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EXISTENCE OF POSITIVE SOLUTIONS FOR QUASILINEAR
ELLIPTIC SYSTEMS INVOLVING THE p-LAPLACIAN

XUDONG SHANG, JIHUI ZHANG

Abstract. In this article, we study the existence of positive solutions for the

quasilinear elliptic system

−∆pu = f(x, u, v) x ∈ Ω,

−∆pv = g(x, u, v) x ∈ Ω,

u = v = 0 x ∈ ∂Ω.

Using degree theoretic arguments based on the degree map for operators of

type (S)+, under suitable assumptions on the nonlinearities, we prove the
existence of positive weak solutions.

1. Introduction and main result

In this paper we study the existence of positive solution for the nonlinear elliptic
system

−∆pu = f(x, u, v) x ∈ Ω,

−∆pv = g(x, u, v) x ∈ Ω,
u = v = 0 x ∈ ∂Ω

(1.1)

where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator, and Ω is a smooth
bounded region in RN for N ≥ 1, p > 1.

Elliptic systems have several practical applications. For example they can de-
scribe the multiplicative chemical reaction catalyzed by grains under constant or
variant temperature, a correspondence of the stable station of dynamical system
determined by the reaction-diffusion system. In recent years, many publications
have appeared concerning quasilinear elliptic systems which have been used in a
great variety of applications, we refer the readers to [1, 2, 3, 4, 5, 6] and the ref-
erences therein. Existence and multiplity results for quasilinear elliptic systems
with variational have been broadly investigate. Djellit and Tas [2] studied a class
of quasilinear elliptic systems involving the p-Laplacian operator, the right hand
sides of systems being closed related to the critical Sobolev exponents. Under some
additional assumptions on the nonlinearities, they proved the existence of at least
one nontrivial solution. In [4], the authors studied the existence and multiplicity
of non-negative solutions for the quasilinear elliptic system in both bounded and
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unbounded domain in RN . Zhang [1] used the Leray-Schauder degree to obtain a
positive solution of the nonlinear elliptic system.

In this work, we show the existence of positive solutions for system (1.1). Using
the degree theory for (S)+ operator initiated by Browder [7]. Our main goal in
this article is to extend the main result of [1] to the quasilinear case. The relevant
studies about (S)+ operators can be found in [8, 9, 10].

Through this paper, (u, v) ∈ R2. As to the nonlinearities f, g, we assume that
they are Caratheodory functions satisfying the following growth conditions:
(i) There exist ai ≥ 0, ci ≥ 0(i = 1, 2) such that

0 ≤ f(x, u, v) ≤ a1|(u, v)|q−1 + c1,

0 ≤ g(x, u, v) ≤ a2|(u, v)|q−1 + c2

where 1 < p < q < p∗ = Np
N−p if p < N , or p < q < +∞ if p ≥ N .

(ii) There existence an ε
′
> 0, c3 > 0, 1 < p < θ < p∗ such that

f(x, u, v)u+ g(x, u, v)v ≤ (λ1 − ε′)(|u|p + |v|p) + c3(|u|θ + |v|θ)
where λ1 stands for the first eigenvalue of the operator −∆p in W 1,p

0 (Ω).
(iii) f(x, u, v) and g(x, u, v) also satisfies

lim inf
|(u,v)|→∞

f(x, u, v)
|(u, v)|p−1

= +∞, lim inf
|(u,v)|→∞

g(x, u, v)
|(u, v)|p−1

= +∞.

The main result of this paper is as follows.

Theorem 1.1. Suppose that (i)–(iii) hold. Then (1.1) has a positive weak solution.

The plan of this paper is as follows. In section 2, we shall present some lemmas
in order to prove our main results. The main results is proved in section 3.

2. Preliminaries

We start this section by recalling the definition for operator of type (S)+.

Definition 2.1 ([10]). Let X be a reflexive Banach space and X∗ its topological
dual. A mapping A : X → X∗ is of type (S)+, if for each sequence un in X
satisfying un ⇀ u0 in X and

lim sup
n→+∞

〈A(un), un − u0〉 ≤ 0,

we have un → u0.

