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REMARKS ON A 2-D NONLINEAR BACKWARD HEAT
PROBLEM USING A TRUNCATED FOURIER SERIES METHOD

DANG DUC TRONG, NGUYEN HUY TUAN

Abstract. The inverse conduction problem arises when experimental mea-
surements are taken in the interior of a body, and it is desired to calculate

temperature on the surface. We consider the problem of finding, from the

final data u(x, y, T ) = ϕ(x, y), the initial data u(x, y, 0) of the temperature
function u(x, y, t), (x, y) ∈ U ≡ (0, π)× (0, π), t ∈ [0, T ] satisfying the nonlin-

ear system

ut −∆u = f(x, y, t, u(x, y, t)), (x, y, t) ∈ U × (0, T ),

u(0, y, t) = u(π, y, t) = u(x, 0, t) = u(x, π, t) = 0, (x, y, t) ∈ U × (0, T ).

This problem is known to be ill-posed, as the solution exhibits unstable de-
pendence on the given data functions. Using the Fourier series method, we

regularize the problem and to get some new error estimates. A numerical

experiment is given.

1. Introduction

In this paper, we consider the following two dimensional problem in an rectangle
U = (0, π)× (0, π)

ut −∆u = g(x, y, t, u(x, y, t)) (x, y, t) ∈ U × (0, T ), U = (0, π)× (0, π) (1.1)

u(0, y, t) = u(π, y, t) = u(x, 0, t) = u(x, π, t) = 0 (x, y, t) ∈ U × [0, T ] (1.2)

u(x, y, T ) = ϕ(x, y) x, y ∈ U. (1.3)

where we want to determine the temperature distribution u(., ., t) for 0 ≤ t < T
from the data ϕ(x, y) . The problem is called the backward heat problem (BHP),
the backward Cauchy problem or the final value problem. This is a typical ill-posed
problem. In general no solution which satisfies the heat conduction equation with
final data and the boundary conditions exists. Even if the solution exists, it will not
be continuously dependent on the final data such that the numerical simulations
are very difficult and some special regularization methods are required. In the
context of approximation method for this problem, many approaches have been
investigated. In the mathematical literature various methods have been proposed
for solving backward Cauchy problems. Such authors as Lattes and Lions, Miller
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have approximated BHP by quasi-reversibility methods (QR method for short). In
1983, Showalter, in [16], presented a different method called the quasiboundary
value (QBV method) method to regularize that linear homogeneous problem which
gave a stability estimate better than the one of disscused method. The main ideas
of the method is of adding an appropriate “corrector” to the final data. Using the
method, Clark and Oppenheimer, in [5], and Denche-Bessila, very recently in [7],
regularized the backward problem by replacing the final condition by u(T )+εu(0) =
g and u(T )− εu′(0) = g respectively.

Although there are many papers on the linear homogeneous case of the backward
problem, we only find a few papers on the nonhomogeneous and nonlinear cases of
BHP. We can notably mention the method of QBV and modified quasi-reversibility
to solve the one dimensional nonlinear backward heat problem (NBHP), such as
[20]. Moreover, the two dimensional case of NBHP is very scarce and it is not
considered by QR or QBV methods. To the authors’s knowledge, in some recent
papers on the nonlinear backward heat, the error estimates of most regularization
methods are the form Cεt/T . It makes difficult to solve the error in the time t = 0.
To improve this, we develop a new regularization method which is called Fourier
method for solving the Problem (1.1)-(1.3). As far as we know, there are not
any results of Fourier series method for treating NBHP until now. Meanwhile, we
will establish faster convergence results via improved error estimates. Especially,
the convergence of the approximate solution at t = 0 is also proved. This is an
improvement of known results in [15, 20, 22].

