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EXISTENCE OF SOLUTIONS FOR A p(x)-LAPLACIAN
NON-HOMOGENEOUS EQUATIONS

IONICĂ ANDREI

Abstract. We study the boundary value problem

− div(|∇u|p(x)−2∇u) = f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN . Our attention is focused on the
cases when

f(x, u) = ±(−λ|u|p(x)−2u + |u|q(x)−2u),

where p(x) < q(x) < N · p(x)/(N − p(x)) for x in Ω.

1. Introduction and preliminary results

In the recent years increasing attention has been paid to the study of differen-
tial and partial differential equations involving variable exponent conditions. The
interest in studying such problems was stimulated by their applications in elastic
mechanics, fluid dynamics or calculus of variations. For more information on mod-
elling physical phenomena by equations involving p(x)-growth condition we refer
to [1, 5, 11, 22, 26, 30]. The appearance of such physical models was facilitated by
the development of variable Lebesgue and Sobolev spaces, Lp(x) and W 1,p(x), where
p(x) is a real-valued function. Variable exponent Lebesgue spaces appeared for the
first time in literature as early as 1931 in an article by Orlicz [21]. The spaces Lp(x)

are special cases of Orlicz spaces Lϕ originated by Nakano [20] and developed by
Musielak and Orlicz [18, 19], where f ∈ Lϕ if and only if

∫
ϕ(x, |f(x)|)dx < ∞

for a suitable ϕ. Variable exponent Lebesque spaces on the real line have been
independently developed by Russian researchers. In that context we refer to the
studies of Tsenov [29], Sharapudinov [27] and Zhikov [32, 33].

This paper is motivated by the phenomena that can be modelled by the equations

−div(|∇u|p(x)−2∇u) = f(x, u) in Ω
u = 0 on ∂Ω

(1.1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary and 1 < p(x),
p(x) ∈ C(Ω). Our goal will be to obtain nontrivial weak solutions for (1.1) in the
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generalized Sobolev space W 1,p(x)(Ω) for some particular nonlinearities of the type
f(x, u). Problems of type (1.1) have been intensively studied in the past decades.
We refer to [2, 8, 9, 10, 13, 15, 16, 17, 24, 25, 31], for some interesting results.
We point out the presence in (1.1) of the p(x)-Laplace operator. This is a natural
extension of the p-Laplace operator, with p a positive constant. However, such
generalizations are not trivial since the p(x)-Laplace operator possesses a more
complicated structure than p-Laplace operator, for example it is inhomogeneous.

We recall some definitions and properties of the variable exponent Lebesgue-
Sobolev spaces Lp(·)(Ω) and W

1,p(·)
0 (Ω), where Ω is a bounded domain in RN .

Roughly speaking, anisotropic Lebesgue and Sobolev spaces are functional spaces
of Lebesgue’s and Sobolev’s type in which different space directions have different
roles.

Set C+(Ω) = {h ∈ C(Ω) : minx∈Ω h(x) > 1}. For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For p ∈ C+(Ω), we introduce the variable exponent Lebesgue space

Lp(·)(Ω) =
{
u : u is a measurable real-valued function

such that
∫

Ω

|u(x)|p(x) dx < ∞
}
,

endowed with the so-called Luxemburg norm

|u|p(·) = inf
{
µ > 0;

∫
Ω

|u(x)
µ

|p(x) dx ≤ 1
}
,

which is a separable and reflexive Banach space. For basic properties of the variable
exponent Lebesgue spaces we refer to [12]. If 0 < |Ω| < ∞ and p1, p2 are variable
exponents in C+(Ω) such that p1 ≤ p2 in Ω, then the embedding Lp2(·)(Ω) ↪→
Lp1(·)(Ω) is continuous, [12, Theorem 2.8].

Let Lp′(·)(Ω) be the conjugate space of Lp(·)(Ω), obtained by conjugating the
exponent pointwise that is, 1/p(x) + 1/p′(x) = 1, [12, Corollary 2.7]. For any
u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) the following Hölder type inequality∣∣ ∫

Ω

uv dx
∣∣ ≤ ( 1

p−
+

1
p′−

)
|u|p(·)|v|p′(·) (1.2)

is valid.
An important role in manipulating the generalized Lebesgue-Sobolev spaces is

played by the p(·)-modular of the Lp(·)(Ω) space, which is the mapping ρp(·) :
Lp(·)(Ω) → R defined by

ρp(·)(u) =
∫

Ω

|u|p(x) dx.

