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COMPARISON RESULTS FOR SEMILINEAR ELLIPTIC
EQUATIONS VIA PICONE-TYPE IDENTITIES

TADIE

Abstract. By means of a Picone’s type identity, we prove uniqueness and os-
cillation of solutions to an elliptic semilinear equation with Dirichlet boundary

conditions.

1. Introduction

The aim of this work is to provide some comparison and uniqueness results for
semilinear Dirichlet problems in a smooth, open and bounded domain G ⊂ Rn,
n ≥ 3. The problems are related to the elliptic operators

`u :=
n∑

ij=1

∂

∂xi

(
aij(x)

∂

∂xj

)
u + f(x, u) + c(x)u . (1.1)

The notation in this article is as follows:

Di{.} :=
∂

∂xi
{.} := {.},i ;

∀Y,W ∈ Rn and a ∈ Mn×n, a(Y, W ) :=
n∑

i,j=1

aijY
iW j ,

where Mn×n denotes the space of n×n-matrices. The hypotheses on the coefficients
are:

(H1) The functions aij ∈ C1(G; R+) are symmetric and continuous with
n∑

i,j=1

aij(x)ξiξj ≥ 0 ∀(x, ξ) ∈ G× Rn (> 0 if ξ 6= 0).

(H2) The function c ∈ C(G; R); f ∈ C(Rn×R; R) is non constant; R+ := (0,∞)
and R̄+ := [0,∞). The (classical) solutions for (1.1) belong to the space
C1(G) ∩ C2(G).
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2. Preliminaries

For the (smooth) functions u, w, as in [1], from the expressions Di{uaijDju −
(u2/w)aijDjw} and u`u we have that if w 6= 0,

n∑
i,j=1

Di

{
uaij(x)Dju−

u2

w
aijDjw

}
= w2a

(
∇[

u

w
],∇[

u

w
]
)

+ u`u− u2

w
`w + u2

{f(x,w)
w

− f(x, u)
u

} (2.1)

and if u 6= 0, then
n∑

i,j=1

Di

{
waij(x)Djw − w2

u
aijDju

}
= u2a

(
∇[

w

u
],∇[

w

u
]
)

+ w`w − w2

u
`u + w2

{f(x, u)
u

− f(x,w)
w

}
;

(2.2)

also for λ 6= 0 if `u = 0, then

`(λu) = f(x, λu)− λf(x, u) . (2.3)

Remark 2.1. Most of the results will be established by the means of integrating
over G (which is a regular domain) allowing the integration by parts along its
boundary ∂G; this in cases like the left side of say, (2.1) , (2.2) and many other
cases makes the left side of the integral to be zero when u|∂G = 0.

Lemma 2.2. If u1 and w1 are classical solutions of

`v =
n∑

ij=1

Di

(
aij(x)Dj

)
v + c(x)v = 0 in G ; v

∣∣
∂G

= 0, (2.4)

then
n∑

i.j=1

Di

{
u1aijDju1 −

u2
1

w1
aijDjw1

}
= w2

1

n∑
i.j=1

aijDi[
u1

w1
]Dj [

u1

w1
]

= w2
1a(∇[

u1

w1
],∇[

u1

w1
]) .

(2.5)

The proof of the above lemma follows from the identities (2.1)-(2.2) where f ≡ 0.

Lemma 2.3. If u, v ∈ C2 with v 6= 0 then

v2a(∇[
u

v
],∇[

u

v
]) +

n∑
i,j=1

Di

(u2

v
aijDjv

)
= a(∇u,∇u) + u2 `v

v
− c(x)u2 − u2f(x, v)

v
.

(2.6)

Proof. As in [6], for all u, v ∈ C2 with v 6= 0,

Di

{
aij

u2

v
Djv

}
=

2u

v
aijDiuDjv −

(u

v

)2
aijDivDiv +

u2

v
Di(aijvj)

and
v2aijDi

(u

v

)
Dj

(u

v

)
= aijDiuDju−

u

v
aij(DiuDjv + DjuDiv ) +

(u

v

)2

aijDivDiv ;
(2.7)
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thus
n∑

i,j=1

{
v2aijDi

(u

v

)
Dj

(u

v

)
+ Di

(u2

v
aijDjv

)}
= v2a(∇[

u

v
],∇[

u

v
]) +

n∑
i,j=1

Di

(u2

v
aijDjv

)
=

n∑
i,j=1

aijDiuDju +
u2

v

n∑
i,j=1

Di(aijDjv)

:= a(∇u,∇u) + u2 `v

v
− c(x)u2 − u2f(x, v)

v
.