Informally, problem (1.1)-(1.3) can be transformed to an integral equation

u(x, y, t) =
∞∑

n,m=1

(
e−(t−T )(n2+m2)ϕnm

−
∫ T

t

e−(t−s)(n2+m2)gnm(u)(s)ds
)

sin(nx) sin(my),

(1.4)

where

ϕ(x, y) =
∞∑

n,m=1

ϕnm sin(nx) sin(my),

g(u)(x, t) =
∞∑

n,m=1

gnm(u)(t) sin(nx) sin(my),

are the expansion of ϕ and g(u), respectively. Since t < T , we know from (1.4) that,
when m2 +n2 becomes large, exp{(T − t)(m2 +n2)} increases rather quickly. Thus,
the term e−(t−T )(m2+n2) is the cause of the instability. So, we hope to recover the
stability of problem (1.4) by filtering the high frequencies with suitable method.
The essence of our regularization method is just to eliminate all high frequencies
from the solution, and instead consider (1.4) only for m2 + n2 ≤ aβ , where aβ is
an appropriate positive constant satisfying limβ→0 aβ = ∞. We note that aβ is a
constant which will be selected appropriately as regularization parameter. Then, we
get a stable and convergent iteration scheme. We have the following approximation
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problem

vβ,aβ (x, y, t) =
m,n≥1∑

m2+n2≤aβ

(
e(T−t)(n2+m2)ϕnm

−
∫ T

t

e(s−t)(n2+m2)gnm(vβ,aβ )(s)ds
)

sin(nx) sin(my)

(1.5)

where

ϕnm =
4
π2
〈ϕ(x, y), sin(nx) sin(my)〉,

gnm(u)(t) =
4
π2
〈g(x, y, t, u(x, y, t)), sin(nx) sin(my)〉,

and 〈·, ·〉 is inner product in L2(U).

2. Fourier regularization and the main results

For clarity, we denote the solution of (1.1)-(1.3) by u(., ., t), and the solution of
(1.5) by vβ,aβ (., ., t). The main conclusion of this article is as follows.

Theorem 2.1. Let ϕ ∈ L2(U) and let g ∈ L∞(U × [0, T ]×R) satisfy

|g(x, y, t, w)− g(x, y, t, u)| ≤ k|w − u|
for a k > 0 independent of x, y, t, w, u. Then (1.5) has a unique solution vβ,aβ ∈
C([0, T ];H1

0 (U)) ∩ C1((0, T );L2(U)).

Theorem 2.2. The solution of (1.5) depends continuously on ϕ in L2(U).

Theorem 2.3. Let ϕ, g be as in Theorem 2.1. If ∂g
∂z (x, y, t, z) is bounded on U ×

(0, T )×R then (1.1)-(1.3) has at most one solution

u ∈ C([0, T ];H1
0 (U)) ∩ C1((0, T );L2(U)).

Theorem 2.4. Let ϕ, g be as in Theorem 2.1. Suppose that (1.1)-(1.3) has a unique
solution u(x, y, t) in C([0, T ];H1

0 (U)) ∩ C1((0, T );L2(U)) which satisfies∫ T

0

∞∑
n,m=1

e2s(n2+m2)g2
nm(u)(s)ds < ∞. (2.1)

Then
‖u(., ., t)− vβ,aβ (., ., t)‖ ≤

√
Mek2T (T−t)e−taβ (2.2)

for every t ∈ [0, T ], where

M = 4‖u(0)‖2 + π2T

∫ T

0

∞∑
n,m=1

e2s(n2+m2)g2
nm(u)(s)ds,

and vβ,aβ is the unique solution of (1.5) corresponding to β. Moreover, if ∂u
∂t ∈

L2((0, T );L2(U)), then there exists a tβ such that

‖u(., ., 0)− vβ,aβ (., ., tβ)‖ ≤
√

2C 4

√
1/aβ ,

where

N =
( ∫ T

0

‖∂u

∂s
(., ., s)‖2ds

)1/2

, C = max{M,N}.
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Remark 2.5. (1) In the simple case of the function g(., ., u) = 0 (it follows that
k=0), we have

‖u(., ., t)− vβ,aβ (., ., t)‖ ≤ 2‖u(., ., 0)‖e−taβ .

Choosing aβ = 1
T ln(1/β), we obtain the error estimate

‖u(., ., t)− vβ,aβ (., ., t)‖ ≤ 2‖u(., ., 0)‖.βt/T

This error is given in [5].
(2) In most known results, such as [15, 20, 22], the errors between the exact

solution and approximate solution can be calculated in the form Cεt/T . Notice that
the convergence estimate in this Theorem does not give any useful information on
the continuous dependence of the solution at t = 0. It is easy to see that if taking
t = 0 in (2.2), the error estimate is as follows

‖u(., ., 0)− vβ,aβ (., ., 0)‖ ≤
√

Mek2T 2

does not tend to zero when β → 0. So, the convergence of the approximate is large
when t → 0. In next Theorem, we will give a good estimate in which the error in
the case t = 0 is considered.

