Electronic Journal of Differential Equations, Vol. 2009(2009), No. 66, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

MULTIPLE NONNEGATIVE SOLUTIONS FOR SECOND-ORDER BOUNDARY-VALUE PROBLEMS WITH SIGN-CHANGING NONLINEARITIES

SHOULIANG XI, MEI JIA, HUIPENG JI

Abstract

In this paper, we study the existence of multiple nonnegative solutions for second-order boundary-value problems of differential equations with sign-changing nonlinearities. Our main tools are the fixed-point theorem in double cones and the Leggett-Williams fixed point theorem. We present also the integral kernel associated with the boundary-value problem.

1. Introduction

Boundary-value problems with nonnegative solutions describe many phenomena in the applied science, and they are widely used in fields, such as chemistry, biological, etc.; see for example [2, 4, 5, 6, 7, 8, Problems with integral boundary conditions have been applied in heat conduction, chemical engineering, underground water flow-elasticity, etc. The existence of nonnegative solutions to these problems have received a lot of attention; see [3, 8, 9, 10, 11, 12] and reference therein.

Recently, by constructing a special cone and using the fixed point index theory, Liu and Yan [9] proved the existence of multiple solutions to the singular boundaryvalue problem

$$
\begin{gathered}
\left(p(t) x^{\prime}(t)\right)^{\prime}+\lambda f(t, x(t), y(t))=0 \\
\left(p(t) y^{\prime}(t)\right)^{\prime}+\lambda g(t, x(t), y(t))=0 \\
\alpha x(0)-\beta x^{\prime}(0)=\gamma x(1)+\delta x^{\prime}(1)=0 \\
\alpha y(0)-\beta y^{\prime}(0)=\gamma y(1)+\delta y^{\prime}(1)=0,
\end{gathered}
$$

where the parameter λ in $\mathbb{R}^{+}, p \in C\left([0,1], \mathbb{R}^{+}\right), \alpha, \beta, \gamma, \delta \geq 0, \beta \gamma+\alpha \delta+\alpha \gamma>0$, $f \in C\left((0,1) \times \mathbb{R}^{+} \times \mathbb{R}, \mathbb{R}^{+}\right), g \in C\left((0,1) \times \mathbb{R}^{+} \times \mathbb{R}, \mathbb{R}\right)$, but g must be controlled by f.

[^0]By using fixed point index theory in a cone, Yang [10] studied the existence of positive solutions to a system of second-order nonlocal boundary value problems

$$
\begin{gathered}
-u^{\prime \prime}=f(t, u, v) \\
-v^{\prime \prime}=g(t, u, v) \\
u(0)=v(0)=0 \\
u(1)=H_{1}\left(\int_{0}^{1} u(\tau) d \alpha(\tau)\right) \\
v(1)=H_{2}\left(\int_{0}^{1} v(\tau) d \beta(\tau)\right)
\end{gathered}
$$

where α and β are increasing nonconstant functions defined on $[0,1]$ with $\alpha(0)=$ $0=\beta(0)$ and $f, g \in C\left((0,1) \times \mathbb{R}^{+} \times \mathbb{R}^{+}, \mathbb{R}^{+}\right), H_{i} \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$.

By using fixed point theory in a cone, Feng [12] studied positive solutions for the boundary-value problem, with integral boundary conditions in Banach spaces,

$$
x^{\prime \prime}+f(t, x)=0
$$

with

$$
x(0)=\int_{0}^{1} g(t) x(t) d t, \quad x(1)=0
$$

or

$$
x(0)=0, x(1)=\int_{0}^{1} g(t) x(t) d t
$$

where $f \in C([0,1] \times P, P), g \in L^{1}[0,1]$, and P is a cone of E. All of these, we can find the nonlinear term f is nonnegative.

In this paper, by using the fixed point theorem in double cones and the LeggettWilliams fixed point theorem, we study the existence of multiple nonnegative solutions to the boundary value problem

$$
\begin{gather*}
u_{1}^{\prime \prime}(t)+f_{1}\left(t, u_{1}(t), u_{2}(t)\right)=0 \\
u_{2}^{\prime \prime}(t)+f_{2}\left(t, u_{1}(t), u_{2}(t)\right)=0 \\
u_{1}(0)=u_{2}(0)=0 \tag{1.1}\\
u_{1}(1)=\int_{0}^{1} g_{1}(s) u_{1}(s) d s, u_{2}(1)=\int_{0}^{1} g_{2}(s) u_{2}(s) d s
\end{gather*}
$$

where $f_{1}, f_{2} \in C\left((0,1) \times \mathbb{R}^{+} \times \mathbb{R}^{+}, \mathbb{R}\right)$, and g_{1}, g_{2} are nonnegative functions in $L^{1}[0,1]$.

In this paper we assume that the following conditions:
(H1) $f_{i} \in C\left((0,1) \times \mathbb{R}^{+} \times \mathbb{R}^{+}, \mathbb{R}\right), g_{i} \in L^{1}[0,1]$ is nonnegative, $i=1,2$;
(H2) $1-\int_{0}^{1} s g_{i}(s) d s>0$;
(H3) $f_{1}\left(t, 0, u_{2}(t)\right) \geq 0(\not \equiv 0), f_{2}\left(t, u_{1}(t), 0\right) \geq 0(\not \equiv 0), t \in[0,1]$.

