Electronic Journal of Differential Equations, Vol. 2009(2009), No. 67, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

COMPARISON RESULTS FOR SEMILINEAR ELLIPTIC EQUATIONS VIA PICONE-TYPE IDENTITIES

TADIE

Abstract

By means of a Picone's type identity, we prove uniqueness and oscillation of solutions to an elliptic semilinear equation with Dirichlet boundary conditions.

1. Introduction

The aim of this work is to provide some comparison and uniqueness results for semilinear Dirichlet problems in a smooth, open and bounded domain $G \subset \mathbb{R}^{n}$, $n \geq 3$. The problems are related to the elliptic operators

$$
\begin{equation*}
\ell u:=\sum_{i j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial}{\partial x_{j}}\right) u+f(x, u)+c(x) u \tag{1.1}
\end{equation*}
$$

The notation in this article is as follows:

$$
\begin{gathered}
D_{i}\{.\}:=\frac{\partial}{\partial x_{i}}\{.\}:=\{\cdot\}_{, i} \\
\forall Y, W \in \mathbb{R}^{n} \text { and } a \in M_{n \times n}, \quad a(Y, W):=\sum_{i, j=1}^{n} a_{i j} Y^{i} W^{j},
\end{gathered}
$$

where $M_{n \times n}$ denotes the space of $n \times n$-matrices. The hypotheses on the coefficients are:
(H1) The functions $a_{i j} \in C^{1}\left(\bar{G} ; \mathbb{R}_{+}\right)$are symmetric and continuous with

$$
\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geq 0 \quad \forall(x, \xi) \in G \times \mathbb{R}^{n} \quad(>0 \text { if } \xi \neq 0)
$$

(H2) The function $c \in C(\bar{G} ; \mathbb{R}) ; f \in C\left(\mathbb{R}^{n} \times \mathbb{R} ; \mathbb{R}\right)$ is non constant; $\mathbb{R}_{+}:=(0, \infty)$ and $\overline{\mathbb{R}}_{+}:=[0, \infty)$. The (classical) solutions for 1.1 belong to the space $C^{1}(\bar{G}) \cap C^{2}(G)$.

[^0]
2. Preliminaries

For the (smooth) functions u, w, as in [1], from the expressions $D_{i}\left\{u a_{i j} D_{j} u-\right.$ $\left.\left(u^{2} / w\right) a_{i j} D_{j} w\right\}$ and $u \ell u$ we have that if $w \neq 0$,

$$
\begin{align*}
& \sum_{i, j=1}^{n} D_{i}\left\{u a_{i j}(x) D_{j} u-\frac{u^{2}}{w} a_{i j} D_{j} w\right\} \tag{2.1}\\
& =w^{2} a\left(\nabla\left[\frac{u}{w}\right], \nabla\left[\frac{u}{w}\right]\right)+u \ell u-\frac{u^{2}}{w} \ell w+u^{2}\left\{\frac{f(x, w)}{w}-\frac{f(x, u)}{u}\right\}
\end{align*}
$$

and if $u \neq 0$, then

$$
\begin{align*}
& \sum_{i, j=1}^{n} D_{i}\left\{w a_{i j}(x) D_{j} w-\frac{w^{2}}{u} a_{i j} D_{j} u\right\} \tag{2.2}\\
& =u^{2} a\left(\nabla\left[\frac{w}{u}\right], \nabla\left[\frac{w}{u}\right]\right)+w \ell w-\frac{w^{2}}{u} \ell u+w^{2}\left\{\frac{f(x, u)}{u}-\frac{f(x, w)}{w}\right\}
\end{align*}
$$

also for $\lambda \neq 0$ if $\ell u=0$, then

$$
\begin{equation*}
\ell(\lambda u)=f(x, \lambda u)-\lambda f(x, u) \tag{2.3}
\end{equation*}
$$

Remark 2.1. Most of the results will be established by the means of integrating over G (which is a regular domain) allowing the integration by parts along its boundary ∂G; this in cases like the left side of say, 2.1, 2.2 and many other cases makes the left side of the integral to be zero when $\left.u\right|_{\partial G}=0$.

