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CONTROLLABILITY OF 1-D COUPLED DEGENERATE
PARABOLIC EQUATIONS

PIERMARCO CANNARSA, LUZ DE TERESA

ABSTRACT. This article is devoted to the study of null controllability proper-
ties for two systems of coupled one dimensional degenerate parabolic equations.
The first system consists of two forward equations, while the second one con-
sists of one forward equation and one backward equation. Both systems are in
cascade, that is, the solution of the first equation acts as a control for the sec-
ond equation and the control function only acts directly in the first equation.
‘We prove positive null controllability results when the control and coupling
sets have nonempty intersection and 0 does not belong to the coupling set.

1. STATEMENT OF THE PROBLEM

In this paper we are concerned with the controllability properties of systems of
coupled degenerate parabolic equations. We are going to consider two different
kind of systems: the first one consists of two forward equations and the second one,
consists of one forward equation and one backward equation. More precisely, given
two non empty open sets w C (0,1) and O C (0,1) and a number « € [0,2), we
consider the system of equations

yr — (2%z)s +ct,x)y=E+ hl, inQ=(0,T)x(0,1),
y(t,1)=0 te€(0,T),
y(t,0)=0 f0<a<l,te(0,7), (1.1)
(x%z)(t,0) =0 ifl<a<2 te(0,T),
y(0,-) =y° in (0,1),
and
up — (2%ug )z + d(t, 2)u = ylo inQ,
u(t,1)=0 te(0,7),
u(t,0)=0 f0<a<l,te(0,7), (1.2)
(z%uz)(t,0) =0 ifl1<a<?2 te(0,T),
u(0,-) =u® in (0,1),
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or the system
yr — (2%z)e +et,x)y =&+ hl, inQ,
y(t,1) =0 te(0,T),
y(t,0)=0 if0<a<l,te(0,T), (1.3)
(%) (t,0) =0 fl1<a<2 t€(0,T),
y(07 ) = yO in (07 1) )
and )
—qt — (ma(h:):r + d(t, x)q = y]IO m Qa
qt,1) =0 te(0,7T),
q(t,0)0=0 if0<a<l,te(0,T), (1.4)
(%)(t,0) =0 if1<a<2 te(0,7),
q(T,-)=0 1in (0,1),
where y° € L?(0,1), £ € L?(Q), c(t,z),d(t,x) € L*(Q) are given, h denotes a
control function to be determined, and 14 denotes the characteristic function of the
set A.

Models of type (1.1)-(1.2) are the linear version of more complex models that
appear in mathematical biology and in a wide variety of physical situations (see
e.g. [I7, 20, @]). The controllability properties of nondegenerate parabolic cascade
systems have been studied in different contexts in the last fifteen years or so (see
[2, 22], B, 41, [14), 16] [18]). However, as far as we know, the degenerate case has not
been analyzed in the literature.

On the other hand, coupled systems like (|1.3))-(|1.4) arise in a natural way when
treating “insensitizing problems” (see [19] for the original formulation). To be more
specific, consider the system of equations

gt - (magz)x + C(ta x)gj = 5 + hI[w in Q )
gt,1)=0 te(0,7T),
§(t,0)=0 if0<a<1,te(0,T), (1.5)
(z%9,)(t,0) =0 if1<a<?2 te(0,T),
7(0,) =yo + 750 in (0,1).
In this system, £ € L?(Q) and yo € L?(Q2) are given, h € L?(w x (0,T)) is a control
to be determined and go € L*(Q) is unknown but 7 is small and ||7o[2 = 1. Let
O C Q2 be a nonempty set, and consider the functional

1 T
@(h,r)=§/o/o|g\2dxdt.

We will say that h insensitizes & if

0P
E |T=O
It is not difficult to see (e.g.[2]) that condition (|1.6]) is equivalent to obtain a control
h such that system (|1.3))-(|1.4) satisfies ¢(0,-) = 0.

In this paper we extend the Carleman estimates obtained in one dimensional
domains by the first author and collaborators [0 [I] to the case of cascade systems
as specified before, and recover controllability results similar to those obtained in
[22] and [15].

= 0. (1.6)
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We introduce the weight ens(t) = exp(Mt~*), and define the Hilbert space

T
L*(en () = {f: / / 2t 2)en(t) dudt < oo},
0 Jo
The main results in this paper are as follows.

Theorem 1.1. Assume that 0 ¢ O and that w N O # (). There exists a positive
constant M = M (w,T) such that, if £ € L*(en(T —t)) and y°,u® € L*(Q), then
there exists h € L?(Q) such that the corresponding solution to (L.1))-(1.2)) satisfies
y(T,-) =u(T,-) =0.

Theorem 1.2. Assume that 0 ¢ O and that w N O # (). There exists a positive
constant M = M (w,T) such that, if € € L*(en(t)) and y° = 0, then there exists
h € L*(Q) such that the corresponding solution to (1.3)-(1.4) satisfies ¢(0,-) = 0.

Remark 1.3. Observe that in Theorem we require yo to be equal to zero. In
[22], for the non degenerate case, it is proved that there exists initial data y° € L?()

such that the solution ¢ to (1.4) does not vanish at ¢ = 0 for any h € L?(w x (0,7)).
In other words, system (1.3))-(1.4) is not null controllable for general initial data

in L2. This situation is due to the fact that equation (1.3]) is forward in time and
equation (|1.4) is backward. A more complete analysis of this phenomenon (in the
non degenerate case) can be found in [22] and in [23].