2. Preliminaries

Let X be a Banach space with norm $\|\cdot\|$ and $K \subset X$ be a cone. For a constant $r>0$, denote $K_{r}=\{x \in K:\|x\|<r\}$, $\partial K_{r}=\{x \in K:\|x\|=r\}$. Suppose $\alpha: K \rightarrow \mathbb{R}^{+}$is a continuously increasing functional; i.e. α is continuous and $\alpha(\lambda x) \leq \alpha(x)$ for $\lambda \in(0,1)$. Let

$$
K(b)=\{x \in K: \alpha(x)<b\}, \partial K(b)=\{x \in K: \alpha(x)=b\}
$$

and $K_{a}(b)=\{x \in K:\|x\|>a, \alpha(x)<b\} . \phi: K \rightarrow \mathbb{R}^{+}$is a continuously concave functional. Denote

$$
K(\phi, a, b)=\{x \in K: \phi(x) \geq a,\|x\| \leq b\}
$$

We will use the following two theorem.
Theorem 2.1 ([1]). Let X be a real Banach space with norm $\|\cdot\|$ and $K, K^{\prime} \subset X$ two cones with $K^{\prime} \subset K$. Suppose $T: K \rightarrow K$ and $T^{*}: K^{\prime} \rightarrow K^{\prime}$ are two completely continuous operators and $\alpha: K^{\prime} \rightarrow \mathbb{R}^{+}$is a continuously increasing functional satisfying $\alpha(x) \leq\|x\| \leq M \alpha(x)$ for all $x \in K^{\prime}$, where $M \geq 1$ is a constant. If there are constants $b>a>0$ such that
(C1) $\|T x\|<a$, for $x \in \partial K_{a}$;
(C2) $\left\|T^{*} x\right\|<a$, for $x \in \partial K_{a}^{\prime}$ and $\alpha\left(T^{*} x\right)>b$ for $x \in \partial K^{\prime}(b)$;
(C3) $T x=T^{*} x$, for $x \in K_{a}^{\prime}(b) \cap\left\{u: T^{*} u=u\right\}$.
Then T has at least two fixed points y_{1} and y_{2} in K, such that

$$
0 \leq\left\|y_{1}\right\|<a<\left\|y_{2}\right\|, \quad \alpha\left(y_{2}\right)<b .
$$

Theorem 2.2 (Leggett-Williams fixed point theorem [13]). Let $A: \overline{K_{c}} \rightarrow \overline{K_{c}}$ be completely continuous and ϕ be a nonnegative continuous concave functional on K such that $\phi(x) \leq\|x\|$ for all $x \in \overline{K_{c}}$. Suppose that there exist $0<d<a<b \leq c$ such that
(C4) $\{x \in K(\phi, a, b): \phi(x)>a\} \neq \emptyset$ and $\phi(A x)>a$ for $x \in K(\phi, a, b)$;
(C5) $\|A x\|<d$ for $\|x\| \leq d$;
(C6) $\phi(A x)>a$ for $x \in K(\phi, a, c)$ with $\|A x\|>b$.
Then A has at least three fixed points x_{1}, x_{2}, x_{3} in $\overline{K_{c}}$ satisfying

$$
\left\|x_{1}\right\|<d, \quad a<\phi\left(x_{2}\right), \quad\left\|x_{3}\right\|>d, \quad \phi\left(x_{3}\right)<a
$$

Lemma 2.3. Assume that (H2) holds. Then for any $y_{i} \in C[0,1]$, the boundary value problem

$$
\begin{gather*}
u_{i}^{\prime \prime}(t)+y_{i}(t)=0 \tag{2.1}\\
u_{i}(0)=0, u_{i}(1)=\int_{0}^{1} g_{i}(s) u_{i}(s) d s \tag{2.2}
\end{gather*}
$$

has a unique solution

$$
\begin{equation*}
u_{i}(t)=\int_{0}^{1} H_{i}(t, s) y_{i}(s) d s, \quad i=1,2 \tag{2.3}
\end{equation*}
$$

where

$$
\begin{gathered}
H_{i}(t, s)=G(t, s)+\frac{t \int_{0}^{1} g_{i}(r) G(r, s) d r}{1-\int_{0}^{1} s g_{i}(s) d s}, \quad i=1,2 \\
G(t, s)= \begin{cases}t(1-s), & \text { if } 0 \leq t \leq s \leq 1 \\
s(1-t), & \text { if } 0 \leq s \leq t \leq 1\end{cases}
\end{gathered}
$$

The proof is similar to [12, Lemma 2.1], and is omitted.
Lemma 2.4. Assume that (H2) holds. Let $\delta \in\left(0, \frac{1}{2}\right)$, then for all $t \in[\delta, 1-\delta], \sigma, s \in$ $[0,1]$, we have

$$
\begin{equation*}
H_{i}(\sigma, s) \geq 0, \quad H_{i}(t, s) \geq \delta H_{i}(\sigma, s) \tag{2.4}
\end{equation*}
$$