If (un), u ∈ Lp(·)(Ω) then the following relations hold

|u|p(·) < 1 (= 1; > 1) ⇔ ρp(·)(u) < 1 (= 1; > 1) (1.3)

|u|p(·) > 1 ⇒ |u|p
−

p(·) ≤ ρp(·)(u) ≤ |u|p
+

p(·) (1.4)

|u|p(·) < 1 ⇒ |u|p
+

p(·) ≤ ρp(·)(u) ≤ |u|p
−

p(·) (1.5)

|un − u|p(·) → 0 ⇔ ρp(·)(un − u) → 0, (1.6)
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since p+ < ∞. For a proof of these facts see [12]. Spaces with p+ = ∞ have been
studied by Edmunds, Lang and Nekvinda [6].

Next, we define W
1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) under the norm

‖u‖p(x) = |∇u|p(x).

The space (W 1,p(x)
0 (Ω), ‖ ·‖p(x)) is a separable and reflexive Banach space. We note

that if q ∈ C+(Ω) and q(x) < p∗(x) for all x ∈ Ω then the embedding W
1,p(x)
0 (Ω) ↪→

Lq(x)(Ω) is compact and continuous, where p∗(x) = Np(x)/(N − p(x)) if p(x) < N
or p∗(x) = +∞ if p(x) ≥ N [12, Theorem 3.9 and 3.3] (see also [7, Theorem 1.3
and 1.1]).

2. Main results

In this paper we study (1.1) in the particular cases when

f(x, t) = ±(−λ|t|p(x)−2t + |t|q(x)−2t)

where p(x), q(x) ∈ C+(Ω) with p(x) < q(x) < N · p(x)/(N − p(x)) for any x ∈ Ω
and λ > 0.

First, we consider the problem

−div(|∇u|p(x)−2∇u) = −λ|u|p(x)−2u + |u|q(x)−2u in Ω
u = 0 on ∂Ω

(2.1)

We say that u ∈ W
1,p(x)
0 (Ω) is a weak solution of (2.1) if∫

Ω

|∇u|p(x)−2∇u∇vdx + λ

∫
Ω

|u|p(x)−2uv dx−
∫

Ω

|u|q(x)−2uv dx = 0

for all v ∈ W
1,p(x)
0 (Ω).

We will prove the following result.

Theorem 2.1. For every λ > 0, problem (2.1) has infinitely many weak solutions
provided 2 ≤ p−, p+ < q− and q+ < N · p−/(N − p−).

Next, we study the problem

−div(|∇u|p(x)−2∇u) = λ|u|p(x)−2u− |u|q(x)−2u in Ω
u = 0 on ∂Ω

(2.2)

We say that u ∈ W
1,p(x)
0 (Ω) is a weak solution of (2.2) if∫

Ω

|∇u|p(x)−2∇u∇v dx− λ

∫
Ω

|u|p(x)−2uvdx +
∫

Ω

|u|q(x)−2uv dx = 0

for all v ∈ W
1,p(x)
0 (Ω).

Next, we prove the following result.

Theorem 2.2. There exists λ∗ > 0 such that for any λ ≥ λ∗ problem (2.2) has a
nontrivial weak solution provided p+ < q and q+ < N · p−/(N − p−).

We remark that in the particular case corresponding to p(x) = 2 and q(x) = q,
q being a constant, (2.1) becomes

−∆u = −λu + |u|q−2u in Ω
u = 0 on ∂Ω

(2.3)
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This problem has been studied by Ambrosetti and Rabinowitz [3] provided 2 <
q < 2∗ = 2N/(N − 2). Using the Mountain Pass Theorem combined with the
observation that the operator −∆ + λI (λ > 0) is coercive in H1

0 (Ω), Ambrosetti
and Rabinowitz showed that problem (2.3) has a positive solution for any λ > 0.