Lemma 2.2. If u_{1} and w_{1} are classical solutions of

$$
\begin{equation*}
\ell v=\sum_{i j=1}^{n} D_{i}\left(a_{i j}(x) D_{j}\right) v+c(x) v=0 \quad \text { in } G ;\left.\quad v\right|_{\partial G}=0 \tag{2.4}
\end{equation*}
$$

then

$$
\begin{align*}
\sum_{i . j=1}^{n} D_{i}\left\{u_{1} a_{i j} D_{j} u_{1}-\frac{u_{1}^{2}}{w_{1}} a_{i j} D_{j} w_{1}\right\} & =w_{1}^{2} \sum_{i . j=1}^{n} a_{i j} D_{i}\left[\frac{u_{1}}{w_{1}}\right] D_{j}\left[\frac{u_{1}}{w_{1}}\right] \tag{2.5}\\
& =w_{1}^{2} a\left(\nabla\left[\frac{u_{1}}{w_{1}}\right], \nabla\left[\frac{u_{1}}{w_{1}}\right]\right)
\end{align*}
$$

The proof of the above lemma follows from the identities $2.1-2.2$ where $f \equiv 0$.
Lemma 2.3. If $u, v \in C^{2}$ with $v \neq 0$ then

$$
\begin{align*}
& v^{2} a\left(\nabla\left[\frac{u}{v}\right], \nabla\left[\frac{u}{v}\right]\right)+\sum_{i, j=1}^{n} D_{i}\left(\frac{u^{2}}{v} a_{i j} D_{j} v\right) \tag{2.6}\\
& =a(\nabla u, \nabla u)+u^{2} \frac{\ell v}{v}-c(x) u^{2}-\frac{u^{2} f(x, v)}{v}
\end{align*}
$$

Proof. As in [6, for all $u, v \in C^{2}$ with $v \neq 0$,

$$
D_{i}\left\{a_{i j} \frac{u^{2}}{v} D_{j} v\right\}=\frac{2 u}{v} a_{i j} D_{i} u D_{j} v-\left(\frac{u}{v}\right)^{2} a_{i j} D_{i} v D_{i} v+\frac{u^{2}}{v} D_{i}\left(a_{i j} v_{j}\right)
$$

and

$$
\begin{align*}
& v^{2} a_{i j} D_{i}\left(\frac{u}{v}\right) D_{j}\left(\frac{u}{v}\right) \\
& =a_{i j} D_{i} u D_{j} u-\frac{u}{v} a_{i j}\left(D_{i} u D_{j} v+D_{j} u D_{i} v\right)+\left(\frac{u}{v}\right)^{2} a_{i j} D_{i} v D_{i} v \tag{2.7}
\end{align*}
$$

thus

$$
\begin{aligned}
& \sum_{i, j=1}^{n}\left\{v^{2} a_{i j} D_{i}\left(\frac{u}{v}\right) D_{j}\left(\frac{u}{v}\right)+D_{i}\left(\frac{u^{2}}{v} a_{i j} D_{j} v\right)\right\} \\
& =v^{2} a\left(\nabla\left[\frac{u}{v}\right], \nabla\left[\frac{u}{v}\right]\right)+\sum_{i, j=1}^{n} D_{i}\left(\frac{u^{2}}{v} a_{i j} D_{j} v\right) \\
& =\sum_{i, j=1}^{n} a_{i j} D_{i} u D_{j} u+\frac{u^{2}}{v} \sum_{i, j=1}^{n} D_{i}\left(a_{i j} D_{j} v\right) \\
& :=a(\nabla u, \nabla u)+u^{2} \frac{\ell v}{v}-c(x) u^{2}-\frac{u^{2} f(x, v)}{v}
\end{aligned}
$$