Proof. It is clear that $H_{i}(\sigma, s) \geq 0$, From the properties of $G(t, s)$, we obtain

$$
G(t, s) \geq \delta G(\sigma, s), \quad t \in[\delta, 1-\delta], \sigma, s \in[0,1]
$$

then

$$
\begin{aligned}
H_{i}(t, s) & =G(t, s)+\frac{t \int_{0}^{1} g_{i}(r) G(r, s) d r}{1-\int_{0}^{1} s g_{i}(s) d s} \\
& \geq \delta G(\sigma, s)+\frac{\delta \int_{0}^{1} g_{i}(r) G(r, s) d r}{1-\int_{0}^{1} s g_{i}(s) d s} \\
& \geq \delta G(\sigma, s)+\frac{\delta \sigma \int_{0}^{1} g_{i}(r) G(r, s) d r}{1-\int_{0}^{1} s g_{i}(s) d s}=\delta H_{i}(\sigma, s)
\end{aligned}
$$

The proof is complete.
Lemma 2.5. Assume that (H2) holds. If $y_{i} \in C[0,1], y_{i} \geq 0$, then the unique solution $u_{i}(t)$ of the boundary-value problem (2.1)-2.2) satisfies $u_{i}(t) \geq 0$ and $\min _{t \in[\delta, 1-\delta]} u_{i}(t) \geq \delta\left\|u_{i}\right\|, i=1,2$.

Proof. It is clear that $u_{i}(t) \geq 0$, for all $t \in[0,1], i=1,2$. In fact, from 2.3) and (2.4), for any $t \in[\delta, 1-\delta], s, \sigma \in[0,1], i=1,2$, we have

$$
u_{i}(t)=\int_{0}^{1} H_{i}(t, s) y_{i}(s) d s \geq \int_{0}^{1} \delta H_{i}(\sigma, s) y_{i}(s) d s=\delta u_{i}(\sigma)
$$

Hence,

$$
u_{i}(t) \geq \delta \max _{0 \leq \sigma \leq 1}\left|u_{i}(\sigma)\right|=\delta\left\|u_{i}\right\|
$$

and $\min _{\delta \leq t \leq 1-\delta} u_{i}(t) \geq \delta\left\|u_{i}\right\|$. The proof is complete.
Let $X=C[0,1] \times C[0,1]$ with the norm $\left\|\left(u_{1}, u_{2}\right)\right\|:=\left\|u_{1}\right\|+\left\|u_{2}\right\|, K=$ $\left\{\left(u_{1}, u_{2}\right) \in X: u_{i} \geq 0, i=1,2\right\}$ and $K^{\prime}=\left\{\left(u_{1}, u_{2}\right) \in K: u_{i}(t)\right.$ is concave in $\left.[0,1], \min _{t \in[\delta, 1-\delta]} u_{i}(t) \geq \delta\left\|u_{i}\right\|, i=1,2\right\}$.

Clearly, $K, K^{\prime} \subset X$ are cones with $K^{\prime} \subset K$. Let $T_{i}: K \rightarrow C[0,1], i=1,2$ be defined by

$$
\begin{aligned}
& T_{1}\left(u_{1}, u_{2}\right)(t)=\left(\int_{0}^{1} H_{1}(t, s) f_{1}\left(s, u_{1}(s), u_{2}(s)\right) d s\right)^{+}, \quad t \in[0,1] \\
& T_{2}\left(u_{1}, u_{2}\right)(t)=\left(\int_{0}^{1} H_{2}(t, s) f_{2}\left(s, u_{1}(s), u_{2}(s)\right) d s\right)^{+}, \quad t \in[0,1]
\end{aligned}
$$

where $(B)^{+}=\max \{B, 0\}$. Let

$$
\begin{gathered}
T\left(u_{1}, u_{2}\right)(t)=\left(T_{1}\left(u_{1}, u_{2}\right)(t), T_{2}\left(u_{1}, u_{2}\right)(t)\right) \\
A_{1}\left(u_{1}, u_{2}\right)(t)=\int_{0}^{1} H_{1}(t, s) f_{1}\left(s, u_{1}(s), u_{2}(s)\right) d s, \quad t \in[0,1] \\
A_{2}\left(u_{1}, u_{2}\right)(t)=\int_{0}^{1} H_{2}(t, s) f_{2}\left(s, u_{1}(s), u_{2}(s)\right) d s, \quad t \in[0,1] \\
A\left(u_{1}, u_{2}\right)(t)=\left(A_{1}\left(u_{1}, u_{2}\right)(t), A_{2}\left(u_{1}, u_{2}\right)(t)\right)
\end{gathered}
$$

For $\left(u_{1}, u_{2}\right) \in X$, define $\theta: X \rightarrow K$ by

$$
\left(\theta\left(u_{1}, u_{2}\right)\right)(t)=\left(\max \left\{u_{1}(t), 0\right\}, \max \left\{u_{2}(t), 0\right\}\right)
$$

then $T=\theta \circ A$.