3. Proof of Theorem 1

The key argument in the proof is the following version of the Mountain Pass
Theorem (see [23, Theorem 9.12]):

Mountain Pass Theorem. Let X be an infinite dimensional real Banach space
and let I ∈ C1(X, R) be even, satisfying the Palais-Smale condition (i.e., any
sequence {xn} ⊂ X such that {I(xn)} is bounded and I ′(xn) → 0 in X∗ has a
convergent subsequence) and I(0) = 0. Suppose that

(I1) there exists two constants ρ, a > 0 such that I(x) ≥ a if ‖x‖ = ρ,
(I2) for each finite dimensional subspace X1 ⊂ X, the set {x ∈ X1; I(x) ≥ 0} is

bounded.

Then I has an unbounded sequence of critical values.

Let E denote the generalized Sobolev space W
1,p(x)
0 (Ω) and let λ > 0 be arbitrary

but fixed.
The energy functional corresponding to problem (2.1) is defined as Jλ : E → R,

Jλ(u) =
∫

Ω

1
p(x)

|∇u|p(x)dx + λ

∫
Ω

1
p(x)

|u|p(x)dx−
∫

Ω

1
q(x)

|u|q(x)dx.

A simple calculation based on relations (1.4) and (1.5) and the compact embedding
of E into Lr(x)(Ω) for all r ∈ C+(Ω) with r(x) < p∗(x) on Ω shows that Jλ is
well-defined on E and Jλ ∈ C1(E, R) with the derivative given by

〈J ′λ(u), v〉 =
∫

Ω

|∇u|p(x)−2∇u∇vdx + λ

∫
Ω

|u|p(x)−2uv dx−
∫

Ω

|u|q(x)−2uv dx

for any u, v ∈ E. Thus the weak solutions of (2.1) are exactly the critical points of
Jλ.

We show now that the Mountain Pass Theorem can be applied in this case.

Lemma 3.1. There exist η > 0 and α > 0 such that Jλ(u) ≥ α > 0 for any u ∈ E
with ‖u‖p(x) = η

Proof. We first point out that we have

|u(x)|q
−

+ |u(x)|q
+
≥ |u(x)|q(x), ∀x ∈ Ω (3.1)

Using (3.1) we deduce that

Jλ(u) ≥ 1
p+

·
∫

Ω

|∇u|p(x)dx− 1
q−

·
( ∫

Ω

|u|q
−
dx +

∫
Ω

|u|q
+
dx

)
(3.2)

Since p+ < q− ≤ q+ < p∗(x) for any x ∈ Ω and E is continuously embedded in
Lq−(Ω) and in Lq+

(Ω), it follows that there exist two positive constant C1 and C2

such that

‖u‖p(x) ≥ C1 · |u|q+ , ‖u‖p(x) ≥ C2 · |u|q− , ∀u ∈ E. (3.3)
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Next, we focus our attention on the case when u ∈ E with ‖u‖p(x) < 1. For such a
u by relation (1.5) we obtain∫

Ω

|∇u|p(x)dx ≥ ‖u‖p+

p(x). (3.4)

Relations (3.2), (3.3) and (3.4) imply

Jλ(u) ≥ 1
p+

· ‖u‖p+

p(x) −
1
q−

·
[( 1

C1
· ‖u‖p(x)

)q+

+
( 1

C2
· ‖u‖p(x)

)q−]
= (β − γ · ‖u‖q+−p+

p(x) − δ · ‖u‖q−−p+

p(x) ) · ‖u‖p+

p(x)

for any u ∈ E with ‖u‖p(x) < 1, where β, γ and δ are positive constants.
We remark that the function g : [0, 1] → R defined by

g(t) = β − γ · tq
+−p+

− δ · tq
−−p+

is positive in a neighborhood of the origin. We conclude that Lemma 3.1 holds. �

Lemma 3.2. If E1 ⊂ E is a finite dimensional subspace, the set S = {u ∈ E1; Jλ ≥
0} is bounded in E.