If the operator A satisfies the above condition, then it is possible to define its
degree. Now we consider triples (A,Ω, x0) such that Ω is a nonempty, bounded,
open set in X, A : Ω → X∗ is a demicontinuous mapping of type (S)+ and x0 6∈
A(∂Ω). On such triples Browder [7] defined a degree denoted by deg(A,Ω, x0),
which has the following three basic properties:

(i) (Normality) If x0 ∈ A(Ω) then deg(A,Ω, x0) = 1;
(ii) (Domain additivity) If Ω1,Ω2 are disjoint open subsets of Ω and x0 6∈

A(Ω\(Ω1 ∪ Ω2)) then deg(A,Ω, x0) = deg(A,Ω1, x0) + deg(A,Ω2, x0);
(iii) (Homotopy invariance) If {At}t∈[0,1] is a homotopy of type (S)+ such that

At is bounded for every t ∈ [0, 1] and x0 : [0, 1] → X∗ is a continuous
map such that x0(t) 6∈ At(∂Ω) for all t ∈ [0, 1], then deg(At,Ω, x0(t)) is
independent of t ∈ [0, 1].
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Remark 2.2. If the operator A is of type (S)+, and K is compact, then A+K is
of type (S)+.

Lemma 2.3. Assume A is of type (S)+. Suppose that for u ∈ X and ‖u‖X = r.
〈Au, u〉 > 0 is satisfied. Then

deg(A,Br(0), 0) = 1.

In this paper, we denote by Z the product space W 1,p
0 (Ω)×W 1,p

0 (Ω). The space
Z will be endowed with the norm

‖z‖pZ = ‖u‖p
W 1,p

0 (Ω)
+ ‖v‖p

W 1,p
0 (Ω)

, z = (u, v) ∈ Z,

where ‖u‖W 1,p
0 (Ω) = (

∫
Ω
|∇u|pdx)1/p.

As usual, a weak solution of system (1.1) is any (u, v) ∈ Z such that∫
Ω

|∇u|p−2∇u∇ξdx+
∫

Ω

|∇v|p−2∇v∇ζdx−
∫

Ω

f(x, u, v)ξdx−
∫

Ω

g(x, u, v)ζdx = 0

for every (ξ, ζ) ∈ Z.
Next let us introduce the functionals Ii, Fi : Z → Z∗ (i = 1, 2) as follows:

〈I1(u, v), (ξ, ζ)〉 =
∫

Ω

|∇u|p−2∇u∇ξdx,

〈I2(u, v), (ξ, ζ)〉 =
∫

Ω

|∇v|p−2∇v∇ζdx,

〈F1(u, v), (ξ, ζ)〉 =
∫

Ω

f(x, u, v)ξdx,

〈F2(u, v), (ξ, ζ)〉 =
∫

Ω

g(x, u, v)ζdx.

Define the operator
A = I1 + I2 − F1 − F2.

Lemma 2.4. The mapping B = I1 + I2 is of type (S)+.

Proof. Assume that (un, vn) ⇀ (u0, v0) in Z and

lim sup
n→+∞

〈B(un, vn), (un − u0, vn − v0)〉 ≤ 0.

From the weak convergence we have that

lim sup
n→+∞

〈B(u0, v0), (un − u0, vn − v0)〉 = 0.

Then we get

lim sup
n→+∞

〈B(un, vn)−B(u0, v0), (un − u0, vn − v0)〉 ≤ 0.

By the monotonicity property of B, we obtain

lim sup
n→+∞

〈B(un, vn)−B(u0, v0), (un − u0, vn − v0)〉 = 0.

This implies

lim
n→+∞

∫
Ω

(|∇un|p−2∇un − |∇u0|p−2∇u0)(∇un −∇u0)dx

+
∫

Ω

(|∇vn|p−2∇vn − |∇v0|p−2∇v0)(∇vn −∇v0)dx = 0.
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Observe that for all x, y ∈ RN ,

|x− y|p ≤

{
(|x|p−2x− |y|p−2y)(x− y) if p ≥ 2,
[(|x|p−2x− |y|p−2y)(x− y)]p/2(|x|+ |y|)(2−p)p/2 if 1 < p < 2.

So, we obtain

lim
n→+∞

∫
Ω

(|∇un −∇u0|p + |∇vn −∇v0|p)dx = 0.

Thus, we have (∇un,∇vn) → (∇u0,∇v0) in Lp(Ω)×Lp(Ω). Also (un, vn) ⇀ (u0, v0)
in Z, which implies that (un, vn) → (u0, v0) in Lp(Ω)× Lp(Ω). Hence

(un, vn) → (u0, v0) in Z.

The proof is complete. �

Lemma 2.5. The mapping F = F1 + F2 is compact.