Let $T_{i}^{*}: K^{\prime} \rightarrow C[0,1], i=1,2$ be defined by

$$
\begin{array}{ll}
T_{1}^{*}\left(u_{1}, u_{2}\right)(t)=\int_{0}^{1} H_{1}(t, s) f_{1}^{+}\left(s, u_{1}(s), u_{2}(s)\right) d s, & t \in[0,1] \tag{2.5}\\
T_{2}^{*}\left(u_{1}, u_{2}\right)(t)=\int_{0}^{1} H_{2}(t, s) f_{2}^{+}\left(s, u_{1}(s), u_{2}(s)\right) d s, \quad t \in[0,1]
\end{array}
$$

and

$$
T^{*}\left(u_{1}, u_{2}\right)(t)=\left(T_{1}^{*}\left(u_{1}, u_{2}\right)(t), T_{2}^{*}\left(u_{1}, u_{2}\right)(t)\right)
$$

Define $\alpha: K^{\prime} \rightarrow R^{+}$by

$$
\alpha\left(u_{1}, u_{2}\right)=\min _{\delta \leq t \leq 1-\delta} u_{1}(t)+\min _{\delta \leq t \leq 1-\delta} u_{2}(t)
$$

It is clear that α is a continuous increasing functional and $\alpha\left(u_{1}, u_{2}\right) \leq\left\|\left(u_{1}, u_{2}\right)\right\|$. For $u \in K^{\prime}$, we have

$$
\alpha\left(u_{1}, u_{2}\right)=\min _{\delta \leq t \leq 1-\delta} u_{1}(t)+\min _{\delta \leq t \leq 1-\delta} u_{2}(t) \geq \delta\left\|u_{1}\right\|+\delta\left\|u_{2}\right\|=\delta\left\|\left(u_{1}, u_{2}\right)\right\|
$$

Therefore,

$$
\alpha\left(u_{1}, u_{2}\right) \leq\left\|\left(u_{1}, u_{2}\right)\right\| \leq \frac{1}{\delta} \alpha\left(u_{1}, u_{2}\right)
$$

Lemma 2.6. Suppose $A: K \rightarrow X$ is completely continuous. Then $\theta \circ A: K \rightarrow K$ is also a completely continuous operator.

Proof. The complete continuity of A implies that A is continuous and maps each bounded subset of K to a relatively compact set of X. Let $D \subset K$ be a bounded set, for any $\epsilon>0$, there exist $P_{i}\left(x_{i}, y_{i}\right) \in X, i=1,2, \ldots, m$, such that

$$
A D \subset \cup_{i=1}^{m} B\left(P_{i}, \epsilon\right)
$$

where $B\left(P_{i}, \epsilon\right):=\left\{\left(u_{1}, u_{2}\right) \in K:\left\|u_{1}-x_{i}\right\|+\left\|u_{2}-y_{i}\right\|<\epsilon\right\}$. Then for any $Q^{*}\left(x_{Q}^{*}, y_{Q}^{*}\right) \in(\theta \circ A)(D)$, there exists $Q\left(x_{Q}, y_{Q}\right) \in A D$, such that

$$
\left(x_{Q}^{*}, y_{Q}^{*}\right)=\left(\max \left\{x_{Q}, 0\right\}, \max \left\{y_{Q}, 0\right\}\right) .
$$

We choose a $P_{i} \in\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$, such that

$$
\left\|x_{Q}-x_{i}\right\|+\left\|y_{Q}-y_{i}\right\|<\epsilon
$$

Since

$$
\left\|x_{Q}^{*}-x_{i}^{*}\right\|+\left\|y_{Q}^{*}-y_{i}^{*}\right\| \leq\left\|x_{Q}-x_{i}\right\|+\left\|y_{Q}-y_{i}\right\|<\epsilon,
$$

we have $Q^{*}\left(x_{Q}^{*}, y_{Q}^{*}\right) \in B\left(P_{i}^{*}, \epsilon\right)$, and so $(\theta \circ A)(D)$ is relatively compact.
For each $\epsilon>0$, there exists $\eta>0$, such that $\left\|A\left(x_{1}, y_{1}\right)-A\left(x_{2}, y_{2}\right)\right\|<\epsilon$, for $\left\|x_{1}-x_{2}\right\|+\left\|y_{1}-y_{2}\right\|<\eta$. Since

$$
\begin{aligned}
& \left\|(\theta \circ A)\left(x_{1}, y_{1}\right)-(\theta \circ A)\left(x_{2}, y_{2}\right)\right\| \\
& =\|\left(\max \left\{A_{1}\left(x_{1}, y_{1}\right), 0\right\}-\max \left\{A_{1}\left(x_{2}, y_{2}\right), 0\right\}\right. \\
& \left.\quad \max \left\{A_{2}\left(x_{1}, y_{1}\right), 0\right\}-\max \left\{A_{2}\left(x_{2}, y_{2}\right), 0\right\}\right) \| \\
& \leq\left\|A\left(x_{1}, y_{1}\right)-A\left(x_{2}, y_{2}\right)\right\|<\epsilon
\end{aligned}
$$

We have $\left\|(\theta \circ A)\left(x_{1}, y_{1}\right)-(\theta \circ A)\left(x_{2}, y_{2}\right)\right\|<\epsilon$, for $\left\|x_{1}-x_{2}\right\|+\left\|y_{1}-y_{2}\right\|<\eta$.
Hence, $\theta \circ A$ is continuous in K and $\theta \circ A$ is completely continuous. The proof is complete.

Since f_{i} is continuous, it is clear that $A: K \rightarrow X$ and $T^{*}: K^{\prime} \rightarrow X$ are completely continuous. From Lemmas 2.6 and 2.5 we have $T: K \rightarrow K$ and $T^{*}: K^{\prime} \rightarrow K^{\prime}$ are completely continuous.