Proof. To prove this lemma, we first show that∫
Ω

1
p(x)

|∇u|p(x)dx ≤ K1 ·
(
‖u‖p−

p(x) + ‖u‖p+

p(x)

)
, ∀u ∈ E (3.5)

where K1 is a positive constant. Indeed, using relations (1.4) and (1.5) we obtain∫
Ω

|∇u|p(x)dx ≤ |∇u|p
−

p(x) + |∇u|p
+

p(x) = ‖u‖p−

p(x) + ‖u‖p+

p(x), ∀u ∈ E. (3.6)

On the other hand ∫
Ω

1
p(x)

|∇u|p(x)dx ≤ 1
p+

∫
Ω

|∇u|p(x)dx

and thus (3.5) holds. Also, for each λ > 0 there exists a positive constant K2(λ)
such that

λ ·
∫

Ω

1
p(x)

|u|p(x)dx ≤ K2(λ) ·
(
‖u‖p−

p(x) + ‖u‖p+

p(x)

)
, ∀u ∈ E. (3.7)

By inequalities (3.5) and (3.7), we get

Jλ(u) ≤ K1 ·
(
‖u‖p−

p(x) + ‖u‖p+

p(x)

)
+ K2(λ) ·

(
‖u‖p−

p(x) + ‖u‖p+

p(x)

)
− 1

q+

∫
Ω

|u|q(x)dx

for all u ∈ E.
Let u ∈ E be arbitrary but fixed. We define

Ω1 = {x ∈ Ω; |u(x)| < 1}, Ω2 = Ω \ Ω1.
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Then we have

Jλ(u) ≤ K1 ·
(
‖u‖p−

p(x) + ‖u‖p+

p(x)

)
+ K2(λ) ·

(
‖u‖p−

p(x) + ‖u‖p+

p(x)

)
− 1

q+

∫
Ω

|u|q(x)dx

≤ K1 ·
(
‖u‖p−

p(x) + ‖u‖p+

p(x)

)
+ K2(λ) ·

(
‖u‖p−

p(x) + ‖u‖p+

p(x)

)
− 1

q+

∫
Ω2

|u|q(x)dx

≤ K1 ·
(
‖u‖p−

p(x) + ‖u‖p+

p(x)

)
+ K2(λ) ·

(
‖u‖p−

p(x) + ‖u‖p+

p(x)

)
− 1

q+

∫
Ω2

|u|q
−
dx

≤ K1 ·
(
‖u‖p−

p(x) + ‖u‖p+

p(x)

)
+ K2(λ) ·

(
‖u‖p−

p(x) + ‖u‖p+

p(x)

)
− 1

q+

∫
Ω

|u|q
−
dx +

1
q+

∫
Ω1

|u|q
−
dx.

But there exists a positive constant K3 such that
1
q+

∫
Ω1

|u|q
−
dx ≤ K3, ∀u ∈ E.

Thus we deduce that

Jλ(u) ≤ K1 ·
(
‖u‖p−

p(x) +‖u‖p+

p(x)

)
+K2(λ) ·

(
‖u‖p−

p(x) +‖u‖p+

p(x)

)
− 1

q+

∫
Ω

|u|q
−
dx+K3,

for all u ∈ E. The functional | · |q− : E → R defined by

|u|q− =
( ∫

Ω

|u|q
−
dx

)1/q−

is a norm in E. In the finite dimensional subspace E1 the norms | · |q− and ‖ · ‖p(x)

are equivalent, so there exists a positive constant K = K(E1) such that

‖u‖p(x) ≤ K · |u|q− , ∀u ∈ E1.

As a consequence we have that there exists a positive constant K4 such that

Jλ(u) ≤ K1 ·
(
‖u‖p−

p(x) + ‖u‖p+

p(x)

)
+ K2(λ) ·

(
‖u‖p−

p(x) + ‖u‖p+

p(x)

)
−K4 · ‖u‖q− + K3,

for all u ∈ E1. Hence

K1 ·
(
‖u‖p−

p(x) + ‖u‖p+

p(x)

)
+ K2(λ) ·

(
‖u‖p−

p(x) + ‖u‖p+

p(x)

)
−K4 · ‖u‖q−

p(x) + K3 ≥ 0,

for all u ∈ S. and since q− > p+ we conclude that S is bounded in E. The proof
is complete. �

Lemma 3.3. If {un} ⊂ E is a sequence which satisfies the conditions

|Jλ(un)| < M, (3.8)

J ′λ(un) → 0 as n →∞ (3.9)

where M is a positive constant, then {un} possesses a convergent subsequence.