(3) In this Theorem, we ask for a condition on the expansion coefficient gnm in
(2.1). We note that the solution u depends on the nonlinear term g and therefore
gnm, gnm(u) is very difficult to be valued. Such a obscurity makes this Theorem
hard to be used for numerical computations. Hence, we ask the condition as follows

∞∑
n,m=1

e2t(n2+m2)| < u(., ., t), sin(nx) sin(my) > |2 < ∞. (2.3)

In this case, we only require the assumption of u, not need to compute the function
gnm(u). In the homogeneous case of problem (1.1)-(1.3),i.e., g = 0, then the right
hand side of (2.3) is equal to ‖u(., ., 0)‖2. Hence, the condition (2.3) is natural and
acceptable.

Theorem 2.6. Let ϕ, g be as in Theorem 2.1. Suppose (1.1)-(1.3) has a unique
solution u(x, y, t) satisfying (2.3). Then we have

‖u(., ., t)− vβ,aβ (., ., t)‖ ≤ Q(β, t, u)e−taβ (2.4)

for every t ∈ [0, T ], where

Q(β, t, u) =
(
2k2Te2k2T (T−t)

∫ T

0

P (β, s, u)ds +
π2

2
P (β, t, u)

)1/2

(2.5)

and

P (β, t, u) =
∑

m,n≥1,m2+n2≥aβ

(
eT (n2+m2)ϕnm −

∫ T

t

es(n2+m2)gnm(u)(s)ds
)2

=
∑

m,n≥1,m2+n2≥aβ

e2t(n2+m2)u2
nm

(2.6)

and vβ,aβ is the unique solution of Problem (1.5).

Remark 2.7. If we let t = 0 in (2.4), we get the error at the original time,

‖u(., ., 0)− vβ,aβ (., ., 0)‖2 ≤ 2k2Te2k2T 2
∫ T

0

P (β, s, u)ds +
π2

2
P (β, 0, u). (2.7)
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Noting that the right hand side of (2.7) tends to zero when β → 0.

For non-exact data, we have the following result.

Theorem 2.8. Let ϕ, g be as in Theorem 2.1. Assume that the exact solution u of
(1.1)-(1.3) corresponding to ϕ be defined as in Theorem 2.4. Let ϕβ ∈ L2(U) be a
measured data such that

‖ϕβ − ϕ‖ ≤ β.

Suppose the problem (1.1)-(1.3) has a unique solution u ∈ C([0, T ];H1
0 (U)) ∩

C1((0, T );L2(U)). Let us select aβ = ln
(
( 1

β )1/T (ln 1
β )−α/(2T )

)
.

(i) If u satisfies (2.1) then for t ∈ (0, T ), there exists a function vβ,aβ satisfying

‖vβ,aβ (., ., t)−u(., ., t)‖ ≤ (M +1)ek2T (T−t)βt/T (ln
1
β

)
−α(T−t)

2T

(
1+(ln

1
β

)
α
2

)
, (2.8)

and
‖vβ,aβ (., ., 0)− u(., ., 0)‖ ≤ 4

√
1/aβ

(
2 exp(k2T 2) +

√
2C

)
where

M = 3‖u(., ., 0)‖2 + 3π2T

∫ T

0

∞∑
n,m=1

e2s(n2+m2)g2
nm(u)(s)ds

and C is defined in Theorem 2.4.
(ii) If u such that the condition (2.3) then for all t ∈ [0, T ]

‖wβ,aβ (., ., t)− u(., ., t)‖

≤ βt/T (ln
1
β

)
−α(T−t)

2T

(
exp(k2(T − t)2) + Q(β, t, u)(ln

1
β

)
α
2

)
,

(2.9)

where wβ,aβ be the solution of problem (1.5) corresponding to ϕβ.

Remark 2.9. (1) If we let α = 0 in (2.8), we have the simple error

‖vβ,aβ (., ., t)− u(., ., t)‖ ≤ (M + 1)ek2T (T−t)βt/T , ∀t ∈ (0, T ). (2.10)

This error is similar to the one given in [20]. Notice that the right hand side of
(2.10) does not converges to 0. This is disadvantage point of the error (2.8).