Lemma 2.7. If $\left(u_{1}, u_{2}\right)$ is a fixed point of T, then $\left(u_{1}, u_{2}\right)$ is a fixed point of A.
Proof. Suppose $\left(u_{1}, u_{2}\right)$ is a fixed point of T, obviously, we just need to prove that $A_{i}\left(u_{1}, u_{2}\right)(t) \geq 0, i=1,2$, for $t \in[0,1]$.

If there exist $t_{0} \in(0,1)$ and an $i(i=1,2)$ such that $u_{i}\left(t_{0}\right)=T_{i}\left(u_{1}, u_{2}\right)\left(t_{0}\right)=0$ but $A_{i}\left(u_{1}, u_{2}\right)\left(t_{0}\right)<0$. Without loss of generalization, let $i=1$ and $\left(t_{1}, t_{2}\right)$ be the maximal interval and contains t_{0} such that $A_{1}\left(u_{1}, u_{2}\right)(t)<0$ for all $t \in\left(t_{1}, t_{2}\right)$. Obviously, $\left(t_{1}, t_{2}\right) \neq(0,1)$. Or else, $T_{1}\left(u_{1}, u_{2}\right)(t)=u_{1}(t)=0$, for all $t \in[0,1]$. This is in contradiction with (H3).

Case i: If $t_{2}<1$, then $A_{1}\left(u_{1}, u_{2}\right)\left(t_{2}\right)=0$. Thus, $A_{1}^{\prime}\left(u_{1}, u_{2}\right)\left(t_{2}\right) \geq 0$, We obtain

$$
A_{1}^{\prime \prime}\left(u_{1}, u_{2}\right)(t)=-f_{1}\left(t, 0, u_{2}\right) \leq 0, \quad \text { for } t \in\left(t_{1}, t_{2}\right)
$$

So

$$
A_{1}^{\prime}\left(u_{1}, u_{2}\right)(t) \geq 0, \quad \text { for } t \in\left[t_{1}, t_{2}\right]
$$

We obtain $t_{1}=0$, and $A_{1}^{\prime}\left(u_{1}, u_{2}\right)(0) \geq 0, A_{1}\left(u_{1}, u_{2}\right)(0)<0$. This is in contradiction with $A_{1}\left(u_{1}, u_{2}\right)(0)=0$.

Case ii: If $t_{1}>0$, we have $A_{1}\left(u_{1}, u_{2}\right)\left(t_{1}\right)=0$. Thus $A_{1}^{\prime}\left(u_{1}, u_{2}\right)\left(t_{1}\right) \leq 0$. We obtain

$$
A_{1}^{\prime \prime}\left(u_{1}, u_{2}\right)(t)=-f_{1}\left(t, 0, u_{2}\right) \leq 0, \quad \text { for } t \in\left(t_{1}, t_{2}\right)
$$

So

$$
A_{1}^{\prime}\left(u_{1}, u_{2}\right)(t)<0, \quad \text { for } t \in\left[t_{1}, t_{2}\right] .
$$

We obtain $t_{2}=1, A_{1}^{\prime}\left(u_{1}, u_{2}\right)(1) \leq 0$.
On the other hand, $A_{1}\left(u_{1}, u_{2}\right)(t)<0$, for $t \in\left(t_{1}, t_{2}\right), A_{1}^{\prime}\left(u_{1}, u_{2}\right)(1) \leq 0$ imply $A_{1}\left(u_{1}, u_{2}\right)(1)<0$. By $(\mathrm{H} 1), A_{1}\left(u_{1}, u_{2}\right)(1)=\int_{0}^{1} g_{1}(s) u_{1}(s) d s \geq 0$. This is a contradiction. The proof is complete.

3. Main Result

Denote

$$
M_{i}=\max _{t \in[0,1]} \int_{0}^{1} H_{i}(t, s) d s, \quad m_{i}=\min _{t \in[\delta, 1-\delta]} \int_{\delta}^{1-\delta} H_{i}(t, s) d s, i=1,2
$$

Theorem 3.1. Suppose that condition (H1)-(H3) hold. Assume that there exist positive numbers $\delta, a, b, \lambda_{i}, \mu_{i}, i=1,2$, such that $\delta \in\left(0, \frac{1}{2}\right), 0<a<\delta b<b$, $\lambda_{1}+\lambda_{2} \leq 1, \mu_{1}+\mu_{2}>1$, and satisfy
(H4) $f_{i}\left(t, u_{1}, u_{2}\right) \geq 0$, for $t \in[0,1], u_{1}+u_{2} \in[0, b]$;
(H5) $f_{i}\left(t, u_{1}, u_{2}\right)<\frac{\lambda_{i} a}{M_{i}}$, for $t \in[0,1], u_{1}+u_{2} \in[0, a]$;
(H6) $f_{i}\left(t, u_{1}, u_{2}\right) \geq \frac{\mu_{i} \delta b}{m_{i}}$, for $t \in[\delta, 1-\delta], u_{1}+u_{2} \in[\delta b, b]$.
Then, (1.1) has at least two nonnegative solutions $\left(u_{1}, u_{2}\right)$ and $\left(u_{1}^{*}, u_{2}^{*}\right)$ such that $0 \leq\left\|\left(u_{1}, u_{2}\right)\right\|<a<\left\|\left(u_{1}^{*}, u_{2}^{*}\right)\right\|, \alpha\left(u_{1}^{*}, u_{2}^{*}\right)<\delta b$.