Proof. First, we show that {un} is bounded in E. Assume the contrary. Then,
passing if necessary to a subsequence, still denoted by {un}, we may assume that
‖un‖p(x) →∞ as n →∞. Thus, we may assume that ‖un‖p(x) > 1 for any integer
n.

By (3.9) we deduce that there exists N1 > 0 such that for any n > N1, we have

‖J ′λ(un)‖ ≤ 1.
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On the other hand, for any n > N1 fixed, the application

E 3 v → 〈J ′λ(un), v〉

is linear and continuous. The above information implies

|〈J ′λ(un), v〉| ≤ ‖J ′λ(un)‖ · ‖v‖p(x) ≤ ‖v‖p(x), ∀v ∈ E,n > N1.

Setting v = un we have

−‖un‖p(x) ≤
∫

Ω

|∇un|p(x)dx + λ

∫
Ω

|un|p(x)dx−
∫

Ω

|un|q(x)dx ≤ ‖un‖p(x)

for all n > N1. We obtain

−‖un‖p(x) −
∫

Ω

|∇un|p(x)dx− λ

∫
Ω

|un|p(x)dx ≤ −
∫

Ω

|un|q(x)dx (3.10)

for any n > N1.
Provided that ‖un‖p(x) > 1 relations (3.8), (3.10) and (1.4) imply

M > Jλ(un)

≥
( 1

p+
− 1

q−

)
·
∫

Ω

(|∇un|p(x))dx

+ λ ·
( 1

p+
− 1

q−

)
·
∫

Ω

|un|p(x)dx− 1
q−

· ‖un‖p(x)

≥
( 1

p+
− 1

q−

)
·
∫

Ω

|∇un|p(x)dx− 1
q−

· ‖un‖p(x)

≥
( 1

p+
− 1

q−

)
· ‖un‖p−

p(x) −
1
q−

· ‖un‖p(x).

Letting n →∞ we obtain a contradiction. It follows that {un} is bounded in E.
Since {un} is bounded in E we deduce that there exists a subsequence, again

denoted by {un}, and u0 ∈ E such that {un} converges weakly to u0 in E. Using
Theorem 1.3 in [7], E is compactly embedded in Lp(x)(Ω) and in Lq(x)(Ω) it follows
that {un} converges strongly to u0 in Lp(x)(Ω) and Lq(x)(Ω). The above information
and relation (3.9) imply

〈J ′λ(un)− J ′λ(u0), un − u0〉 → 0 as n →∞.

On the other hand, we have∫
Ω

(|∇un|p(x)−2∇un − |∇u0|p(x)−2∇u0) · (∇un −∇u0)dx

= 〈J ′λ(un)− J ′λ(u0), un − u0〉 − λ ·
∫

Ω

(|un|p(x)−2un − |u0|p(x)−2u0)(un − u0)dx

+
∫

Ω

(|un|q(x)−2un − |u0|q(x)−2u0)(un − u0)dx.
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Using the fact that {un} converges strongly to u0 in Lq(x)(Ω) and inequality (1.2),
we have∣∣ ∫

Ω

(|un|q(x)−2un − |u0|q(x)−2u0)(un − u0)dx
∣∣

≤
∣∣ ∫

Ω

|un|q(x)−2un(un − u0)dx
∣∣ +

∣∣ ∫
Ω

|u0|q(x)−2u0(un − u0)dx
∣∣

≤ C3 · ‖un|q(x)−1| q(x)
q(x)−1

· |un − u0|q(x) + C4 · ‖u0|q(x)−1| q(x)
q(x)−1

· |un − u0|q(x)

where C3 and C4 are positive constants. Since |un − u0|q(x) → 0 as n → ∞ we
deduce that

lim
n→∞

∫
Ω

(|un|q(x)−2un − |u0|q(x)−2u0)(un − u0)dx = 0, (3.11)

lim
n→∞

∫
Ω

(|un|p(x)−2un − |u0|p(x)−2u0)(un − u0)dx = 0. (3.12)

By (3.11) and (3.12), we obtain

lim
n→∞

∫
Ω

(|∇un|p(x)−2∇un − |∇u0|p(x)−2∇u0) · (∇un −∇u0)dx = 0. (3.13)

It is known that

(|z|r−2z − |t|r−2t) · (z − t) ≥
(1
2
)r|z − t|r, ∀r ≥ 2, z, t ∈ RN . (3.14)

Relations (3.13) and (3.14) yield

lim
n→∞

∫
Ω

|∇un −∇u0|p(x)dx = 0 .