It is by now well understood that the null controllability of systems is equivalent
to the validity of an observability inequality for the adjoint system. To be more
specific, instead of proving Theorems and directly, we will prove equivalent
results. That is, we consider the adjoint system to —,

2zt + (2%24) — c(t, )z =vlp inQ,
z(t,1)=0 te (0,7),
2(t,0) =0 if0<a<l,te(0,7), (1.7)
(x%2)(t,0) =0 ifl1<a<2 te(0,T),
2(T,-) =2 in (0,1)
and
v+ (%) —d(t,x)v =0 inQ,
v(t,1)=0 te(0,T),
v(t,0)=0 f0<a<l,te(0,T), (1.8)
(%) (t,0) =0 ifl1<a<2 te(0,T),
o(T,") =" in (0,1),
and the adjoint system to ([L.3)-(1.4):
2t + (2%24) s — c(t, )z = plo  in Q,
z(t,1)=0 t€(0,T),
z(t,0)=0 if0<a<l,te(0,T), (1.9)
(x%2,)(t,0) =0 if1<a<2 te(0,T),
Z(T,-)=0 in (0,1).
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and .
bt — (xapx)x + d(t7$)p =0 in Q7

p(t,1)=0 te€(0,7), te(0,T),
p(t,0)=0 f0<a<l,te(0,T), (1.10)
(%) (t,0) =0 f1<a<?2, te(0,T),
p(0,-) =p" in (0,1).
Then we have the following observability inequalities.

Proposition 1.4. Suppose O Nw # 0 and suppose that 0 &€ O. Then, there exist
constants M > 0 large enough and C > 0 such that for every solution to (1.7))-(L.8]
the following holds

T
/(v2(0)+z2(0))dx+// e~ M/(T—)" ;2 clavdtSC//z2 dx dt. (1.11)
Q Q 0 Jw

Moreover, there exist positive constants M and C such that for every solution to

(1.9)-(1.10) the following holds

T
// efM/#szxdth//dexdt. (1.12)
Q 0 Jw

The rest of the paper is structured in the following way. In the next section we
prove a Carleman inequality for a single parabolic degenerate heat equation. This
inequality will be used in Section 3 to prove Carleman inequalities for the cascade

systems ((1.7)-(1.8) and ((1.9)-(1.10). In the last section we prove (1.11]) and (1.12]),
and sketch a proof of Theorem the proof of Theorem [T.2] being similar.

2. DEGENERATE PARABOLIC EQUATIONS

In this section we are concerned with the solutions of a degenerate parabolic
equation of the form

ve+ (2%z )z +c(t,z)v=F inQ,
w(t,1) =0 te(0,T),
v(t,0)=0 f0<a<l,te(0,T), (2.1)
(x%3)(t,0) =0 ifl<a<2 te(0,T),
v(0,-) =v° in (0,1).

In the first part of this chapter we prove existence and uniqueness and, in the second
part, we prove the Carleman inequality for (2.1)) that we will use in Chapter 3.

2.1. Well-posedness. First, we briefly describe the weighted spaces where the
above problem is well-posed. Let us set a(z) = 2®. For 0 < « < 1, define the
Hilbert space

H,(0,1) := {u € L*(0,1) : u is absolutely continuous in [0, 1],
Vau, € L*(0,1) and u(0) = u(1) = 0},
and the unbounded operator A : D(A) C L?(0,1) — L?*(0,1) by
Yu € D(A), Au:= (auy),,
D(A) :={u e H}0,1) : au, € H'(0,1)}.
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Notice that, if u € D(A) (or even u € H}(0,1)), then u satisfies the Dirichlet
boundary conditions u(0) = u(1) = 0.
For 1 < a < 2, let us change the definition of H}(0,1) to

H0,1) := {u € L*(0,1) : u is locally absolutely continuous in (0, 1],
Vau, € L*(0,1) and u(1) = 0}.
Then, the operator A : D(A) C L?(0,1) — L2(0,1) will be defined by
Vu € D(A), Au:= (auy),,
D(A) :={u € L?*(0,1) : u is locally absolutely continuous in (0, 1],
au € Hy(0,1), au, € H'(0,1) and (au,)(0) = 0}.
In fact, it can be proved (see, e.g., [7]) that
D(A) = {u € HX0,1) : au, € H'(0,1)}.

Notice that when u € D(A), then u satisfies the Neumann boundary condition
(auy)(0) = 0 and the Dirichlet boundary condition u(1) = 0.

In both cases 0 < a < 1 and 1 < a < 2, the following results hold, (see, e.g., [3]
and [@]).

Proposition 2.1. The operator A : D(A) C L?(0,1) — L?(0,1) is closed self-
adjoint negative, with dense domain.

Hence, A is the infinitesimal generator of a strongly continuous semigroup e”
on L?(0,1). Consequently, we have the following well-posedness result.

Theorem 2.2. Let F be given in L?>(Qr). For all vg € L?(0,1), problem (2.1) has
a unique solution

veU :=C0,T]; L*(0,1)) N L*(0,T; H:(0,1)). (2.2)
Moreover, if vg € D(A), then
v e C([0,T); H:(0,1)) n L*(0,T; D(A)) N H*(0,T; L*(0,1)). (2.3)

Remark 2.3. Most of the results of this paper hold (and will be stated) for solu-
tions in the above class . However, in the proofs, we will assume—often without
further notice—that solutions belong to the stronger class . This can yields no
loss of generality, since the general result can always be recovered by a standard
density argument.

2.2. Carleman inequalities. For w = (a,b) let us call kK = QC‘TH’, A= %2{’7 and
let £ € C?(R) be such that 0 < ¢ <1 and

)1 ifxe(0,k)
§(”'3)_{0 itz e (\1).

Let us define
1
NEEE

e) = {(wz“’ —e), 0<a<2 a#l, Voelol]

vVt e (0,7),

(e® — c1), a=1,Vze[0,1]



6 P. CANNARSA, L. DE TERESA EJDE-2009/73

where ¢ is such that ¢ (z) < 0 for every = € [0, 1]. Now, let us set
1— xa/Z
((z) = m,

W(z) = 20 — gre@)

®(t,z) = 0(1)[E(x)Y(x) — (1 — &(2))¥(x)].
The main result of this section is as follows.

