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ON THE RIGIDITY OF MINIMAL MASS SOLUTIONS TO THE
FOCUSING MASS-CRITICAL NLS FOR ROUGH INITIAL DATA

DONG LI, XIAOYI ZHANG

Abstract. For the focusing mass-critical nonlinear Schrödinger equation iut+

∆u = −|u|4/du, an important problem is to establish Liouville type results for

solutions with ground state mass. Here the ground state is the positive solu-

tion to elliptic equation ∆Q−Q+Q1+ 4
d = 0. Previous results in this direction

were established in [12, 16, 17, 29] and they all require u0 ∈ H1
x(Rd). In this

paper, we consider the rigidity results for rough initial data u0 ∈ Hs
x(Rd) for

any s > 0. We show that in dimensions d ≥ 4 and under the radial assumption,

the only solution that does not scatter in both time directions (including the

finite time blowup case) must be global and coincide with the solitary wave
eitQ up to symmetries of the equation. The proof relies on a non-uniform local

iteration scheme, the refined estimate involving the P± operator and a new

smoothing estimate for spherically symmetric solutions.

1. Introduction

1.1. Background and main results. We consider the focusing mass-critical non-
linear Schrödinger equation

iut + ∆u = −|u|4/du (1.1)

in dimensions d ≥ 4; here u(t, x) is a complex-valued function on R×Rd. The name
“mass critical” refers to the fact that the scaling symmetry

u(t, x) 7→ λd/2u(λ2t, λx), ∀λ > 0 (1.2)

leaves both the equation and the mass invariant. Here the mass is defined as

Mass: M(u(t)) =
∫

Rd

|u(t, x)|2dx = M(u0).

For the initial value problem of (1.1), the local theory was established by Cazenave
and Weissler in [2]. To summarize, for any initial data u0 ∈ L2

x(Rd), they con-
structed the unique local solution u(t, x) ∈ Ct([−T, T ];L2

x)∩L2(d+2)/d
t,x ([−T, T ]×Rd).

Moreover, when the mass of the initial data is small enough, the solution is global
and obeys the global spacetime estimate

‖u‖
L

2(d+2)/d
t,x (R×Rd)

≤ C(‖u0‖L2
x
).
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This estimate implies that the solution scatters in both time directions asymptoti-
cally: there exist u± ∈ L2

x(Rd) such that

lim
t→±∞

‖u(t)− eit∆u±‖L2
x

= 0.

When the solution has large mass, blowup may occur at finite time. The existence
of finite blowup solutions was proved by Glassey [7], basing on the virial argument.
On the other hand, the equation (1.1) also admits solitary wave solutions of the
form eitR, where R solves the elliptic equation

∆R−R+ |R|4/dR = 0. (1.3)

There are infinite many solutions to this equation, but only one positive solution
which is spherically symmetric and whose mass is minimal among all these R′s.
This solution is usually called the

Definition 1.1 (Ground state). The ground state Q refers to the unique positive
solution to the equation (1.3). According to [1, 15], Q is spherically symmetric and
decays exponentially fast as |x| → ∞.

It is believed that the mass of Q is the minimal mass among all the non-scattering
solutions. The precise statement of this general belief is the following scattering
conjecture:

Conjecture 1.2. Let u0 ∈ L2
x(Rd) be such that M(u0) < M(Q). Then the corre-

sponding solution exists globally and scatters in both time directions.

So far, this conjecture has been proved in dimensions d ≥ 2 when the initial data
u0 is spherically symmetric, see [13, 14].

At the level of minimal mass, there are two explicit examples of non-scattering
solutions: the solitary wave SW and the pseudo-conformal ground state Pc(Q).

SW = eitQ(x),

P c(Q) = |t|− d
2 e

i|x|2−4
4t Q(

x

t
).

It is conjectured that these are the only two threshold solutions for scattering at
the level of minimal mass. The associated is the following rigidity conjecture which
identify the solutions with ground state mass as either SW or Pc(Q) if they do
not scatter. Since both mass and the equation are invariant under a couple of sym-
metries, the coincidence of the solutions with the examples hold after quotienting
out these symmetries. Specifically, the symmetries are: translation, phase rotation,
scaling and the Galilean boost.

Conjecture 1.3. Let u0 ∈ L2
x(Rd) satisfy M(u0) = M(Q). Then only the three

scenarios can occur
(1) The solution u(t, x) scatters in both time directions;
(2) u blows up at finite time, then u must coincide with Pc(Q) up to symmetries

of the equation.
(3) u is a global solution and u coincide with SW up to symmetries of the

equation.

Equivalently to say, the rigidity result identifies all the non-scattering solutions
with minimal mass as either the pseudo-conformal ground state or the solitary
wave. Therefore, the proof of the rigidity conjecture is divided into the two parts:
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one is concerned about the behavior of finite blowup solutions, and the other is
concerned with the asymptotics of global solutions.

The first result toward the rigidity conjecture is about finite time blowup solu-
tions, and they were established by Weinstein and Merle. In [29], Weinstein showed
that if an H1

x solution blows up at finite time with minimal mass, then there exist
θ(t), x(t), λ(t) such that

eiθ(t)λ(t)d/2u(t, λ(t)x+ x(t)) → Q in H1
x.