(2) In the error (2.9), if we let t = 0, we get

‖wβ,aβ (., ., 0)− u(., ., 0)‖ ≤ exp(k2T 2)(ln
1
β

)
−α
2 + Q(β, 0, u). (2.11)

Notice that if α > 0 then the right hand side of (2.11) converges to 0 and the
Theorem 2.8(ii) is a generalization of the result given in [20].

3. Proof of the main results

Proof of theorem 2.1. Put

G(vβ,aβ )(x, y, t)

= Ψ(x, y, t)−
∑

m,n≥1,m2+n2≤aβ

( ∫ T

t

e(s−t)(n2+m2)gnm(vβ,aβ )(s)ds
)

sin(nx) sin(my)

where

Ψ(x, y, t) =
∑

m,n≥1,m2+n2≤aβ

e(T−t)(n2+m2)ϕnm sin(nx) sin(my).
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We claim that
‖Gp(vβ,aβ )(., ., t)−Gp(wβ,aβ )(., ., t)‖2

≤ k2pe2Tpaβ
(T − t)pCp

p!
|||vβ,aβ − wβ,aβ |||2

(3.1)

for every p ≥ 1, where C = max{T, 1} and ||| · ||| is sup norm in C([0, T ];L2(U)).
We shall prove the latter inequality by induction. For p = 1, we have

‖G(vβ,aβ )(., ., t)−G(wβ,aβ )(., ., t)‖2
2

=
π2

4

∑
m,n≥1,m2+n2≤aβ

[
e(s−t)(n2+m2)(gnm(vβ,aβ )(s)− gnm(wβ,aβ )(s))ds

]2

≤ π2

4

∑
m,n≥1,m2+n2≤aβ

∫ T

t

(e2(s−t)(n2+m2)ds

∫ T

t

(gnm(vβ,aβ )(s)

− gnm(wβ,aβ )(s))2ds

≤ π2

4

∑
m,n≥1,m2+n2≤aβ

e2Taβ (T − t)
∫ T

t

(gnm(vβ,aβ )(s)− gnm(wβ,aβ )(s))2ds

=
π2

4
e2Taβ (T − t)

∫ T

t

∑
m,n≥1,m2+n2≤aβ

(gnm(vβ,aβ )(s)− gnm(wβ,aβ )(s))2ds

≤ e2Taβ (T − t)
∫ T

t

∫ π

0

∫ π

0

(g(x, y, s, vβ,aβ (x, y, s))

− g(x, y, s, wβ,aβ (x, y, s)))2 dx dy ds

≤ k2e2Taβ (T − t)
∫ T

t

∫ π

0

∫ π

0

|vβ,aβ (x, y, s)− wβ,aβ (x, y, s)|2 dx dy ds

≤ Ck2e2Taβ (T − t)|||vβ,aβ − wβ,aβ |||2.

Thus (3.1) holds. Suppose that (3.1) holds for p = j. We prove that (3.1) holds for
p = j + 1. We have

‖Gj+1(vβ,aβ )(., ., t)−Gj+1(wβ,aβ )(., ., t)‖2

=
π2

4

∑
m,n≥1,m2+n2≤aβ

[ ∫ T

t

(e2(s−t)(n2+m2)ds
(
gnm(Gj(vβ,aβ ))(s)

− gnm(Gj(wβ,aβ ))(s)
)
ds

]2

≤ π2

4
e2Taβ

∑
m,n≥1,m2+n2≤aβ

[ ∫ T

t

|gnm(Gj(vβ,aβ ))(s)− gnm(Gj(wβ,aβ ))(s)|ds
]2

≤ π2

4
e2Taβ (T − t)

∫ T

t

∞∑
n,m=1

|gnm(Gj(vβ,aβ ))(s)− gnm(Gj(wβ,aβ ))(s)|2ds

≤ e2Taβ (T − t)
∫ T

t

‖g(., ., s, Gj(vβ,aβ )(., ., s))− g(., ., s, Gj(wβ,aβ )(., ., s))‖2ds

≤ e2Taβ (T − t)k2

∫ T

t

‖Gj(vβ,aβ )(., ., s)−Gj(wβ,aβ )(., ., s)‖2ds
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≤ e2Taβ (T − t)k2k2je2Tjaβ

∫ T

t

(T − s)j

j!
dsCj |||vβ,aβ − wβ,aβ |||2

≤ k2(j+1)e2T (j+1)aβ
(T − t)j+1

(j + 1)!
Cj+1|||vβ,aβ − wβ,aβ |||2.