This fact and relation (1.6) imply ‖un − u0‖p(x) → ∞ as n → ∞. The proof is
complete. �

Completed proof of Theorem 2.1. It is clear that the functional Jλ is even and ver-
ifies Jλ(0) = 0. Lemma 3.3 implies that Jλ satisfies the Palais-Smale condition.
On the other hand, Lemmas 3.1 and 3.2 show that conditions (I1) and (I2) are
satisfied. The Mountain Pass Theorem can be applied to the functional Jλ. We
conclude that equation (2.1) has infinitely many weak solutions in E. The proof is
complete. �

4. Proof of Theorem 2.2

Let E denote the generalized Sobolev space W
1,p(x)
0 (Ω) and let λ > 0 be arbitrary

but fixed.
We start by introducing the energy functional corresponding to problem (2.1) as

Iλ : E → R,

Iλ(u) =
∫

Ω

1
p(x)

|∇u|p(x)dx− λ

∫
Ω

1
p(x)

|u|p(x)dx +
∫

Ω

1
q(x)

|u|q(x)dx.

The same arguments as those used in the case of the functional Jλ show that Iλ is
well-defined on E and Iλ ∈ C1(E, R) with the derivative given by

〈I ′λ(u), v〉 =
∫

Ω

|∇u|p(x)−2∇u∇vdx− λ

∫
Ω

|u|p(x)−2uv dx +
∫

Ω

|u|q(x)−2uvdx
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for any u, v ∈ E. We obtain that the weak solutions of (2.1) are the critical points
of Iλ.

This time our idea is to show that Iλ possesses a nontrivial global minimum
point in E. With this end in view we start by proving two auxiliary results.

Lemma 4.1. The functional Iλ is coercive on E.

Proof. To prove this lemma, we first show that for any a, b > 0 and 0 < k < l the
following inequality holds:

a · tk − b · tl ≤ a ·
(a

b

)k/(l−k)
, ∀t ≥ 0. (4.1)

Indeed, since the function [0,+∞) 3 t → tθ is increasing for any θ > 0 it follows
that

a− b · tl−k < 0, ∀t >
(a

b

)1/(l−k)

and
tk · (a− b · tl−k) ≤ a · tk < a ·

(a

b

)k/(l−k)
,∀t ∈ [0, (

a

b
)1/(l−k)].

The above two inequalities show that (4.1) holds. Using (4.1) we deduce that for
any x ∈ Ω and u ∈ E, we have

λ

p−
|u(x)|p(x) − 1

q+
|u(x)|q(x) ≤ λ

p−
[λ · q+

p−
]p(x)/(q(x)−p(x))

≤ λ

p−
[(λ · q+

p−
)p+/(q−−p+) +

(λ · q+

p−
)p−/(q+−p−)]

= C

where C is a positive constant independent of u and x. Integrating the above
inequality over Ω we obtain

λ

p−

∫
Ω

|u|p(x)dx− 1
q+

∫
Ω

|u|q(x)dx ≤ D (4.2)

where D is a positive constant independent of u.
Using inequalities (3.1) and (4.2) we obtain that for any u ∈ E with ‖u‖p(x) > 1,

Iλ(u) ≥ 1
p+

∫
Ω

|∇u|p(x)dx− λ

p−

∫
Ω

|u|p(x)dx +
1
q+

∫
Ω

|u|q(x)dx

≥ 1
p+
‖u‖p−

p(x) −
( λ

p−

∫
Ω

|u|p(x)dx− 1
q+

∫
Ω

|u|q(x)dx
)

≥ 1
p+
‖u‖p−

p(x) −D.

Thus Iλ is coercive and the proof of is complete. �

Lemma 4.2. The functional Iλ is weakly lower semicontinuous.