Proof. For all $\left(u_{1}, u_{2}\right) \in \partial K_{a}$, from (H5) we have

$$
\begin{aligned}
\left\|T_{i}\left(u_{1}, u_{2}\right)\right\| & =\max _{t \in[0,1]}\left(\int_{0}^{1} H_{i}(t, s) f_{i}\left(s, u_{1}(s), u_{2}(s)\right) d s\right)^{+} \\
& =\max _{t \in[0,1]} \max \left\{\int_{0}^{1} H_{i}(t, s) f_{i}\left(s, u_{1}(s), u_{2}(s)\right) d s, 0\right\} \\
& <\frac{\lambda_{i} a}{M_{i}} \max _{t \in[0,1]} \int_{0}^{1} H_{i}(t, s) d s=\lambda_{i} a
\end{aligned}
$$

Therefore,

$$
\left\|T\left(u_{1}, u_{2}\right)\right\|=\left\|T_{1}\left(u_{1}, u_{2}\right)\right\|+\left\|T_{2}\left(u_{1}, u_{2}\right)\right\|<\lambda_{1} a+\lambda_{2} a \leq a
$$

So (C1) of Theorem 2.1 is satisfied.
For $\left(u_{1}, u_{2}\right) \in \partial K_{a}^{\prime}$, from (H5), we have

$$
\begin{aligned}
\left\|T_{i}^{*}\left(u_{1}, u_{2}\right)\right\| & =\max _{t \in[0,1]} \int_{0}^{1} H_{i}(t, s) f_{i}^{+}\left(s, u_{1}(s), u_{2}(s)\right) d s \\
& <\frac{\lambda_{i} a}{M_{i}} \max _{t \in[0,1]} \int_{0}^{1} H_{i}(t, s) d s=\lambda_{i} a
\end{aligned}
$$

We also obtain

$$
\left\|T_{i}^{*}\left(u_{1}, u_{2}\right)\right\|=\left\|T_{1}^{*}\left(u_{1}, u_{2}\right)\right\|+\left\|T_{2}^{*}\left(u_{1}, u_{2}\right)\right\|<\lambda_{1} a+\lambda_{2} a \leq a
$$

For $\left(u_{1}, u_{2}\right) \in \partial K^{\prime}(\delta b)$, i.e., $\alpha\left(u_{1}, u_{2}\right)=\delta b$, For $t \in[\delta, 1-\delta]$, by Lemma 2.5, we have $\delta b \leq u_{1}(t)+u_{2}(t) \leq b$. From (H6), we obtain

$$
\begin{aligned}
\alpha\left(T^{*}\left(u_{1}, u_{2}\right)\right)= & \min _{t \in[\delta, 1-\delta]} \int_{0}^{1} H_{1}(t, s) f_{1}^{+}\left(s, u_{1}(s), u_{2}(s)\right) d s \\
& +\min _{t \in[\delta, 1-\delta]} \int_{0}^{1} H_{2}(t, s) f_{2}^{+}\left(s, u_{1}(s), u_{2}(s)\right) d s \\
\geq & \min _{t \in[\delta, 1-\delta]} \int_{\delta}^{1-\delta} H_{1}(t, s) f_{1}^{+}\left(s, u_{1}(s), u_{2}(s)\right) d s \\
& +\min _{t \in[\delta, 1-\delta]} \int_{\delta}^{1-\delta} H_{2}(t, s) f_{2}^{+}\left(s, u_{1}(s), u_{2}(s)\right) d s \\
\geq & \frac{\mu_{1} \delta b}{m_{1}} \min _{t \in[\delta, 1-\delta]} \int_{\delta}^{1-\delta} H_{1}(t, s) d s+\frac{\mu_{2} \delta b}{m_{2}} \min _{t \in[\delta, 1-\delta]} \int_{\delta}^{1-\delta} H_{2}(t, s) d s \\
= & \mu_{1} \delta b+\mu_{2} \delta b>\delta b .
\end{aligned}
$$

Therefore (C2) of Theorem 2.1 is satisfied.
Finally, we show that (C3) of Theorem 2.1 is satisfied. Let $\left(u_{1}, u_{2}\right) \in K_{a}^{\prime}(\delta b) \cap$ $\left\{\left(u_{1}, u_{2}\right): T^{*}\left(u_{1}, u_{2}\right)=\left(u_{1}, u_{2}\right)\right\}$, we have

$$
\alpha\left(u_{1}, u_{2}\right)<\delta b,\left\|\left(u_{1}, u_{2}\right)\right\|>a
$$

From Lemma 2.5, we know that

$$
\begin{gathered}
\left\|\left(u_{1}, u_{2}\right)\right\| \leq \frac{1}{\delta} \alpha\left(u_{1}, u_{2}\right)<b \\
0 \leq u_{1}(t)+u_{2}(t)<b
\end{gathered}
$$

From (H4), we obtain

$$
f_{i}^{+}\left(s, u_{1}(s), u_{2}(s)\right)=f_{i}\left(s, u_{1}(s), u_{2}(s)\right)
$$