Then 2.6 follows.
To ensure that solutions can be extended in the whole \mathbb{R}^{n} we set the hypothesis (H3) for all $x \in \mathbb{R}^{n}$ and all $t \in \mathbb{R} \backslash\{0\}$, it holds $t f(x, t)>0$.
Lemma 2.4. Assume (H1)-(H3) hold. Let u and v be respectively solutions of

$$
\begin{gather*}
\ell v:=\sum_{i j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial}{\partial x_{j}}\right) v+c(x) v+f(x, v)=0 \quad \text { in } G \tag{2.8}\\
L u:=\sum_{i j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial}{\partial x_{j}}\right) u+c(x) u=0 \quad \text { in } G \tag{2.9}\\
\left.u\right|_{\partial G}=0 ; \quad u>0 \text { in } G \text { and } v>0 \text { somewhere in } G . \tag{2.10}
\end{gather*}
$$

Then v has a zero inside G. The same conclusion holds in the case where the inequalities are reverse in 2.10 . Consequently any component of the support of u or that of $-u$ contains a zero of and vise versa.
Proof. Assume that $v>0$ in G. The integration over G of 2.1 where v replaces w, gives

$$
\begin{equation*}
0=\int_{G}\left[v^{2} a\left(\nabla\left[\frac{u}{v}\right], \nabla\left[\frac{u}{v}\right]\right)+u^{2} \frac{f(x, v)}{v}\right] d x \tag{2.11}
\end{equation*}
$$

which cannot hold as the second member is strictly positive. If the inequalities in (2.10) are reverse we get the same conclusion by applying the result to $-u$ and $-v$.

2.1. Oscillatory solutions.

Definition. A function u is said to be oscillatory in \mathbb{R}^{n} if for all $R>0, u$ has a simple zero in $\Omega_{R}:=\left\{x \in \mathbb{R}^{n}:|x|>R\right\}$. Equation (1.1) is said to be oscillatory if it has oscillatory solutions.

For the equation

$$
\begin{equation*}
L u:=\sum_{i j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial}{\partial x_{j}}\right) u+c(x) u=0 \quad \text { in } \mathbb{R}^{n} \tag{2.12}
\end{equation*}
$$

and for $r>0$ and $I_{n}:=\{(i, j): i, j \in 1,2, \ldots n$.$\} , define$

$$
\begin{gathered}
A(r):=\max _{\left\{I_{n}:|x|=r\right\}}\left\{a_{i j}(x)\right\}, \quad C(r):=\min _{|x|=r} c(x), \\
p(r):=r^{n-1} A(r), \quad q(r):=r^{n-1} C(r)
\end{gathered}
$$

and the associated equation

$$
\begin{equation*}
\left(p(r) y^{\prime}\right)^{\prime}+q(r) y=0 \quad \text { in } \mathbb{R}_{+} \tag{2.13}
\end{equation*}
$$

For some $r_{0}>0$, define

$$
P(t):=\int_{r_{0}}^{t} \frac{d r}{p(r)} \quad \text { if } \lim _{\infty} p(t)=\infty
$$

and

$$
\Pi(t):=\int_{r_{0}}^{t} \frac{d r}{p(r)} \quad \text { if } \lim _{\infty} p(t)<\infty
$$

From [3, Lemma 3.1 and Theorem 3.1], we have the following result.
Lemma 2.5. Let $r_{0}>0$,
(i) $\int_{r_{0}}^{\infty} q(r) d r=\infty$ or

$$
\int_{r_{0}}^{\infty} q(r) d r<\infty \quad \text { and } \quad \lim _{r \nearrow \infty} \inf \left\{P(r) \int_{r}^{\infty} q(s) d s\right\}>\frac{1}{4}
$$