Therefore,

‖Gp(vβ,aβ )(., ., t)−Gp(wβ,aβ )(., ., t)‖2 ≤ k2pe2Tpaβ
(T − t)pCp

p!
|||vβ,aβ − wβ,aβ |||2

for all vβ,aβ , wβ,aβ ∈ C([0, T ];L2(U)). We consider

G : C([0, T ];L2(U)) → C([0, T ];L2(U)).

Since limp→∞ kpeTpaβ T p/2Cp
√

p!
= 0, there exists a positive integer number p0, such

that Gp0 is a contraction. It follows that the equation Gp0(u) = u has a unique
solution vβ,aβ ∈ C([0, T ];L2(U)). We claim that G(vβ,aβ ) = vβ,aβ . In fact, one has

G(Gp0(vβ,aβ )) = G(vβ,aβ ).

Hence
Gp0(G(vβ,aβ )) = G(vβ,aβ ).

By the uniqueness of the fixed point of Gp0 , one has G(vβ,aβ ) = vβ,aβ , i.e., the
equation G(vβ,aβ ) = vβ,aβ has a unique solution vβ,aβ ∈ C([0, T ];L2(U)). �

Proof of Theorem 2.2. Let u and v be two solutions of (1.5) corresponding to the
values ϕ and ω. We have

‖u(., ., t)− v(., ., t)‖2

=
π2

4

∑
m,n≥1,m2+n2≤aβ

∣∣∣e(T−t)(n2+m2)(ϕnm − ωnm)

−
∫ T

t

e(s−t)(n2+m2)(gnm(u)(s)− gnm(v)(s)ds)
∣∣∣2

≤ π2

2

∑
m,n≥1,m2+n2≤aβ

(e(T−t)(n2+m2)|ϕnm − ωnm|)2

+
π2

2

∑
m,n≥1,m2+n2≤aβ

( ∫ T

t

e(s−t)(n2+m2)|gnm(u)(s)− gnm(v)(s)|ds
)2

Then, we obtain

‖u(., ., t)− v(., ., t)‖2 ≤

≤ 2e2(T−t)aβ‖ϕ− ω‖2 + 2k2(T − t)e−2taβ

∫ T

t

e2saβ‖u(., ., s)− v(., ., s)‖2ds.

Hence

e2taβ‖u(., ., t)− v(., ., t)‖2

≤ e2Taβ‖ϕ− ω‖2 + 2k2(T − t)
∫ T

t

e2saβ‖u(., ., s)− v(., ., s)‖2ds.

Using Gronwall’s inequality we have

‖u(., ., t)− v(., ., t)‖ ≤ e(T−t)aβ exp(k2(T − t)2)‖ϕ− ω‖.
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This completes the proof of the theorem. �

Proof of Theorem 2.3. Let M > 0 be such that

|∂g

∂z
(x, y, t, z)| ≤ M

for all (x, y, t, z) ∈ U × (0, T ) × R. Let u1(x, y, t) and u2(x, y, t) be two solutions
of Problem (1.1)-(1.3) such that u1, u2 ∈ C([0, T ];H1

0 (U))∩C1((0, T );L2(U)). Put
w(x, y, t) = u1(x, y, t)− u2(x, y, t). Then w satisfies the equation

wt(x, y, t)−∆w(x, y, t) = g(x, y, t, u1(x, y, t))− g(x, y, t, u2(x, y, t)).

Thus

wt(x, y, t)−∆w(x, y, t) =
∂g

∂z
(x, y, t, u(x, y, t))w(x, y, t),

for some u(x, y, t). It follows that

(wt −∆w)2 ≤ M2w2.