Proof. First we prove that the functional A : E → R,

A(u) =
∫

Ω

1
p(x)

|∇u|p(x)dx,

is convex. Indeed, since the function [0,∞) 3 t → ts is convex for any s > 1, we
deduce that for each x ∈ Ω fixed it the inequality∣∣z + t

2

∣∣p(x) ≤
∣∣ |z|+ |t|

2

∣∣p(x) ≤ 1
2
|z|p(x) +

1
2
|t|p(x), ∀z, t ∈ RN
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holds. Using the above inequality we deduce that∣∣∇u +∇v

2

∣∣p(x) ≤ 1
2
|∇u|p(x) +

1
2
|∇v|p(x), ∀u, v ∈ E, x ∈ Ω.

Multiplying with 1/p(x) and integrating over Ω we obtain

A
(u + v

2
)
≤ 1

2
A(u) +

1
2
A(v), ∀u, v ∈ E.

Thus A are convex.
Next, we show that the functional A is weakly lower semicontinuous on E. Taking

into account that A is convex, by [4, Corollary III.8] it is sufficient to show that
A is strongly lower semicontinuous on E. We fix u ∈ E and ε > 0. Let v ∈ E be
arbitrary. Since A is convex and inequality (1.2) holds; we have

A(u) ≥ A(u) + 〈A′(u), v − u〉

≥ A(u)−
∫

Ω

|∇u|p(x)−1|∇(v − u)|dx

≥ A(u)−D1 · ‖∇u|p(x)−1| p(x)
p(x)−1

· |∇(u− v)|p(x)

≥ A(u)−D2 · ‖u− v‖p(x)

≥ A(u)− ε

for all v ∈ E with ‖u− v‖p(x) < ε/[‖∇u|p(x)−1| p(x)
p(x)−1

]. We have denoted by D1 and

D2 two positive constants. It follows that A is strongly lower semicontinuous and
since it is convex we obtain that A is weakly lower semicontinuous.

Finally, we remark that if {un} ⊂ E is a sequence which converges weakly to
u in E then {un} converges strongly to u in Lp(x)(Ω) and Lq(x)(Ω). Thus, Iλ is
weakly lower semicontinuous. The proof is complete. �

Proof of Theorem 2.2. By Lemmas 4.1 and 4.2, we deduce that Iλ is coercive and
weakly lower semicontinuous on E. Then [28, Theorem 1.2] implies that there exist
a global minimizer uλ ∈ E of Iλ and thus a weak solution of problem (2.2).

We show that uλ is not trivial for λ large enough. Indeed, letting t0 > 1 be a
fixed real and Ω1 an open subset of Ω with |Ω1| > 0 we deduce that there exists
u0 ∈ C∞

0 (Ω) ⊂ E such that u0(x) = t0 for any x ∈ Ω1 and 0 ≤ u0(x) ≤ t0 in Ω\Ω1.
We have

Iλ(u0) =
∫

Ω

1
p(x)

|∇u0|p(x)dx− λ

∫
Ω

1
p(x)

|u0|p(x)dx +
∫

Ω

1
q(x)

|u0|q(x)dx

≤ L− λ

p+

∫
Ω1

|u0|p(x)dx

≤ L− λ

p+
· tp

−

0 · |Ω1|

where L is a positive constant. Thus, there exists λ∗ > 0 such that Iλ(u0) < 0
for any λ ∈ [λ∗,∞). It follows that Iλ(uλ) < 0 for any λ ≥ λ∗ and thus uλ is
a nontrivial weak solution of problem (2.2) for λ large enough. The proof of is
complete. �

Remark. After this article was accepted, the author learned that the results here
are a particular case of the results in [14].
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[10] M. Ghergu and V. Rădulescu: Singular Elliptic Problems. Bifurcation and Asymptotic Anal-

ysis, Oxford Lecture Series in Mathematics and Its Applications, vol. 37, Oxford University

Press, 2008.
[11] T. C. Halsey: Electrorheological fluids. Science 258 (1992), 761-766.
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Ionică Andrei
Department of Mathematics, High School of Cujmir, 227150 Cujmir, Romania

E-mail address: andreiionica2003@yahoo.com


	1. Introduction and preliminary results
	2. Main results
	3. Proof of Theorem 1
	Mountain Pass Theorem

	4. Proof of Theorem 2.2
	Remark

	References