Then (2.6) follows. �

To ensure that solutions can be extended in the whole Rn we set the hypothesis
(H3) for all x ∈ Rn and all t ∈ R \ {0}, it holds tf(x, t) > 0.

Lemma 2.4. Assume (H1)–(H3) hold. Let u and v be respectively solutions of

`v :=
n∑

ij=1

∂

∂xi

(
aij(x)

∂

∂xj

)
v + c(x)v + f(x, v) = 0 in G; (2.8)

Lu :=
n∑

ij=1

∂

∂xi

(
aij(x)

∂

∂xj

)
u + c(x)u = 0 in G; (2.9)

u
∣∣
∂G

= 0 ; u > 0 in G and v > 0 somewhere in G. (2.10)

Then v has a zero inside G. The same conclusion holds in the case where the
inequalities are reverse in (2.10). Consequently any component of the support of u
or that of −u contains a zero of and vise versa.

Proof. Assume that v > 0 in G. The integration over G of (2.1) where v replaces
w , gives

0 =
∫

G

[
v2a

(
∇[

u

v
],∇[

u

v
]
)

+ u2 f(x, v)
v

]
dx (2.11)

which cannot hold as the second member is strictly positive. If the inequalities in
(2.10) are reverse we get the same conclusion by applying the result to −u and
−v. �

2.1. Oscillatory solutions.

Definition. A function u is said to be oscillatory in Rn if for all R > 0, u has a
simple zero in ΩR := {x ∈ Rn : |x| > R}. Equation (1.1) is said to be oscillatory if
it has oscillatory solutions.

For the equation

Lu :=
n∑

ij=1

∂

∂xi

(
aij(x)

∂

∂xj

)
u + c(x)u = 0 in Rn (2.12)

and for r > 0 and In := {(i, j) : i, j ∈ 1, 2, . . . n .}, define

A(r) := max
{In:|x|=r}

{aij(x)} , C(r) := min
|x|=r

c(x) ,

p(r) := rn−1A(r) , q(r) := rn−1C(r)
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and the associated equation(
p(r)y′

)′ + q(r)y = 0 in R+ . (2.13)

For some r0 > 0, define

P (t) :=
∫ t

r0

dr

p(r)
if lim

∞
p(t) = ∞

and

Π(t) :=
∫ t

r0

dr

p(r)
if lim

∞
p(t) < ∞.

From [3, Lemma 3.1 and Theorem 3.1], we have the following result.

Lemma 2.5. Let r0 > 0,
(i)

∫∞
r0

q(r)dr = ∞ or∫ ∞

r0

q(r)dr < ∞ and lim
r↗∞

inf
{
P (r)

∫ ∞

r

q(s)ds
}

>
1
4

(ii) Π is bounded and
∫∞

r0
Π(r)2q(r)dr = ∞, or∫ ∞

r0

Π(r)2q(r)dr < ∞ and lim
r↗∞

inf
{ 1

Π(r)

∫ ∞

r

Π(s)2q(s)ds
}

>
1
4

If either (i) or (ii) holds, then (2.13) is oscillatory, and so is (2.12).

From [3, Remark 3.3], Lemma 2.4 also holds when A(r) and C(r) are replaced,
respectively, by

a(r) :=
1

ωnrn−1

∫
|x|=r

max
In

{aij(x)}ds,

C(r) :=
1

ωnrn−1

∫
|x|=r

c(x)ds

where ωn denotes the area of the unit sphere in Rn.

3. Main results

Theorem 3.1. Consider the problem

Lu :=
n∑

ij=1

∂

∂xi

(
aij(x)

∂

∂xj

)
u + c(x)u = 0 in G (3.1)

with either
u
∣∣
∂G

= 0 ; u > 0 in G (3.2)

or
∇u|∂G = 0 ; u > 0 in G. (3.3)

Under the hypotheses (H1)-(H2), any two solutions u and v of the problem (3.1),
(3.2) or the problem (3.1), (3.3) must satisfy u = kv for some constant k ∈ R.