Theorem 2.4. Let 0 < a <2 and T > 0 be given. Then there exists two positive
constants C, sg such that for all s > so and for every solution v € U to (2.1)),

// (80202 + s30322~*0?)e?*® dx dt
Q

T
§C’(// eZSQFdedtﬁ—//eQS(Ddexdt)
Q 0 Jw

Remark 2.5. This inequality was basically proved in [6] [I [8]. The reason why we
provide the proof is that, here, we need the locally distributed term in the right-
hand side of to appear with the same exponential weight as in the left-hand
side of the inequality. In [6] [I, [§] such a term was replaced by a boundary term
involving the normal derivative of the solution.

(2.4)

The proof of Theorem [2.4] will be given at the end of this section as a consequence
of the following result. Let us consider any solution v to the system

v+ (2%), = F in Q,
v(t,1)=0 te(0,T),
v(t,0)=0 f0<a<l,te(0,T), (2.5)
(%) (t,0) =0 if1<a<2, te(0,T),
v(0,-) =% in (0,1).
Theorem 2.6. Let 0 < a <2 and T > 0 be given. Then there exists two positive
constants C, sg such that for all s > sq and for every solution v € U to ,

// (50202 + s303 22 0?)e?*® dx dt
Q

T
SC(// 625®F2dxdt+//628‘1’v2)
Q 0 Jw

The proof of Theorem follows the ideas of [I]. That is, we prove first a
Carleman inequality for the degenerate part and combine it with a classical Car-
leman inequality for the non degenerate part. We will see that the appropriate
combination of both inequalities drives to .

Let ¢(t,x) = 1(2)0(t). Then we will prove the following result.

(2.6)

Theorem 2.7. Let 0 < a <2 and T > 0 be given. Then there exists two positive
constants C, sg such that for all s > sg and for every solution v € U to (2.5)),

2 2
// (\(CUQU;)H n \vt9| + 363002 +3303m2’av2)623*’ da dt
Q S S

T
< C’(// 25 2 dxdtJr/ 59628¢Ui|$:1).
Q 0

(2.7)
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For the proof of Theorem [2.7] we follow the ideas in [6] [I], that is we use an
appropriate change of variables and the following Hardy type inequality.

Lemma 2.8. (1) Let 0 < o* < 1. Then, for all locally absolutely continuous
function u € (0,1) satisfying

1
u(z) — 0 asz — 0" and / * uidr < oo,
0

the following inequality holds

1 oo g 4 1 o g
x® “futdx < 7/ % uidz. (2.8)
/0 (1—a*)? Jo

(2) Let 1 < a* < 2, then the above inequality (2.8)) still holds for all locally
absolutely continuous function u in (0,1) satisfying

1
u(z) - 0asx— 1" and / ¥ uldr < co.
0

Remark 2.9. Observe that is false for a* = 1.
Sketch of the proof of Theorem[2.7 Let us define w(t, z) = e*?(t:2)y (¢, ) where v
satisfies . Then w solves
(e7*Pw); + (z%(e *Pw)z)e = F inQ,
w(t,1)=0 te(0,7),
w(t,0)=0 f0<a<l,te(0,T), (2.9)
(z%w,)(t,0) =0 if1<a<?2, te(0,T),
w(0,-) =w(T,-) =0 in (0,1),
We can rewrite the above system as
Pow = Pfw + P w = Fe*®

where

zxo‘goiw + (2%wy) g,

Pfw=—spyw+s
P7 = wi — s(x%py)sw — 252" 0wy,

We observe that, for o # 1,

(2%Wwg) e = Pirw + 80; (227 — ¢1)w — s2cor® 0w (2.10)
with co a generic constant, whereas, for a = 1,
(2%Wy )y = Pirw + s0,(e” — c1)w — s*ze* 0 w. (2.11)

Observe that
[Fe*?||? > | Pfw|? + | Py w]® + 2(Pfw, P w).

S S

Following [6], we conclude that, for every 0 < a < 2,
1Fe?]|* > [|PFwl* + [P w]* + 2P w, P w)

S S

> || Pfwl|]? + || Py w|)? + Cs? // 0322 *w? + Cs/ 0z *w?
o (2.12)

T
—C// {s6w?}
0

=
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Now, we consider the case o # 1. From (2.10) and the fact that |6,] < C8°/* <
C#? we obtain

« 2
// (@ we)o” ) g
Q 08

[P | 07 o 07 sia), 2, 303 2(2-a), 2
§C< 2t s—w' +s—zx w’ + s5°0°x w dxdt).
o Us 0 0

(2.13)

Observe that

2
// se—twggC// $0%/2w? dx dt
Q ¢ Q

= C’//51/291/2101‘“7_291033_(07_2)31/2 dx dt

< C’[// sOw?x*2 4+ // 02w dx dt}
Q

and, since 2 < 1 and 63/2 < C(T)6?,

2
// (9(9—%(;2(2_0‘)102 < C// s03/222C2=)2 do dt
Q ¢ Q

= C// $02w? x> dx dt.
In conclusion,

2 P+ 2
// |(z%wg)a|? wm 2| i dt<C // 1P 5393w2x2_adxdt+// sOwpo—? dmdt)-
Q

Applying Hardy’s inequality, we obtain

/I )y,

(2.14)
‘P+|2 $30°w2p2—2
<C dz dt + 0" w2 dx dt + sﬁw dxdt
Proceeding as before, it is not dlfﬁcult to prove that
2
/ L
Q Os
P (2.15)
gc(/ dxdt+// $303w2z?~ “dxdt—i—// sﬁwimadmdt).
Q
Combining (2.12)), (2.14) and (2.15) we conclude that, for s large enough,
2 a 2
Ol Fes?|? z// Mdzdw/ Wotwa)o” 0 g
Q 0s Q 0s
(2.16)

T
+ 53 // 032 *w? + 3/ Ox*w? — C”/ {s0w?}
Q 0 a=

For o # 1 recall that ¢ = 0(t)y(x) with
Ve =c1(2— )zt and e = c1(2 — a)(1 — a)z ™.