This implies that $T\left(u_{1}, u_{2}\right)=T^{*}\left(u_{1}, u_{2}\right)$ for

$$
\left(u_{1}, u_{2}\right) \in K_{a}^{\prime}(\delta b) \cap\left\{\left(u_{1}, u_{2}\right): T^{*}\left(u_{1}, u_{2}\right)=\left(u_{1}, u_{2}\right)\right\}
$$

By Theorem 2.1 and Lemma 2.7, we know that 1.1) has at least two nonnegative solutions $\left(u_{1}, u_{2}\right)$ and $\left(u_{1}^{*}, u_{2}^{*}\right)$ such that

$$
0 \leq\left\|\left(u_{1}, u_{2}\right)\right\|<a<\left\|\left(u_{1}^{*}, u_{2}^{*}\right)\right\|, \alpha\left(u_{1}^{*}, u_{2}^{*}\right)<b .
$$

The proof is complete.

Define $\phi: K \rightarrow R^{+}$by

$$
\phi\left(u_{1}, u_{2}\right)=\min _{\delta \leq t \leq 1-\delta} u_{1}(t)+\min _{\delta \leq t \leq 1-\delta} u_{2}(t)
$$

Theorem 3.2. Suppose that condition (H1)-(H3) hold. There exist $\delta \in\left(0, \frac{1}{2}\right)$, $a, b, \lambda_{i}, \mu_{i}>0, i=1,2$, such that $0<a<\delta b<b, \lambda_{1}+\lambda_{2} \leq 1, \mu_{1}+\mu_{2}>1$, and (H5), (H6) hold, and satisfy
(H7) $f_{i}\left(t, u_{1}, u_{2}\right) \geq 0$, for $t \in[0,1], u_{1}+u_{2} \in[\delta b, b]$.
(H8) $f_{i}\left(t, u_{1}, u_{2}\right) \leq \frac{\lambda_{i} b}{M_{i}}$, for $t \in[0,1], u_{1}+u_{2} \in[0, b]$.
Then, (1.1) has at least three nonnegative solutions $\left(u_{1}, u_{2}\right),\left(u_{1}^{*}, u_{2}^{*}\right),\left(u_{1}^{* *}, u_{2}^{* *}\right)$, such that $0 \leq\left\|\left(u_{1}, u_{2}\right)\right\|<a<\left\|\left(u_{1}^{*}, u_{2}^{*}\right)\right\|, \phi\left(u_{1}^{*}, u_{2}^{*}\right)<b, \phi\left(u_{1}^{* *}, u_{2}^{* *}\right) \geq b$.

Proof. Firstly, we prove $T: \overline{K_{b}} \rightarrow \overline{K_{b}}$ is a completely continuous operator. From (H8), for $i=1,2$, we obtain

$$
\begin{aligned}
\left\|T_{i}\left(u_{1}, u_{2}\right)\right\| & =\max _{t \in[0,1]}\left(\int_{0}^{1} H_{i}(t, s) f_{i}\left(s, u_{1}(s), u_{2}(s)\right) d s\right)^{+} \\
& =\max _{t \in[0,1]} \max \left\{\int_{0}^{1} H_{i}(t, s) f_{i}\left(s, u_{1}(s), u_{2}(s)\right) d s, 0\right\} \\
& <\frac{\lambda_{i} b}{M_{i}} \max _{t \in[0,1]} \int_{0}^{1} H_{i}(t, s) d s=\lambda_{i} b
\end{aligned}
$$

Therefore,

$$
\left\|T\left(u_{1}, u_{2}\right)\right\|=\left\|T_{1}\left(u_{1}, u_{2}\right)\right\|+\left\|T_{2}\left(u_{1}, u_{2}\right)\right\|<\lambda_{1} b+\lambda_{2} b \leq b
$$

From Lemma 2.6, we know $T: \overline{K_{b}} \rightarrow \overline{K_{b}}$ is a completely continuous operator. For the operator T and any $u_{1}+u_{2} \in[0, a]$, from (H5) and Theorem 3.1. we know (C5) of Theorem 2.2 is satisfied.

Next, we show that (C4) of Theorem 2.2 is satisfied. Clearly,

$$
\left\{\left(u_{1}, u_{2}\right) \in K(\phi, \delta b, b): \phi\left(u_{1}, u_{2}\right)>\delta b\right\} \neq \emptyset
$$

Assume $\left(u_{1}, u_{2}\right) \in K(\phi, \delta b, b)$, for any $t \in[\delta, 1-\delta]$, we have $\delta b \leq u_{1}+u_{2} \leq b$. From (H6) and (H7) we obtain