Now w(0, y, t) = w(π, y, t) = w(x, 0, t) = w(x, π, t) = 0 and w(x, y, T ) = 0. Hence
by the Lees-Protter theorem [8, p. 373], w = 0 which gives u1(x, y, t) = u2(x, y, t)
for all t ∈ [0, T ]. The proof is completed. �

Proof of Theorem 2.4. The functions u(., ., t) can be written in the form

u(x, y, t) =
∞∑

n,m=1

(e−(t−T )(n2+m2)ϕnm

−
∫ T

t

e−(t−s)(n2+m2)gnm(u)(s)ds) sin(nx) sin(my),

and vβ,aβ (., ., t) in the form

vβ,aβ (x, y, t) =
∑

m,n≥1,m2+n2≤aβ

(
e(T−t)(n2+m2)ϕnm

−
∫ T

t

e(s−t)(n2+m2)gnm(vβ,aβ )(s)ds
)

sin(nx) sin(my)

Hence

vβ,aβ (x, y, t)− u(x, y, t) =
∑

m,n≥1,m2+n2≥aβ

(e−(t−T )(n2+m2)ϕnm

−
∫ T

t

e−(t−s)(n2+m2)gnm(u)(s)ds) sin(nx) sin(my)

+
∑

m,n≥1,m2+n2≤aβ

∫ T

t

(
e(s−t)(n2+m2)(gnm(vβ,aβ )(s)

− gnm(v)(s))ds
)

sin(nx) sin(my)

Using the inequality (a + b)2 ≤ 2(a2 + b2), we obtain

‖u(., ., t)− vβ,aβ (., ., t)‖2

≤ π2

2

∑
m,n≥1,m2+n2≥aβ

(
e−(t−T )(n2+m2)ϕnm −

∫ T

t

e−(t−s)(n2+m2)gnm(u)(s)ds
)2
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+
π2

2

∑
m,n≥1,m2+n2≤aβ

( ∫ T

t

e(s−t)(n2+m2)|gnm(u)(s)− gnm(vβ,aβ )(s)|ds
)2

≤ 2
π2

2
e−2t(n2+m2)

∑
m,n≥1,m2+n2≥aε

(
eT (n2+m2)ϕnm −

∫ T

0

es(n2+m2)gnm(u)(s)ds
)2

+ 2
π2

2
e−2t(n2+m2)

∑
m,n≥1,m2+n2≥aβ

( ∫ t

0

es(n2+m2)gnm(u)(s)ds
)2

+
π2

2
(T − t)

∫ T

t

∞∑
n,m=1

e2(s−t)aβ (gnm(u)(s)− gnm(vβ,aβ )(s))2ds

≤ 4e−2taβ‖u(., ., 0)‖2 + π2Te−2taβ

∫ T

0

e2s(n2+m2)g2
nm(u)(s)ds

+ 2(T − t)e−2taβ

∫ T

t

e2saβ‖g(., ., s, u(., ., s))− g(., ., s, vβ,aβ (., ., s))‖2ds

≤ 4e−2taβ‖u(., ., 0)‖2 + π2Te−2taβ

∫ T

0

e2s(n2+m2)g2
nm(u)(s)ds

+ e−2taβ 2k2T

∫ T

t

e2saβ‖u(., ., s)− vβ,aβ (., ., s)‖2ds.

Then we obtain

e2taβ‖u(., ., t)− vβ,aβ (., ., t)‖2

≤ e−2taβ M + 2k2T

∫ T

t

e2saβ‖u(., ., s)− vβ,aβ (., ., s)‖2ds

Using Gronwall’s inequality, we obtain

e2taβ‖u(., ., t)− vβ,aβ (., ., t)‖2 ≤ Me2k2T (T−t)

which implies

‖u(., ., t)− vβ,aβ (., ., t)‖ ≤
√

Mek2T (T−t)e−taβ . (3.2)

Then we have the equality

u(x, y, t)− u(x, y, 0) =
∫ t

0

∂u

∂s
(x, y, s)ds .

It follows that

‖u(., ., 0)− u(., ., t)‖2 ≤ t

∫ t

0

∥∥∂u

∂s
(., ., s)

∥∥2
ds ≤ N2t.

Combining this and (3.2), we have

‖u(., ., 0)− vβ,aβ (., ., t)‖ ≤ ‖u(., ., 0)− u(., ., t)‖+ ‖u(., ., t)− vβ,aβ (., ., t)‖

≤ C(
√

t + e−taβ ).