1.
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Then z2%¢% = C2?C~) and 2%¢2 = C2?~*. Moreover, v(t,z) = e *fw(t, ),
vy = —sOve Pw + e %Pwy and v, (¢, x) = —sOe” P w + e~ *Pw. Therefore,
2 a 2
// (530323270‘1)2 + s@xavi + % + (2 UI)I) dx dt
o Os fs

< // <3393x2_a6_2ww2 + 502 (2520%2 e 2P w?) + 26_25“’1032[) dx dt

—2s¢p 202,12 ,—25p,,2 2
// e w 28 at,(/J (& w +?($ ww)2 —Zéip) dl'dt

0s
62
// ax2(a 1)1&26_2”11) +2 7 2"1/}5,:”6_23“%02) dx dt
s
92
// 2aw e 250> +4 e S Vi )dxdt

Using several times the Hardy type estimate and the bounds on ¢ and on its
derivatives, it is not difficult to conclude that

2 [e% 2
// e25% 539%2*0‘1)2 + sﬁxavﬁ + th + (@ 9%%)
s

2
<C// 3032aw2+sﬂxw+— (2%wg); )

(2.17)
0s 0s

Observe that v|,—1 = 0 and then vg|,—1 = e*?w;|,—1. The latter combined with

(2.16) and (2.17) leads to (2.7)).

We now consider the case « = 1. From ([2.11)) we have

/I [CTAH

P+ 2 2
< C’ // | | —1—309 ze® w? + $30%z2¢ 4mw2dxdt).

(2.18)

Observe that
1 2 1
’/ so—tw2dm| < C’/ 563/2 (x71/4w3/2)(x1/4w1/2> dx
o 0 0
1 3/4
< C/ s (Hx_l/?’wg) (939611)2)1/4 dx
0

1 1
<(C (/ 89$_1/3w2dm> (/ 93xw2da:)
0 0

We now use Hardy’s inequality with o = 5/3 to obtain

1 p2 1 1
07 o / 5/3, 2 3/4 / 3.2 1/4
dz| < C 0 d 0 d ) 2.19
|/056w x|_ (Osx wxx) (0 W x) ( )

Since 5/3 > 1, using Young’s inequality we get, by integrating in time,

62 )
|// Sixel/rwqu:dﬂ < C(// 591"11)926 dx dt + // $303zw? dx dt)
Q ¢ Q Q

3/4 1/4
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Proceeding as before it is not difficult to see that

2 P+2
// |wa e gt < © //' | // soa;wgda:dt+// 5393xw2dzdt).
Q Q Q

In a similar way the following inequality can be proved

2 —12
// [ dxdtSC(/ Lis +// sea:wgdxdtJr// 53931w2d$dt)~

The last part of the proof is similar to the case « # 1, the only difference being the
use of Hardy’s inequality (false if « = 1) with the same exponent as in (2.19). O

We will also need the following Carleman estimates, valid in the nondegenerate
case.

Proposition 2.10 (Classical Carleman Estimates). Let z be solution of

Zt + (a(x)zz)z - C(tax)z =h inQ,

2(t,1) =0, z(t,00=0 te(0,T), (2.20)

where a € C'([0,1]) is a strictly positive function. Let us define o(t,z) = 0(t)¥(z).
Then there exist two positive constants r and sg such that for any s > sg, the

solution of 1’ satisﬁes

2
// + |Zt0| _1_867'((36)92: +8393 3r¢(x) 2) —2s0 dx dt

<C // —%QthxdtJr// e=250,2 dxdt)

for some positive constant C.

(2.21)

The proof of the above result is by now classical and can be found, e.g., in [12].
We are now almost ready to prove Theorem First, we recall Caccioppoli’s
inequality. For completeness, we give a sketch of its proof in the appendix at the
end of the paper. A complete proof can be found in [IJ.

Lemma 2.11 (Caccioppoli’s inequality). Suppose w’ CC w, then there exists a
constant C' > 0 such that, for every solution of (2.5)), the following inequality holds

T T
// v2e**® da dt < C(//U%QS@ dscdt+/ F? dmdt).
0 Jw’ 0 Jw Q

Proof of Theorem[2.6. Observe that v = &v + (1 — &)v. Define w = v, clearly w is
solution of equation (2.5) with second member G = F + (2*&,v), + Epx®v,. We
can then apply inequality (2.6 to w. Observe that, by construction, wy|,—1 = 0.
Then

2
// JU wx 3: + ‘wta‘ —|—8303-’1) w? +8303 2— osz) QSwdxdt

<C // 2g“"deavclt—I—// e (v? +v)dmdt)



EJDE-2009/73 CONTROLLABILITY OF PARABOLIC EQUATIONS 11

Since, for z € (0, k), ¢(x) = ®(x) and w = v, we have

2
// (\x%x +\”t9| +5393%,0Jrsgt()?,zaz) 25® 10 1

<C // 25“’F2dxdt+// e3¢ (2 +v)dmdt)
Q

Define z = (1 — £)v, then z is solution to (2.20) (in fact in an smaller set Q5 =
(0,1) x (0,T)) with h = (1 = &) F — (2%&v), — £x2%v, and inequality

(2.22)

2 2
// (|(a(m);x)x‘ + |Zt9| + serC(I)QZ?C + 539363%(1’)22)6*28@ dx dt
Qs S S

T (A
SC// e_ZSQFdedt—i—C// e 2 (v? +v2) dx dt (2.23)
Q 0JkK
T
+C//e_2‘sgz2 dx dt.
0 Jw

Again, since —p(t,x) = ¥(t,z) and z = v for z € (A, 1), we obtain

(z* Uw z |ve|? r¢(z) p, 2 303 3r¢(z),2 | 2s®
—|— 7 + se Ov; + s°0%e v* ) e**V da dt
s

T rA
< C // e 2R dy dt + / / e 2% (v? 4 v2) dx dt) .
Q 0Jk

Observe that, for z € (k,1), 2@ < Ce™®) and 22~ < Ce?¢(*), So, combining
inequalities (2.24) and (2.23)), and adding to both sides of the inequality the term