(ii) Π is bounded and $\int_{r_{0}}^{\infty} \Pi(r)^{2} q(r) d r=\infty$, or

$$
\int_{r_{0}}^{\infty} \Pi(r)^{2} q(r) d r<\infty \quad \text { and } \quad \lim _{r \nearrow \infty} \inf \left\{\frac{1}{\Pi(r)} \int_{r}^{\infty} \Pi(s)^{2} q(s) d s\right\}>\frac{1}{4}
$$

If either (i) or (ii) holds, then 2.13) is oscillatory, and so is 2.12.
From [3, Remark 3.3], Lemma 2.4 also holds when $A(r)$ and $C(r)$ are replaced, respectively, by

$$
\begin{gathered}
\bar{a}(r):=\frac{1}{\omega_{n} r^{n-1}} \int_{|x|=r} \max _{I_{n}}\left\{a_{i j}(x)\right\} d s \\
\bar{C}(r):=\frac{1}{\omega_{n} r^{n-1}} \int_{|x|=r} c(x) d s
\end{gathered}
$$

where ω_{n} denotes the area of the unit sphere in \mathbb{R}^{n}.

3. Main Results

Theorem 3.1. Consider the problem

$$
\begin{equation*}
L u:=\sum_{i j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial}{\partial x_{j}}\right) u+c(x) u=0 \quad \text { in } G \tag{3.1}
\end{equation*}
$$

with either

$$
\begin{equation*}
\left.u\right|_{\partial G}=0 ; \quad u>0 \quad \text { in } G \tag{3.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\left.\nabla u\right|_{\partial G}=0 ; \quad u>0 \quad \text { in } G \tag{3.3}
\end{equation*}
$$

Under the hypotheses (H1)-(H2), any two solutions u and v of the problem (3.1), (3.2) or the problem (3.1), (3.3) must satisfy $u=k v$ for some constant $k \in \mathbb{R}$.

Proof. If u and v are two such solutions then after integrating both sides of (2.5), we get the right side strictly positive while the left one is zero (see Remark 2.1 This is absurd unless $\nabla\left[\frac{u}{v}\right] \equiv 0$ in G.

Theorem 3.2. Assume that (H1)-(H2) hold. For the problem

$$
\begin{equation*}
\ell u:=\sum_{i j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial}{\partial x_{j}}\right) u+f(x, u)+c(x) u=0 \quad \text { in } G \tag{3.4}
\end{equation*}
$$

with either

$$
\begin{equation*}
\left.u\right|_{\partial G}=0 ; \quad u>0 \quad \text { in } G \tag{3.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\left.\nabla u\right|_{\partial G}=0 ; \quad u>0 \text { in } G . \tag{3.6}
\end{equation*}
$$

(1) If $f(x, t)$ or $\frac{f(x, t)}{t}$ is decreasing in $t>0$ for any $x \in G$ then any of the problems (3.1), (3.2) ; or (3.1), (3.3) of (1.1) has at most one positive classical solution.
(2) Moreover if $t \mapsto \frac{f(x, t)}{t}$ is monotone in $t>0$ uniformly for $x \in G$ then any two solutions u and v of (1.1) must intersect in the sense that each of the sets $G_{u}:=\{x \in G: u(x)>v(x)\}$ and $G_{v}:=\{x \in G: u(x)<v(x)\}$ has a non zero measure.