For every β, there exists a tβ such that
√

tβ = e−tβaβ ; i.e., lntβ

tβ
= −2aβ . Using

the inequality ln t > − 1
t for every t > 0, we obtain tβ ≤ 1/(2√aβ). Hence,

‖u(., ., 0)− vβ,aβ (., ., tβ)‖ ≤
√

2C 4

√
1/aβ .
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This completes the proof of Theorem 2.4. �

Proof of Theorem 2.6. We recall that

P (β, t, u) =
∑

m,n≥1,m2+n2≥aβ

(
eT (n2+m2)ϕnm −

∫ T

t

es(n2+m2)gnm(u)(s)ds
)2

=
∑

m,n≥1,m2+n2≥aβ

e2t(n2+m2)u2
nm.

(3.3)

It is easy to prove that P (β, t, u) → 0 when β → 0. As in the proof of Theorem
2.4, we have

‖u(., ., t)− vβ,aβ (., ., t)‖2

≤ π2

2

∑
m,n≥1,m2+n2≥aβ

(
e−(t−T )(n2+m2)ϕnm −

∫ T

t

e−(t−s)(n2+m2)gnm(u)(s)ds
)2

+
π2

2

∑
m,n≥1,m2+n2≤aβ

( ∫ T

t

e(s−t)(n2+m2)|gnm(u)(s)− gnm(vβ,aβ )(s)|ds
)2

≤ π2

2
e−2taβ P (β, t, u)

+
π2

2
(T − t)

∫ T

t

∞∑
n,m=1

e2(s−t)aβ (gnm(u)(s)− gnm(vβ,aβ )(s))2ds

≤ π2

2
e−2taβ P (β, t, u) + 2(T − t)e−2taβ

∫ T

t

e2saβ
∥∥g(., ., s, u(., ., s))

− g(., ., s, vβ,aβ (., ., s))
∥∥2

ds

≤ π2

2
e−2taβ P (β, t, u) + e−2taβ 2k2T

∫ T

t

e2saβ‖u(., ., s)− vβ,aβ (., ., s)‖2ds.

This implies that

e2taβ‖u(., ., t)− vβ,aβ (., ., t)‖2

≤ π2

2
e−2taβ P (β, t, u) + 2k2T

∫ T

t

e2saβ‖u(., ., s)− vβ,aβ (., ., s)‖2ds

Applying Gronwall’s inequality, we obtain

e2taβ‖u(., ., t)− vβ,aβ (., ., t)‖2 ≤ 2k2Te−2k2Tt

∫ T

t

e2k2TsP (β, s, u)ds +
π2

2
P (β, t, u).

Finally,

‖u(., ., t)−vβ,aβ (., ., t)‖2 ≤
(
2k2Te2k2T (T−t)

∫ T

0

P (β, s, u)ds+
π2

2
P (β, t, u)

)
e−2taβ .

This completes the proof of Theorem 2.6. �

Proof of Theorem 2.8. (i) Let v
β,aβ

1 be the solution of (1.5) corresponding to ϕ and
let wβ,aβ be the solution of (1.5) corresponding to ϕβ where ϕ, ϕβ are defined in
Theorem 2.8. Using Theorem 2.4, there exists a tβ such that

√
tβ = e−2tβaβ and

‖vβ,aβ

1 (., ., tβ)− u(., ., 0)‖ ≤
√

2C 4

√
1/aβ . (3.4)



EJDE-2009/77 A TRUNCATED FOURIER SERIES METHOD 11

We denote

vβ,aβ (., ., t) =

{
wβ,aβ (., ., t), 0 < t < T,

wβ,aβ (., ., tβ), t = 0 .

Using Theorems 2.2 and 2.4, we obtain

‖vβ,aβ (., ., t)− u(., ., t)‖

≤ ‖wβ,aβ (., ., t)− v
β,aβ

1 (., ., t)‖+ ‖vβ,aβ

1 (., ., t)− u(., ., t)‖

≤ e(T−t)aβ exp(k2(T − t)2)‖ϕ− ϕβ‖+ Mek2T (T−t)e−taβ

≤ exp(k2(T − t)2)βt/T (ln
1
β

)
−α(T−t)

2T + Mek2T (T−t)βt/T (ln
1
β

)
αt
2T ,

≤ (M + 1)ek2T (T−t)βt/T (ln
1
β

)
−α(T−t)

2T

(
1 + (ln

1
β

)
α
2
)

for every t ∈ (0, T ). Using the results in Theorem 2.4, we have the estimate

‖vβ,aβ (., ., 0)− u(., ., 0)‖ ≤ ‖wβ,aβ (., ., tβ)− v
β,aβ

1 (., ., tβ)‖

+ ‖vβ,aβ

1 (., ., tβ)− u(., ., 0)‖

≤ 2e−tβaβ exp(k2T 2) +
√

2C 4

√
1/aβ

= 2 4

√
1/aβ exp(k2T 2) +

√
2C 4

√
1/aβ

= 4

√
1/aβ

(
2 exp(k2T 2) +

√
2C

)
.