T A
// e?s® (s°0°2*~*0* 4 s02°v2) da dt
0 Jk

(2.24)

we obtain

2
// (2 % o] |Ut| + s2%0v> + 3393952_“1)2)623@ dx dt

s0
T X
< C // (e72%¢ 4 e2%°)F2 dx dt +/ / (e72%¢ 4 €25 4 2% (v 4 v2) da dt)
Q 0 JkK

Observe that —p , ¢ and ® are equivalent for x € (x, ), which means that, for
some C > 0,

// (L' ’Ur m |Ut0| + sx“@vi +5303x27av2)e2s<1> da dt
S

T A
§C’ // eZSq)dexdt—&—// 628¢(v2—|—v3)dxdt).
Q 0JkK

We conclude the proof of Theorem [2.6] combining this last inequality with Cac-
ciopoli’s inequality. (I
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Proof of Theorem[2.]] Apply Theorem to (2.5) for F = F — ¢(t,z)v. Then,
clearly v the solution to ([2.1)) satisfies

// (502 + 530322 *0?)e®? do dt
Q

T
§C’(// 628¢(F2+C2(t,$)’02)d1‘dt+//625(1)’()2).
Q 0 Jw

Observe that %72 is a decreasing function in (0,1) and lim,_o+ 2%~2 = co. That
means that

(2.25)

At x) < lell3z™ V(tx) €Q,

// e2s¢02(t,x)v2dmdt§C||c\|go// 2s® p0a=202 da dt . (2.26)
Q

For a # 1 we apply Hardy inequality to w = e*®v. Then,

// 2sq’a22dxdt<0 // 2<I>222S‘I>+xv625q>d:cdt>

Observe that for x € (0,k), ®, = (2 — a)z!~*0(t) and for 1 > = > k there exists
C such that ®, < C(2 — a)x!720(t). Then, the last inequality with (2.26]) implies
that there exists C' > 0 such that

// (80202 + s303220?)e?*® dx dt
Q

T
SC’(// 2?2 da:dt+// (227 *5%0%0* + 2%v2)e 23¢dmdt+//625¢112>.
Q Q 0 Jw

Observe that in the right hand side we have smaller exponents of s so for s large

enough we obtain ([2.4)).
The proof for a = 1 is similar but, instead of (2.26)), observe that

// e P2 (t, x)w? dr dt < Clle||, // 2P V302 da dt (2.27)
Q Q
to obtain

// (s0zv2 + s30320?)e®*® da dt
Q

T
SC’(// e p2 dmdt—!—// (2°320%0% 4 25/302)e??® dxdt—!—//erq)vZ).
Q Q 0 Jw

The conclusion is then straightforward. (I

SO

3. CARLEMAN INEQUALITY FOR CASCADE SYSTEMS

In this section we will prove a Carleman inequality that is valid for both: the

adjoint system to (L.1)-(1.2), i.e.,
2zt + (%) — c(t,2)z = vlp in Q,
A1) =0 te(0,T),
2(6,0)=0 f0<a<1,te(0,T), and (3.1)
(x%2)(t,0)=0 fl1<a<2,t€(0,T),
2(T,-)=2° in (0,1),



EJDE-2009/73 CONTROLLABILITY OF PARABOLIC EQUATIONS 13

v+ (%) —d(t,z)v =0 in Q,
v(t,1)=0 te€(0,T),
v(t,00=0 if0<a<l,te(0,T), (3.2)
(x%,)(£,0) =0 f1<a<2, t€(0,T),
o(T,) =" in (0,1),
and the adjoint system to —, ie.,
2t + (%) — c(t, )z =plo in Q,
z2(t,1) =0 te€(0,7),
z(t,0)=0 if0<a<l1,te(0,T), (3.3)
(x%%)(t,0)=0 f1<a<2 te(0,T),
2(T,)=2° in (0,1).
and
P — (@pa)s +d(t,a)p =0 in Q,
p(t,1)=0 te(0,T7),
p(t,0)=0 f0<a<l,te(0,7), (3.4)
(%) (t,0) =0 fl1<a<2, te(0,T),
p(0.)=p" in(0,1).
Remark 3.1. Observe that in we have allowed for z(T) any value 2° in
L?(0,1). This can be so since the Carleman inequality is valid for general data.

However, in the next section, where the observability inequality is proved, it is
necessary to consider z(T') = 0.

We have the following result.

Theorem 3.2. Assume O Nw # 0 and suppose that 0 ¢ O. Then there exist two
positive constants C, sq such that, for all s > sy and every solution to (3.1))-(3.2)),
the following holds

// (s@xavg + s3032% 7% + shz2% + 3393362*“22) e?® dx dt
Q

T
SC//eQS‘I’fd:cdt.
0 Jw

Moreover, there exist two positive constants C, sg such that, for all s > so and every

solution to (3.3))-(3.4)), the following holds

// (s02°p2 + $%032% P + 02722 + s20°2?~2?) *% du dt
Q

T
SC//62S<D22dxdt.
0 Jw

Proof. We will prove only (3.6). Indeed, the proof of is similar because the
boundary conditions at ¢ = 0,7 are made irrelevant by the fact that the weight
07e2® with j = 1,3, vanishes as t — 0 and t — T. Let us define p(t) = v(T — t),
with v solution to , and observe that p solves (with an appropriate choice
of d).

(3.5)

(3.6)
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The proof is to be completed in several steps.

Step 1. Take O’ CC wN O. Observe that w(t,z) := p(T — t,x) solves (2.1) and
apply Theorem to p, which is a solution of (3.4). Then, for s > s1, we get

T
// (seacapi + 3393332_0‘192) e da dt < C/ / 2%2 da dt. (3.7)
Q 0 !