Proof. Let u and v be two such solutions.
(1) From 2.1)-(2.2)

$$
\begin{aligned}
& 0=\int_{G} v^{2} a\left(\nabla\left[\frac{u}{v}\right], \nabla\left[\frac{u}{v}\right]\right)+u^{2}\left\{\frac{f(x, v)}{v}-\frac{f(x, u)}{u}\right\} d x \\
& 0=\int_{G} u^{2} a\left(\nabla\left[\frac{v}{u}\right], \nabla\left[\frac{v}{u}\right]\right)-v^{2}\left\{\frac{f(x, v)}{v}-\frac{f(x, u)}{u}\right\} d x
\end{aligned}
$$

whence

$$
\begin{equation*}
0=\int_{G}\left[v^{2} a\left(\nabla\left[\frac{u}{v}\right], \nabla\left[\frac{u}{v}\right]\right)+u^{2} a\left(\nabla\left[\frac{v}{u}\right], \nabla\left[\frac{v}{u}\right]\right)+\left\{u^{2}-v^{2}\right\}\left\{\frac{f(x, v)}{v}-\frac{f(x, u)}{u}\right\}\right] d x \tag{3.7}
\end{equation*}
$$

and the conclusion follows from the fact that in any of the cases, the left hand side of (3.7) is zero and the right strictly positive.
(2) From (2.1)-(2.2), with $X(x):=\frac{f(x, v)}{v}-\frac{f(x, u)}{u}$

$$
\begin{aligned}
0 & =\int_{G}\left\{v^{2} a\left(\nabla\left[\frac{u}{v}\right], \nabla\left[\frac{u}{v}\right]\right)+u^{2} X(x)\right\} d x \\
& =\int_{G}\left\{u^{2} a\left(\nabla\left[\frac{v}{u}\right], \nabla\left[\frac{v}{u}\right]\right)-v^{2} X(x)\right\} d x
\end{aligned}
$$

whence

$$
\begin{equation*}
0=\int_{G}\left[v^{2} a\left(\nabla\left[\frac{u}{v}\right], \nabla\left[\frac{u}{v}\right]\right)+u^{2} a\left(\nabla\left[\frac{v}{u}\right], \nabla\left[\frac{v}{u}\right]\right)+\left\{u^{2}-v^{2}\right\} X(x)\right] d x \tag{3.8}
\end{equation*}
$$

If $t \mapsto \frac{f(x, t)}{t}$ is increasing and $u-v$ does not change sign in G then 3.8 cannot hold as its second member would be strictly positive. Thus to have two distinct solutions in this case none of G_{u} and G_{v} must have zero measure.

Theorem 3.3. Assume that there is $\lambda_{0}>1$ such that for all $(\lambda, x, t) \in\left(\lambda_{0}, \infty\right) \times$ $G \times(0, \infty)$,

$$
\begin{equation*}
\lambda f(x, t)-f(x, \lambda t)>0 . \tag{3.9}
\end{equation*}
$$

Then if for all $x \in G, t \mapsto \frac{f(x, t)}{t}$ is strictly increasing in $t>0$, 1.1) has at most one positive solution.

Proof. Let u and v be two distinct solutions; for $G_{u}:=\{x \in G: u(x)>v(x)\}$, we have $\left.\nabla\{u-v\}\right|_{\partial G_{u}} \not \equiv 0$; otherwise from 2.2),

$$
0=\int_{G_{u}}\left[u^{2} a\left(\nabla\left[\frac{v}{u}\right], \nabla\left[\frac{v}{u}\right]\right)+v^{2}\left\{\frac{f(x, u)}{u}-\frac{f(x, v)}{v}\right\}\right] d x
$$

which would not hold as the second member would be strictly positive.
Let $W \in C(G)$ be defined by $W(x):=(u \vee v)(x):=\max \{u(x), v(x)\}$. Then W is a weak subsolution of 1.1 . We chose $\lambda_{0}>1$ such that for all $(x, \lambda) \in$ $G \times\left(\lambda_{0}, \infty\right) W(x)<\lambda u(x):=V(x)$. By 3.9, V is a supersolution for 1.1) and there is a solution w, say, such that $W \leq w \leq V$ in G, by the super-sub-solutions method. This conflicts with the fact that any two solutions of 1.1) must intersect by Theorem 3.2. In fact such w would not intersect u nor v in the sense of Theorem 3.2.