The proof of the above lemma follows easily from Hypotheses (i). By Remark
2.2 we have the following result.

Lemma 2.6. The operator A is type of (S)+.

3. Proof of main theorem

Define BKR = {(u, v) ∈ K : ‖(u, v)‖Z < R}, K = {(u, v) ∈ K : u ≥ 0, v ≥
0, a.e.x ∈ Ω}. Now, we give the proofs of the main results.

Proof of Theorem 1.1. There exists R0 > 0 such that

deg(A,BKR , 0) = 0 for all R ≥ R0. (3.1)

Let

〈L(u, v), (ξ, ζ)〉 =
∫

Ω

((k + ε)up−1ξ + (k + ε)vp−1ζ)dx, ∀(ξ, ζ) ∈ Z (3.2)

where k is a real number, 0 < ε < ε
′
. Since L is a completely continuous operator,

the homotopy Ht : [0, 1]×K → Z∗ defined by

〈Ht(u, v), (ξ, ζ)〉 =
∫

Ω

(|∇u|p−2∇u∇ξ + |∇v|p−2∇v∇ζ)dx

− (1− t)
∫

Ω

(f(x, u, v)ξ + g(x, u, v)ζ)dx

− t

∫
Ω

((k + ε)up−1ξ + (k + ε)vp−1ζ)dx,

where the value of k will be fixed later. Clearly Ht is of type (S)+. We claim that
there exists R0 > 0 such that

Ht(u, v) 6= 0 for all t ∈ [0, 1], (u, v) ∈ ∂BKR R ≥ R0.
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Suppose that is not true. Then we can find sequences {tn} ⊂ [0, 1] and {(un, vn)} ⊂
Z such that tn → t ∈ [0, 1], ‖(un, vn)‖Z →∞ and∫

Ω

(|∇un|p−2∇un∇ξ + |∇vn|p−2∇vn∇ζ)dx

= tn

∫
Ω

((k + ε)up−1
n ξ + (k + ε)vp−1

n ζ)dx

+ (1− tn)
∫

Ω

(f(x, un, vn)ξ + g(x, un, vn)ζ)dx

(3.3)

for every (ξ, ζ) ∈ Z. Put (ωn, ψn) = (un,vn)
‖(un,vn)‖Z

, we may assume that there exists
(ω0, ψ0) ∈ Z satisfying

(ωn, ψn) ⇀ (ω0, ψ0) in Z,

(ωn, ψn) → (ω0, ψ0) in Lp(Ω)× Lp(Ω),

(ωn, ψn) → (ω0, ψ0) a.e. x ∈ Ω.

Applying the test function (ωn − ω0, ψn − ψ0) ∈ Z in (3.3), we find∫
Ω

(|∇ωn|p−2∇ωn∇(ωn − ω0) + |∇ψn|p−2∇ψn∇(ψn − ψ0))dx

= (1− tn)
∫

Ω

(
f(x, un, vn)
‖(un, vn)‖p−1

Z

(ωn − ω0) +
g(x, un, vn)
‖(un, vn)‖p−1

Z

(ψn − ψ0))dx

+ tn

∫
Ω

((k + ε)ωp−1
n (ωn − ω0) + (k + ε)ψp−1

n (ψn − ψ0))dx .

(3.4)

We know that

(1− tn)
∫

Ω

(
f(x, un, vn)
‖(un, vn)‖p−1

Z

(ωn − ω0) +
g(x, un, vn)
‖(un, vn)‖p−1

Z

(ψn − ψ0))dx→ 0 n→∞,

tn

∫
Ω

((k + ε)ωp−1
n (ωn − ω0) + (k + ε)ψp−1

n (ψn − ψ0))dx→ 0 n→∞.

By (3.4), we have

lim
n→+∞

∫
Ω

(|∇ωn|p−2∇ωn∇(ωn − ω0) + |∇ψn|p−2∇ψn∇(ψn − ψ0))dx = 0;

i.e.,
lim

n→+∞
〈B(ωn, ψn), (ωn, ψn)− (ω0, ψ0)〉 = 0.