Theorem [2.4] can also be applied to z yielding

// (s@xapi + 83935627&}?2) e dx dt + // (SHxazz + 3393:32*”‘22) e®?® dx dt
Q

T
gc[// 25¢2dxdt+// e (p? +z)d:rdt]
O 7

Now, observe that, since 0 & O,

T T
// #5p? do dt < c// s°032%p?e*® dw dt < C’// 2P p?dadt . (3.8)
0 Q 0o’

All together, we obtain

// (s02°p% + s20322p*)e®® du dt + // (s02%22 + 3032%7*22)e*® da dt
Q Q

T
§C{// er‘b(pQ—&—zQ)dxdt}.
O ’

(3.9
Step 2. Take O’ CCw' CCwNO. Let & € C§°(N) be such that
1>62>0, &Gz)=1ifze0, &x)=0ifze O\ (3.10)
Furthermore, we shall require &; to satisfy
A& V&
7z L>(Q), 73 € L>(Q). (3.11)
1 1

Observe that condition (3.11) is easy to obtain: it suffices to take £ € C§°(Q)

satisfying (3.10]), and define &; = ¢*. Then &; will satisfy both (3.10) and (3.11)).
Let us multiply (T.9) by & pe2*®. To simplify notation, set u = e**®. Then

// zt&1up dmdt// x%2y)E1up da dt — // (t,2)z& up dx dt

(3.12)
/ / &p?u dx dt.
We observe that u(T") = u(0) = 0. Integrating by parts in , we obtain
// zuy [pr — (2%g)g + d(t, 2)p] dzdt — // (c+ d)z& up dx dt
/ z [p(x®u1)r + 2pr 2 (uér),] dodt+ // zp&ruy dx dt (3.13)

// & p?u dx dt.
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Let us rewrite (3.13) as Iy + Iy + Is + Iy = fOT Jo &1p*u. We observe that I; = 0
3.4)

since p satisfies (3.4). By Holder’s and Young’s inequalities, we get

5 1 T
I < i// apPudedt+ —(|el% + ||d|\§o)/ /glz2udxdt
2 Q 61 0 Q

with d; to be chosen later.
Let us estimate I3. First, we have

I} = // zp(x®uéy), dx dt
Q

= // z [paxaflufl + pzuéy » —|—pxau$§1] dx dt
Q

< %2// & pPude dt

2 2
2(a—1) 2 ‘6171‘ 2« |UT|
262 // uéy + 751 u—+x —u §1> dxdt.

Observe that % = 45*u®2. Then

2 2 T
// 22 (x2(°‘71)u§1 + xQQMu + :CQO‘M&) dx dt < C/ / uz? dx dt .
Q &1 u 0 Juw

So, for I3 we conclude that

|I3|<*// &ip UdfvdtJrC// wz? dx dt .
0 Jw’

We now proceed to estimate the other term in I5:

13 = 2// 2ppx (u€1 » + uzéy) da dt

u2 2
// s0x%p udxdth—// 2 O‘ 61 ugel’x)dxdt.

Observe that the term in p2 can be estimated using Carleman’s inequality for p,
while the coefficient of 22 in the other integral is bounded above. Thus,

@)S—//pudmdt—&—C// e2*® dy dt .

Finally, we get for I4,

I4:// zpflutdxdtgd—‘l// §1p2udxdt+ // f d dt.
0 2 0 204

2
Observe that % = 482<I>2625<D to conclude that

14<7// glpu+c// e dx dt.

Putting the above estimates together and choosing convenient §;’s, we obtain, since
the support of & is contained in O,

T
// 2S‘I’ngcdt<c// e25® dx dt.
0 !
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The last inequality together with (3.9) completes the proof. O

4. PROOF OF THE MAIN RESULTS

Proof of Proposition[I.j} Multiplying equation (L.8)) by v; and integrating on (0, 1),
we obtain

1 1d 1
/ vZ(t, x)dr — 3t ), rv2(t, x)dx
0 (4.1)

d 2 1 1 1
< m/ v (t, x)dx + f/ vi(t,x)dx Yt €[0,T].
2 Jo 2 Jo
By Hardy’s inequality,
1 1
/ v (t, x)dx < / 2% (L, x)dr < C/ 2(t, x)dx . (4.2)
0 0
Then, combining (4.1]) and (4.2)), we get
d(ci [ 2
< « .
0< dt( /0 x Ux(t,ac)dx) vt € [0, 1]
The above estimate implies that, for all 0 <t < T/2,

3T/4 p1
— / 2(t,x)dx < C / 03 (7, x)dzdr .
T/2

The latter inequality, combined with Hardy’s inequality and (3.5)), yields

3T/4 p1
/ 2(t,x)dx < C(T / / 03 (7, x)dzdr
0 0

< C// 5002 (1, x)e*** dadr (4.3)

<C// (1, z)dzdr

for all 0 <t < T/2. Now, multiplying (1.7) by z; we get

1 d 1
/ 22(t, x)dx — d—/ 22 (t, x)dx
0 t

1 1
§2||cHgo/O z2(t,ac)dm—|—2/0 v (t,x)dx VWt €[0,T].

Combining the latter with (4.3)) and Hardy’s inequality, we obtain

1 d 1 )
z txdx——/ x%zi(t, z)dx
| a5 [ o)
<C/ txdx+C’// (t,x)dxdt Vtel[0,T/2].

Hence,

d 1 T
( Ct/ xo‘zi(um)dx) < CeCt/ / 2(t,x)dedt Yt e[0,T/2].
dt 0 0 Juw
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Thus, for every 0 < s <t <T/2,

1
/xz(sx)dm<0/ txdw—i—C// (t,z)dzdt.
0

So, integrating in ¢ over [T'/4, T/2] we get, for every s < T'/4,

—/ 2(s,x)dx < C / tacdxdt+C// (t,x) dx dt
T/4
SC’// s0x° 22 (t, x)e?s? dxdt—l—C’/ /ZQ(t,.Z‘) dx dt
Q 0 Jw
T
SC/ /22(t,x)dmdt.
0 Jw

By Hardy’s inequality we conclude that, for every s < T/4,

1 1
/22(8,$)dl‘§/ 7 22%(s, x)dx
0 0
1
gC/ 2% (s, x)dx (4.5)
0

T
§C//z2(t,a:)dxdt.
0 Jw

Combining this result with (4.3)), for s = 0 = ¢, we obtain

/01(112(5570) + 2%(2,0))da < C/OT/w 22(t,x) dx dt . (4.6)

On the other hand, (4.5) and Carleman’s inequality also yield

T/4
// tmdmdt—i—/ Oz tm)z“bdxdt<0// (t,x) dzx dt .

