Difference Equations: Numerical Methods and Applications, Academic Press, New York, 1988.
[13] K. Q. Lan; Multiple positive solutions of semilinear differential equations with singularities, J. London Math. Soc. 63 (2001) 690-704.
[14] Y. K. Li, L. H. Lu; Existence of positive solutions of p-Laplacian difference equations, Appl. Math. Lett. 19 (2006) 1019-1023.
[15] F. Merdivenci; Two positive solutions of a boundary value problem for difference equations, J. Difference Equa. Appl. 1 (1995) 263-270.
[16] Yanbin Sang, Hua Su; Positive solutions of nonlinear third-order m-point BVP for an increasing homeomorphism and homomorphism with sign changing nonlinearity, J. Comput. Appl. Math. (in press).
[17] Dabin Wang, Wen Guan; Three positive solutions of boundary value problems for p-Laplacian difference equations, Comput. Math. Appl. 55 (2008) 1943-1949.
[18] P. J. Y. Wong; Positive solutions of difference equations with two-point right focal boundary conditions, J. Math. Anal. Appl. 224 (1998) 34-58.
[19] P. J. Y. Wong, R. P. Agarwal; Further results on fixed-sign solutions for a system of higherorder difference equations, Comput. Math. Appl. 42(3-5) (2001) 497-514.
[20] Yunzhou Zhu, Jiang Zhu; The multiple positive solutions for p-Laplacian multipoint BVP with sign changing nonlinearity on time scales, J. Math. Anal. Appl. 344 (2008) 616-626.

Yanbin Sang
a Department of Mathematics, North University of China, Taiyuan, Shanxi, 030051, China

E-mail address: syb6662004@163.com
Hua Su
School of Statistics and Mathematics, Shandong University of Finance, Jinan, Shandong, 250014, China

E-mail address: suhua02@163.com

[^0]: 2000 Mathematics Subject Classification. 39A10.
 Key words and phrases. Difference equations; p-Laplacian; fixed point index; sign changing nonlinearity.
 (C)2009 Texas State University - San Marcos.

 Submitted December 16, 2008. Published May 8, 2009.
 Project supported by the Youth Science Fund of Shanxi Province (2009021001-2).