Proof. If u and v are two such solutions then after integrating both sides of (2.5),
we get the right side strictly positive while the left one is zero (see Remark 2.1.
This is absurd unless ∇[u

v ] ≡ 0 in G. �
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Theorem 3.2. Assume that (H1)-(H2) hold. For the problem

`u :=
n∑

ij=1

∂

∂xi

(
aij(x)

∂

∂xj

)
u + f(x, u) + c(x)u = 0 in G (3.4)

with either
u
∣∣
∂G

= 0 ; u > 0 in G (3.5)
or

∇u|∂G = 0 ; u > 0 in G. (3.6)

(1) If f(x, t) or f(x,t)
t is decreasing in t > 0 for any x ∈ G then any of the problems

(3.1), (3.2); or (3.1), (3.3) of (1.1) has at most one positive classical solution.
(2) Moreover if t 7→ f(x,t)

t is monotone in t > 0 uniformly for x ∈ G then any
two solutions u and v of (1.1) must intersect in the sense that each of the sets
Gu := {x ∈ G : u(x) > v(x)} and Gv := {x ∈ G : u(x) < v(x)} has a non zero
measure.

Proof. Let u and v be two such solutions.
(1) From (2.1)-(2.2)

0 =
∫

G

v2a(∇[
u

v
],∇[

u

v
]) + u2

{f(x, v)
v

− f(x, u)
u

}
dx

0 =
∫

G

u2a(∇[
v

u
],∇[

v

u
])− v2

{f(x, v)
v

− f(x, u)
u

}
dx

whence

0 =
∫

G

[
v2a(∇[

u

v
],∇[

u

v
]) + u2a(∇[

v

u
],∇[

v

u
]) + {u2 − v2}

{f(x, v)
v

− f(x, u)
u

}]
dx

(3.7)
and the conclusion follows from the fact that in any of the cases, the left hand side
of (3.7) is zero and the right strictly positive.

(2) From (2.1)-(2.2), with X(x) := f(x,v)
v − f(x,u)

u

0 =
∫

G

{
v2a(∇[

u

v
],∇[

u

v
]) + u2X(x)

}
dx

=
∫

G

{
u2a(∇[

v

u
],∇[

v

u
])− v2X(x)

}
dx

whence

0 =
∫

G

[
v2a(∇[

u

v
],∇[

u

v
]) + u2a(∇[

v

u
],∇[

v

u
]) + {u2 − v2}X(x)

]
dx . (3.8)

If t 7→ f(x,t)
t is increasing and u − v does not change sign in G then (3.8) cannot

hold as its second member would be strictly positive. Thus to have two distinct
solutions in this case none of Gu and Gv must have zero measure. �

Theorem 3.3. Assume that there is λ0 > 1 such that for all (λ, x, t) ∈ (λ0,∞)×
G× (0,∞),

λf(x, t)− f(x, λt) > 0 . (3.9)

Then if for all x ∈ G, t 7→ f(x,t)
t is strictly increasing in t > 0, (1.1) has at most

one positive solution.
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Proof. Let u and v be two distinct solutions; for Gu := {x ∈ G : u(x) > v(x)}, we
have ∇{u− v}|∂Gu 6≡ 0; otherwise from (2.2),

0 =
∫

Gu

[
u2a(∇[

v

u
],∇[

v

u
]) + v2{f(x, u)

u
− f(x, v)

v
}
]
dx

which would not hold as the second member would be strictly positive.
Let W ∈ C(G) be defined by W (x) := (u ∨ v)(x) := max{u(x), v(x)}. Then

W is a weak subsolution of (1.1). We chose λ0 > 1 such that for all (x, λ) ∈
G × (λ0,∞) W (x) < λu(x) := V (x). By (3.9), V is a supersolution for (1.1) and
there is a solution w, say, such that W ≤ w ≤ V in G , by the super-sub-solutions
method. This conflicts with the fact that any two solutions of (1.1) must intersect
by Theorem 3.2. In fact such w would not intersect u nor v in the sense of Theorem
3.2. �

Theorem 3.4. Assume that (H1)–(H3) hold in the whole Rn. If in addition (i)
and (ii) of the Lemma 2.4 hold, then

`u :=
n∑

ij=1

∂

∂xi

(
aij(x)

∂

∂xj

)
u + f(x, u) + c(x)u = 0

is oscillatory in Rn.

The proof of the above theorem is a mere application of Lemmas 2.4 and 2.5.

Theorem 3.5 (Wirtinger-type inequalities). Assume that (H1)–(H2) hold. Let v
be a classical solution of (1.1) and u be a function in C1(G) such that u

∣∣
∂G

= 0.
Then ∫

G

v2a(∇[
u

v
],∇[

u

v
]) dx ≤

∫
G

a(∇u,∇u)dx

and ∫
G

{
c(x)u2 +

u2

v
f(x, v)

}
dx ≤

∫
G

a(∇u,∇u) dx .

The proof of the above theorem follows from the integration over G of both sides
of (2.6).

Concluding remarks. Some of these results can be extended to more general
quasilinear equations including the p-Laplacian equations; see [8].
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