Therefore, by Hardy’s inequality and the definition of ®, we conclude that there
exists M > 0 such that

T
// “M/T0" 24 4 dxdt<C//zztxdxdt

The above estimate, together with (| -, implies (|1 .
We now briefly describe how to prove ((1.12)). Proceeding as in the proof of (|L.11))
it is not difficult to see that for all 37'/4 < s < T we have that

3T /4
—/xpa;sx Ydx < C

Then, for all s € [37/4,T],

1 1 1
d
/zf(s x)dx—a azi(s,x)deC/ %23 ( sxdw—i—C// (t,x)dxdt.
0

Following the steps of the above proof, since 2(T,-) = 0 we easily get that

// a22txdxdt<0// (t,z)dzdt.
3T

/ 2%p2 (7, 2)dxdr .
T/2
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Combining this result with the Carleman inequality for cascade systems we obtain,
for M large enough,

T
// e M/t z2(t,ac)dxdt§C’T//zQ(t,x)dxdt.
Q 0Jw

The proof is thus complete. (I

Proof of Theorem[I1. The fact that Proposition [I.4] implies Theorem [I.] can be
proved in several ways. The most direct argument is the following.
Let H = L?(Q) x L*(Q) x L?(ep (T — t)), and let M and L be the following
linear mappings:
L:L*Q) — L*(0,1) x L*(0,1)
h— (y(T), u(T))

where (y(-),u(:)) is the solution corresponding to (L.1)-(1.2) with (y°,u°, &) =
(0,0,0), and

M : H — L*(0,1) x L*(0,1)
(y",u’,€) = (y(T), w(T))
where (y(-), u(-)) now solves (I.I)-(T.2) with A = 0. Then Theorem I.1]is equivalent

to the inclusion
R(M) C R(L). (4.7)

Both M and L are L?(0,1) x L?(0,1)-valued, bounded linear operators. Conse-
quently (4.7) holds if and only, for every (2°,v%) € L?(0,1) x L?(0,1),

1M (2%, |1 < CIIL* (2,0 22 (4.8)
for some constant C' > 0. Now, a simple computation shows that
M*(2°,0%) = (2(x,0),v(x,0), 2(t,x)), L*(°,0°) = 21,

where z and v solve the adjoint system (1.8)-(1.7). Hence (4.8)) is just (1.11)) and
Theorem [1.1] is proved. O

Remark 4.1.

e The results of this paper can be generalized to systems with more general
(degenerate) coefficients than a(z) = z® (see for example [I] and []]).

e The null controllability problem when O Nw = ) is open even in the non-
degenerate case. Approximate controllability results for the linear case (c(t,z) =
d(t,z) = 0) can be found in [I§].

o Another interesting problem is to dispense with the condition 0 € ©. However,
it is not difficult to see that the controllability results of this paper are valid for
any open O such that O Nw # () when the coupling term ylp in and is
replaced by 27/2yly with § > 2 — a. Observe that the fact that 0 & O is used only
in . Under the conditions given for §, such an estimate reduces to

T
// e PePp? da dt < C'// 30322 dx dt.
0JO Q
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The rest of the proof of the Carleman inequality remains the same. The energy
estimates are easily checked just noting that the term

1
/ 2Pv? dz dt,
0

that now replaces fol v?dx dt in (4.4]), can be easily bounded as follows

1 1 1
/ 2P dx dt < C’/ 22 20%dx < C/ xo‘vgdaﬂ.
0 0 0

5. APPENDIX

In this appendix we give a sketch of the proof of Lemma (Caccioppoli’s
inequality). Let us set w = (a,b) and ' = (a/,V') with a < ¢’ < b < b. We
can suppose, without loss of generality, that a # 0. Let n : R — R be a smooth
function satisfying n2/n € L>(R) such that 0 <7 <1,n=1on (a,V'), and n=0
on [0,a) U (b, 1]. Then, in view of (2.F)),

T d 1
0= / — / nv?e®® dx dt
o dtJo

:2// nove?s?® dxdt—i-Qs// O,nv2e??® dr dt
@ Q

=2 // (n xo‘vi + neax®vzv + 25P,.n xavzv) e2°® dx dt
Q

+2// anezs‘bda:dtﬁ—?s// O, v2e®® dadt .
Q Q

Now, observe that, for every ¢ > 0,

1 2
// Npxvgve®® dx dt < < // na®vie®® dedt + — // Uz yoy2e25® go gt ,
Q 2 JJa 2 JJg M

and

1
// ®,n % v,0e?® dr dt < = // nxv2e?® d dt + — // 2y v?e**® d dt .
Q 2/ 2¢ JJq

Proceeding in the same way with the other terms, and choosing € small enough, we
obtain that

// nxo‘vie%@dxdt§0<// /\,71/2625¢dxdt+// andxdt),
Q Q Q

where ), is a bounded function with support in w = (a,b), defined in terms of 7.
Since a # 0 and o’ # 0, Caccioppoli’s inequality follows.
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6. ADDENDUM AND CORRIGENDUM POSTED ON OCTOBER 10, 2016

For the main results proved in this paper we gave a Carleman inequality (2.4))
that is incorrect. The aim of this addendum is to give a correct one, very similar
to the one presented in the paper. The controllability results Theorems [I.I] and
[1.2 remain valid and the proof we are giving is useful in other contexts, see, e.g.,
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[25]. Another correct version of has been obtained in [24]. However, in their
case, the authors use different weights on each side of the inequality and this is not
of use in some particular situations as in [25]. We thank the authors of [24] that
informed us of our mistake. Also we thank J. Carmelo Flores, from Universidad
Auténoma de la Ciudad de México, for collaborating in the proof of the correct
Carleman inequality.