According to Lemma 2.4 we obtain (ωn, ψn) → (ω0, ψ0) in Z as n → ∞ and
‖(ω0, ψ0)‖ = 1. This shows that (ω0, ψ0) 6= (0, 0). Let now apply the test function
(ω0, ψ0) ∈ Z in (3.4), we get∫

Ω

(|∇ωn|p−2∇ωn∇ω0 + |∇ψn|p−2∇ψn∇ψ0)dx

= (1− tn)
∫

Ω

(
f(x, un, vn)
‖(un, vn)‖p−1

Z

ω0 +
g(x, un, vn)
‖(un, vn)‖p−1

Z

ψ0)dx

+ tn

∫
Ω

((k + ε)ωp−1
n ω0 + (k + ε)ψp−1

n ψ0)dx

(3.5)
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Passing to the limit as n→∞, using Fatou’s lemma and hypothesis (iii), we obtain∫
Ω

(|∇ω0|p + |∇ψ0|p)dx ≥ (k + ε)
∫

Ω

(ωp0 + ψp0)dx. (3.6)

Now we take k = ‖(ω0,ψ0)‖p
Z

‖(ω0,ψ0)‖p
Lp×Lp

, by (3.6) we have

k + ε ≤
∫
Ω
(|∇ω0|p + |∇ψ0|p)dx∫

Ω
(ωp0 + ψp0)dx

= k.

This contradiction shows the claim. Using the homotopy invariance of the degree
map, which through the homotopy Ht yields

deg(A,BKR , 0) = deg(H1, B
K
R , 0) for all R ≥ R0.

Now we computing deg(H1, B
K
R , 0). Let the homotopy H ′

t : [0, 1] × k → Z∗ be
defined by

〈H ′
t(u, v), (ξ, ζ)〉 =

∫
Ω

(|∇u|p−2∇u∇ξ + |∇v|p−2∇v∇ζ)dx

− t

∫
Ω

(m(x)ξ +m(x)ζ)dx−
∫

Ω

((k + ε)up−1ξ + (k + ε)vp−1ζ)dx

for all (ξ, ζ) ∈ Z, t ∈ [0, 1], m(x) ∈ L∞+ (Ω) = {u(x) ∈ L∞(Ω)|u(x) ≥ 0,∀x ∈ Ω}.
Clearly, it is a (S)+ homotopy. So we have

deg(H1, B
K
R , 0) = deg(H ′

t, B
K
R , 0).

Similarly, we prove the claim concerning the homotopy H ′
t. By the homotopy

invariance of the degree map, we have

deg(H1, B
K
R , 0) = deg(H ′

1, B
K
R , 0).

Next, we show that deg(H ′
1, B

K
R , 0) = 0. If deg(H ′

1, B
K
R , 0) 6= 0, there exits

(u, v) ∈ BKR such that∫
Ω

(|∇u|p−2∇u∇ξ + |∇v|p−2∇v∇ζ)dx

=
∫

Ω

(m(x)ξ +m(x)ζ)dx+
∫

Ω

((k + ε)up−1ξ + (k + ε)vp−1ζ)dx.

Clearly (u, v) 6= (0, 0), let (ξ, ζ) = (u, v), then∫
Ω

(|∇u|pdx+ |∇v|pdx) ≥ (k + ε)
∫

Ω

(up + vp)dx,

We take k = ‖(u,v)‖p
Z

‖(u,v)‖p
Lp×Lp

, which provides a contradiction. Therefore

deg(A,BKR , 0) = deg(H ′
1, B

K
R , 0) = 0.

So (3.1) holds. Then, note that

λ1 = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω
|∇u|pdx∫

Ω
|u|pdx

,
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we have ‖u‖p
W 1,p

0 (Ω)
≥ λ1‖u‖pLp(Ω). By(ii), we get

〈A(u, v), (u, v)〉 = ‖(u, v)‖pZ −
∫

Ω

(f(x, u, v)u+ g(x, u, v)v)dx

≥ ε′

λ1
(‖u‖p + ‖v‖p)− c4(‖u‖θ + ‖v‖θ),

where c4 > 0. Since θ > p, there exist r > 0 such that

〈A(u, v), (u, v)〉 > 0,

for all (u, v) ∈ ∂BKr , where BKr = {(u, v) ∈ K|‖(u, v)‖Z < r}. In view of Lemma
2.3, there exists sufficiently small r > 0 such that

deg(A,BKr , 0) = 1.

According to the (3.1), we can take R > r such that

deg(A,BKR , 0) = 0.

Since the domain additivity of type (S)+, we obtain

deg(A,BKR \BKr , 0) = −1.

So we are led to the existence of (u, v) ∈ BKr,R = {(u, v) ∈ K|r < ‖(u, v)‖Z < R}
such that A(u, v) = 0. Hence, system(1.1) has a positive solution. �
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