Theorem 3.4. Assume that (H1)-(H3) hold in the whole \mathbb{R}^{n}. If in addition (i) and (ii) of the Lemma 2.4 hold, then

$$
\ell u:=\sum_{i j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial}{\partial x_{j}}\right) u+f(x, u)+c(x) u=0
$$

is oscillatory in \mathbb{R}^{n}.
The proof of the above theorem is a mere application of Lemmas 2.4 and 2.5 .
Theorem 3.5 (Wirtinger-type inequalities). Assume that (H1)-(H2) hold. Let v be a classical solution of (1.1) and u be a function in $C^{1}(\bar{G})$ such that $\left.u\right|_{\partial G}=0$. Then

$$
\int_{G} v^{2} a\left(\nabla\left[\frac{u}{v}\right], \nabla\left[\frac{u}{v}\right]\right) d x \leq \int_{G} a(\nabla u, \nabla u) d x
$$

and

$$
\int_{G}\left\{c(x) u^{2}+\frac{u^{2}}{v} f(x, v)\right\} d x \leq \int_{G} a(\nabla u, \nabla u) d x
$$

The proof of the above theorem follows from the integration over G of both sides of (2.6).

Concluding remarks. Some of these results can be extended to more general quasilinear equations including the p-Laplacian equations; see 8 .

References

[1] J. Jaros, T. Kusano \& N. Yosida; Picone-type Inequalities for Nonlinear Elliptic Equations and their Applications J. of Inequal. \& Appl. (2001), vol. 6, 387-404 .
[2] K. Kreith; Piconne's identity and generalizations, Rend. Mat., Vol. 8 (1975), 251-261.
[3] T. Kusano, J. Jaros, N. Yoshida; A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of second order, Nonlinear Analysis, Vol. 40 (2000), 381-395.
[4] M. Otani; Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations, J. Functional Anal., Vol. 76 (1988), 140-159.
[5] M. Picone; Sui valori eccezionali di un parametro da cui dipende una equazione differenziale lineare ordinaria del secondo ordine, Ann. Scuola Norm. Pisa, Vol. 11 (1910), 1-141.
[6] S. Sakaguchi; Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola Norm. Sup. Pisa (1987), 404-421.
[7] C. A. Swanson; A dichotomy of PDE Sturmian theory, SIAM Reviews vol. 20, no. 2 (1978), 285-300.
[8] Tadié; Comparison Results for Quasilinear Elliptic equations via Picone-type Identity: Part I: Quasilinear Cases, in print in Nonlinear Analysis (10;1016/J.na.2008.11073)
[9] Tadié; Uniqueness results for decaying solutions of semilinear P-Laplacian, Int. J. Appl. Math., vol. 2, no. 10 (2000), 1143-1152.
[10] Tadié; On Uniqueness Conditions for Decreasing Solutions of Semilinear Elliptic Equations , Zeitschrift Anal. und ihre Anwendungen vol. 18, no. 3 (1999), 517-523.
[11] Tadié; Uniqueness results for some boundary value elliptic problems via convexity , Int. J. Diff. Equ. Appl., vol. 2, no. 1 (2001), 47-53.
[12] Tadié; Sturmian comparison results for quasilinear elliptic equations in \mathbb{R}^{n}, Electronic J. of Differential Equations vol. 2007, no. 26 (2007), 1-8.

Tadie
Mathematics Institut, Universitetsparken 5, 2100 Copenhagen, Denmark
E-mail address: tad@math.ku.dk

[^0]: 2000 Mathematics Subject Classification. 35J60, 35J70.
 Key words and phrases. Picone's identity; semilinear elliptic equations.
 (C) 2009 Texas State University - San Marcos.

 Submitted November 14, 2008. Published May 14, 2009.
 Dedicated to my late son Nkayum Tadie Abissi $(+11 / 03 / 07)$ and to my cousin
 Tagne David Pierre $(+01 / 11 / 08)$; requiescate in pacem.