This completes the proof of part (i).
(ii) Using Theorems 2.2 and 2.6, we obtain

‖wβ,aβ (., ., t)− u(., ., t)‖

≤ ‖wβ,aβ (., ., t)− v
β,aβ

1 (., ., t)‖+ ‖vβ,aβ

1 (., ., t)− u(., ., t)‖

≤ e(T−t)aβ exp(k2(T − t)2)‖ϕ− ϕβ‖+ Q(β, t, u)e−taβ

≤ exp(k2(T − t)2)βt/T (ln
1
β

)
−α(T−t)

2T + Q(β, t, u)βt/T (ln
1
β

)
αt
2T ,

≤ βt/T (ln
1
β

)
−α(T−t)

2T

(
exp(k2(T − t)2) + Q(β, t, u)(ln

1
β

)
α
2

)
for every t ∈ [0, T ]. �

4. Numerical experiments

Let us consider the simple two dimensional Allen-Cahn equation

ut − uxx − uyy = u− u3 + g(x, y, t), (x, y, t) ∈ (0, π)× (0, π)× (0, 1)

u(0, y, t) = u(π, y, t) = u(x, 0, t) = u(x, π, t) = 0, (x, y, t) ∈ (0, π)× (0, π)× [0, 1],

u(x, y, 1) = ϕ(x, y), x, y ∈ (0, π)× (0, π),

where

g(x, y, t) = 2et sinx sin y + e3t sin3 x sin3 y,

u(x, y, 1) = ϕ0(x, y) ≡ e sinx sin y.
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The exact solution of this equation is. u(x, y, t) = et sinx sin y In particular,

u
(
x, y,

39999
40000

)
≡ u(x, y) = exp

(39999
40000

)
sinx sin y.

Let ϕβ(x, y) ≡ ϕ(x, y) = (β + 1)e sinx sin y. Then we have

‖ϕβ − ϕ‖2 =
( ∫ π

0

∫ π

0

β2e2 sin2(x) sin2 ydxdy
)1/2

= βe
π

2

Choose aβ = 1
β , and let p be a natural number satisfying p = [

√
1
2 ln( 1

β )]. We find

the regularized solution vβ,aβ (x, y, 39999
40000 ) ≡ uβ(x, y) having the form

vβ,aβ (x, y) = vm(x, y) = w11,m sinx sin y + wpp,m sin(px) sin(py)

where
v1(x, y) = (β + 1)e sinx sin y, w11,1 = (β + 1)e, wpp,1 = 0.

and a = 1/400000, tm = 1− am for m = 1, 2, . . . , 10,

w11,m+1 = e2(tm−tm+1)wij,m − 4
π2

∫ tm

tm+1

e2(s−tm+1)

×
( ∫ π

0

∫ π

0

(
vm(x, y)− v3

m(x, y) + g(x, y, s)
)
sinx sin y dx dy

)
ds ,

wpp,m+1 = e2p2(tm−tm+1)wpp,m − 4
π2

∫ tm

tm+1

e2p2(s−tm+1)

×
( ∫ π

0

∫ π

0

(
vm(x, y)− v3

m(x, y) + g(x, y, s)
)
sin px sin pydxdy

)
ds.

Let aβ = ‖vβ,aβ − u‖ be the error between the regularized solution vβ,aβ and
the exact solution u. Let β = β1 = 10−5(p = 2), β = β2 = 10−8, β = β3 = 10−16.
Then we have

β vβ,aβ aβ

β1 = 10−5 2.718241061 sinx sin y −
0.002038827910 sin(3x) sin(3y) 0.002039009193

β2 = 10−8 2.718213894 sinx sin y −
0.0002039162480 sin(3x) sin(3y) 0.0002039162492

β3 = 10−16 2.718220664 sinx sin y −
0.0001835495554 sin(3x) sin(3y) 0.0001835495554
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