In fact, the proof of inequality is incorrect because of the choice of the
weight function ®. In this corrigendum, we use a slightly different weight function
and correct the proof of the Carleman inequality.

6.1. Carleman inequalities. For w = (a,b) let us call k = Q“T'H’, Kt = %217, and
let ¢ € C%(R) be such that 0 < ¢ <1 and

)1 ifxe(0,k)
g(x)_{o itz e (k,1).

Let us define

2—gz2 @
b(z) = { C-7 0<a<2 a#l, Vzel0,1l]
(cp —e*), a=1, Vzel0,1]

where ¢ is such that ¢(x) > 0 for every = € [0,1]. Now, take

1— xl—a/Q
oo
and define ¢ (z) = e?lIrlle — eP(®) and

n(x) = (x)§(x) + (1 = &§(2)().

p(x) = z €10,1]

Observe that
1'(x) = ¢'(2)¢(z) + ()€ () — &' (2)1h(x) + (1 = £(2))¢" (2).
We also define B(x,t) = n(x)8(t) where
1
"= G oy

The main result in the corrigendum, that substitutes Theorem [2:4] is:

vVt e (0,T).

Theorem 6.1. Let 0 < o < 2 and T > 0 be given. Then there exists two pos-
itive constants C,sg such that for all s > sy and for every solution v € U =

C([0,7); L2(0, 1)) N L2(0,T; HX(0,1)) to (23).

// (50202 + 30322 ?)e 2P da dt
Q

T
SC(// eiQSﬁFdedt—i—//efzsﬁfdxdt)
Q 0 Jw

Proof. We define w(t,z) = e~*#(t:®)y(t, ). Then, w solves
(e¥w), + (z*(ePw),), = F.
Clearly we obtain

sBiw + wy + (2% fo)ow + 870 frw + 250° fowy + (2%w,)y = ¢ *0F.
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As in [§] we define
P = 58w + s22* f2w + (2%w,) o,
Py =w + s(2%f)pw + 2527 Brwy.
We want to estimate the L2-scalar product (P}, P;). We define

Q) = / / (58w + 522° F2w + (2°w,)),

= o T )x 2sz” Wz )y

Q> /0/086tw<5(m6)w+ ST Brwy)
T 1

Q=+ [ [ s B0 4 200 B,
0Jo

T r1

Integrating by parts and using the boundary conditions, we obtain

S / / s&ttn—i—Qszxa(‘)Om ).

To bound @2, we follow the computation of the boundary terms in [§] at x = 0
using the fact that 8, = ¢'(x)0(¢) near z = 0 and w(1) = 0 to obtain

T 1
/ ﬁtﬁzxaw2‘ =
0 0
9= —8§ // 002z w?.
Similarly, we obtain

T 01
Qs = —53// 03x2°‘*1(2xnm +anm)ngw2
0 Jo

Qs = —s// 022~ 1(29577:514-04%)

1
—s//@m xnzmwxw—i-S/ O(t)n. (x > 2( )Odt'

Observe that fo 0(t)n, (x)x**w? (t,x)‘mzodt = 0. On the other hand, at x = 1,
n2(1) =¢'(1) = L.

So

Finally

Alltogether we have
1 /Tt
(P, P > —3 /0 /0 (50 + 452200,m2)w?

T 1
— 83 / 931‘20471(25”]3% + O‘nx)niwz
0J0

T 1
—s// (9362"‘_1(2307793;,0—1—047730)10z
0Jo
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T o1
—s// 0x* (2Ny ) poWaw
0 Jo

=L +1L+ I3+ 14
Now, observe that our choice of weight functions yields
221, (x) + ang(x)
=~ () + (1 — &(2)) (209" (2) + ' (2)) + f (@) X[, nt) ()

where f is bounded and x{ .+) denotes the characteristic function of [k, k). More-
over, —(2zv" () + av)(x)) = 22'~*eP(®), Therefore,

T rl T pl T prt
—s// 0% (22,0 + ang)w? > s// O w? — Cs// ow?
0Jo 0Jo 0Jk

for some constant C' > 0. Similarly, we have

T rl T prt
—33// 03221 (2m,0 + ang)nZw? > s // 03 2%n*w? ng// 03w?.
0Jo 0Jk

Following, on [0, k], the same reasoning used in the derivation of [8, (3.10)] and
observing that

T p1 T f1 T 1
‘// Gtmwg‘SC// 93/2nw2§0’// Oz niw?,
0 Jrt 0 Jrt 0Jo

for s large enough one can dominate the terms in I; by

T 1 T pl
a, 2 3 3,2, 2
s//&xwm and 5//9mnT
0 Jo 0Jo

plus integrals of w? and w2 over [k, x*]. Moreover, since (x%7;)z. = 0 on [0, &],

the same is true for I;. Finally, we conclude that

// (s0z“w? + s30P x>~ *w?) dx dt

<c // Fdedt—i—//w +u? dxdt)

where we have used the fact that z%n? ~® on [0,k] and is bounded below
by a constant times z2~® on the rest of [0, 1]. Next, recalling that w(t,x) =
e~ 82y (¢, x), we immediately recover the zero order bound

// 303 2—a 2 725ﬁ da dt
T
<C’ // 725BF2d:17dt+// 2642 4 //efzsﬁvidzdt)

Moreover, since w,(t,z) = e~ PPy, (t, ) — 58, (t, 2)v(t, =), again recalling that
12 ~ 227 on [0, k] and appealing to (6.2)) we deduce

// (50202 4 s°0% 2%~ 0?)e~ 2P du dt

T
<C // _QQBFdedH—// ~25B2 | // —w?dxdt)

2

(6.2)
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To obtain (6.1)) we eliminate the term fona e~ 2Py? dx dt performing local energy
estimates and “growing” @ to w. That is, we use Cacciopoli’s inequality, which is:

T T T
/ / 6725505 dxdt < C’(/ / e 2502 dx dt +/ / e P2 dy dt).
0 Jw 0 Jw 0JQ

This completes the proof. ([l
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