$$
\begin{aligned}
\phi\left(T\left(u_{1}, u_{2}\right)\right)= & \min _{t \in[\delta, 1-\delta]}\left(\int_{0}^{1} H_{1}(t, s) f_{1}\left(s, u_{1}(s), u_{2}(s)\right) d s\right)^{+} \\
& +\min _{t \in[\delta, 1-\delta]}\left(\int_{0}^{1} H_{2}(t, s) f_{2}\left(s, u_{1}(s), u_{2}(s)\right) d s\right)^{+} \\
\geq & \min _{t \in[\delta, 1-\delta]} \int_{0}^{1} H_{1}(t, s) f_{1}\left(s, u_{1}(s), u_{2}(s)\right) d s \\
& +\min _{t \in[\delta, 1-\delta]} \int_{0}^{1} H_{2}(t, s) f_{2}\left(s, u_{1}(s), u_{2}(s)\right) d s \\
\geq & \min _{t \in[\delta, 1-\delta]} \int_{\delta}^{1-\delta} H_{1}(t, s) f_{1}\left(s, u_{1}(s), u_{2}(s)\right) d s \\
& +\min _{t \in[\delta, 1-\delta]} \int_{\delta}^{1-\delta} H_{2}(t, s) f_{2}\left(s, u_{1}(s), u_{2}(s)\right) d s \\
\geq & \frac{\mu_{1} \delta b}{m_{1}} \min _{t \in[\delta, 1-\delta]} \int_{\delta}^{1-\delta} H_{1}(t, s) d s+\frac{\mu_{2} \delta b}{m_{2}} \min _{t \in[\delta, 1-\delta]} \int_{\delta}^{1-\delta} H_{2}(t, s) d s \\
= & \mu_{1} \delta b+\mu_{2} \delta b>\delta b .
\end{aligned}
$$

Finally, for $\left(u_{1}, u_{2}\right) \in K(\phi, \delta b, b)$ and $\left\|T\left(u_{1}, u_{2}\right)\right\|>b$, it is easy to prove that

$$
\phi\left(T\left(u_{1}, u_{2}\right)\right) \geq \delta\left\|T\left(u_{1}, u_{2}\right)\right\|>\delta b .
$$

Then (C6) of Theorem 2.2 is satisfied. Therefore from Theorem 2.2 and Lemma 2.7 we know that (1.1) has at least three nonnegative solutions $\left(u_{1}, u_{2}\right),\left(u_{1}^{*}, u_{2}^{*}\right)$, $\left(u_{1}^{* *}, u_{2}^{* *}\right)$, such that

$$
0 \leq\left\|\left(u_{1}, u_{2}\right)\right\|<a<\left\|\left(u_{1}^{*}, u_{2}^{*}\right)\right\|, \quad \alpha\left(u_{1}^{*}, u_{2}^{*}\right)<b, \quad \alpha\left(u_{1}^{* *}, u_{2}^{* *}\right) \geq b .
$$

The proof is complete.

References

[1] Guo Yangping, Ge Weigao, Dong Shijie; Two positive solutions for second order three point boundary value problems with sign changing nonlinearities, Acta Mathematicae Applicate Sinica, 27(2004) 3, 522-529(in Chinese).
[2] Bing Liu; Positive solutions of second-order three-point boundary value problems with changing sign, Computers and Mathematics with Applications, 47(2004) 1351-1361.
[3] Yongping Sun; Nontrivial solution for a three-point boundary-value problem, Electronic Journel of Differential Equations, 111(2004) 1-10.
[4] Jianping Sun, Jia Wei; Existence of positive solution for semipositone second-order threepoint boundary-value problems, Electronic Journel of Differential Equations, 41(2008) 1-7.
[5] Yun Chen, Baoqiang Yan, Lili Zhang; Positive solutions for singular three-point boundaryvalue problems with sign changing nonlinearities depending on x ', Electronic Journel of Differential Equations, 63(2007) 1-9.
[6] Hanyan Lv, Huimin Yu, Yansheng Liu; Positive solutions for singular boundary value problems of a coupled system of differential equations, J. Math. Anal. Appl, 302(2005) 14-29.
[7] Youming Zhou, Yan Xu; Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations, J. Math. Anal. Appl, 320(2006) 578-590.
[8] Liu Xiping, Jia Mei; Multiple nonnegative solutions to boundary value problems with systems of delay functional differential equations, Chinese Journel of Engineering Mathematics, 25 (2008) 4, 685-691.
[9] Yansheng Liu, Baoqiang Yan; Multiple solutions of singular boundary value problems for differential systems, J. Math. Anal. Appl, 287(2003) 540-556.
[10] Zhilin Yang; Positive solutions to a system of second-order nonlocal boundary value problems, Nonlinear Analysis, 62(2005) 1251-1265.
[11] Abdelkader Boucherif; Second-order boundary value problems with integral boundary conditions, Nonlinear Analysis, 70(2009) 364-371.
[12] Meiqiang Feng, Dehong Ji, Weigao Ge; Positive solutions for a class of boundary-value problem with integral boundary conditions in Banach spaces, Journal of Computational and Applied Mathematics, 222(2008) 351-363.
[13] Guo Dajun, Sun Jingxian, Liu Zhaoli; Functional method for nonlinear ordinary differential equation, seconded, Shandong science and technology press, Jinan, 2006 (in Chinese).

College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China

E-mail address, S.Xi: xishouliang@163.com
E-mail address, M.Jia: jiamei-usst@163.com
E-mail address, H.Ji: jihuipeng1983@163.com

[^0]: 2000 Mathematics Subject Classification. 34B10, 34B18.
 Key words and phrases. Nonnegative solutions; fixed-point theorem in double cones; integral kernel; integral boundary conditions.
 © 2009 Texas State University - San Marcos.
 Submitted December 8, 2008. Published May 14, 2009.
 Supported by grant 05EZ53 from the Foundation of Educational Commission of Shanghai.