Later, Merle extended this result to show that if an H1
x solution with minimal mass

blows up at finite time, then it must be equal to Pc(Q) up to symmetries. One
can also see [8] for a simpler proof of this result. The requirement that u0 ∈ H1

x

is essentially needed since it is the natural space to carry out the spectral analysis
and to well define the energy:

Energy: E(u(t)) =
1
2
‖∇u(t)‖2L2

x
− d

2(d+ 2)
‖u(t)‖2(d+2)/d

L
2(d+2)/d
x

= E(u0).

It is also worth pointing out that their results work for all dimensions d ≥ 1 and
there is no symmetry assumption on the initial data. But the proof relies heavily
on the finiteness of the blowup time.

From Merle’s result and the pseudo-conformal invariance for mass critical NLS,
one easily sees that if u0 ∈ Σ = {v ∈ H1

x, xv ∈ L2
x} and the corresponding solution

exists globally but does not scatter in at least one time direction, then it must be
the solitary wave SW up to symmetries. This is the first result toward the rigidity
result if the solution is global.

Without the additional decay assumption, it is not obvious at all if the conjec-
ture still holds. Recently in [12], [16], we established the rigidity result for global
solutions under the radial assumptions.

Theorem 1.4 ([12, 16]). Let d ≥ 2. Let u0 ∈ H1
x(Rd) be spherically symmetric

and satisfy M(u0) = M(Q). Then only the following two scenarios can occur:
(1) The solution exists globally and scatters in both time directions;
(2) There exist θ0, λ0 such that

u(t, x) = eiθ0λ
d/2
0 eiλ2

0tQ(λ0x).

In dimensions d ≥ 4, we can relax the spherical symmetry to certain splitting-
spherical symmetry, see [16] for more details.

As indicated by the statement of the theorem, the rigidity conjecture concerning
the global solution holds under several additional conditions: the spherical symme-
try( or the splitting-spherical symmetry) on the initial data; the dimension d ≥ 2;
and the H1

x regularity on the initial data. Each of them is used heavily in the proof.
To give a brief explanation, the symmetry assumption is used to freeze the center
of mass and provide enough decay as |x| → ∞. The one dimension function does
not have decay as |x| → ∞, this is why the restriction on the dimension comes in.
Finally, since the proof relies on the virial argument, the H1

x regularity is naturally
needed to define the energy. Meanwhile, in low dimensions d = 2, 3, the H1

x regu-
larity is also used to get the weak compactness for the kinetic energy, see [16] for
more details.

Therefore, removing the reliance on any of these conditions makes a very chal-
lenging problem. In this paper, we try to remove the reliance on the H1

x regularity
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in the rigidity conjecture. For some technical reasons which will be clear in the
proof, we shall consider solutions which have the minimal mass and do not scatter
in both time directions. Our result is the following:

Theorem 1.5 (Rigidity of SW for rough solutions). Let d ≥ 4, s > 0. Let u0 ∈
Hs

x(Rd) be spherically symmetric and such that M(u0) = M(Q). Suppose that the
corresponding maximal lifespan solution u(t, x) : (−T∗, T ∗) × Rd → C does not
scatter in both time directions:

‖u‖
L

2(d+2)/d
t,x ((−T∗,0]×Rd)

= ‖u‖
L

2(d+2)/d
t,x ([0,T∗)×Rd)

= ∞.

Then the solution must be global

T∗ = T ∗ = +∞.

And there exist λ0, θ0 such that

u(t, x) = eiθ0eiλ2
0tλ

d/2
0 Q(λ0x).

As expected, the main part of the proof is devoted to upgrading theHs
x regularity

of the solution to H1
x, when the result for H1

x solution Theorem 1.4 can be applied.
The possibility that we can upgrade the regularity of the solution comes ultimately
from the fact that the solution we are considering has the minimal mass and does
not scatter in both time directions.

Our strategy for upgrading the regularity is the following: Firstly, since u has
the minimal mass and does not scatter on both sides, applying the same argument
as in [12], one easily gets that

‖φ>1∇u(t)‖L2
x

. 1.

This means that away from the origin, the solution is regular uniformly in time,
thus it suffices for us to examine the solution near the origin. There we carefully
design a local iteration scheme enabling us to go from Ht

x to Ht+ε
x for any t < 1

and an ε increasing in t. After finite many times of iteration, we get the desired H1
x

regularity. Here by ”local”, we mean that the scheme is designed to upgrade the
regularity of the solution at some fixed time t, for example t = 0, not uniformly in
time. More precisely, the quantity we will look at is

‖φ≤1PNu0‖L2
x
, N ≥ 1. (1.4)

(Not that the piece ‖φ>1PNu0‖L2
x

already gives us N−1−ε(d) decay following the
argument in [12], which is already very good). Now we split (1.4) into two parts
by introducing a spatial cutoff

‖φ≤N−1−γPNu0‖L2
x
, (1.5)

‖φN−1−γ<·≤1PNu0‖L2
x
. (1.6)

By Hölder and Bernstein, the first quantity gives us the bound: N−s− d
2 γ which is

good for the iteration. To estimate the second piece, we project it into the incoming
and outgoing wave, for the incoming wave, we use the Duhamel formula backward
in time; for the outgoing wave, we use the Duhamel formula forward in time. The
assumption that the solution does not scatter on both sides forbids the scattering
wave, for which there is no hope to upgrade the regularity, to participate in the
estimates.

The first issue when we estimate these two pieces comes from the fact that in
(1.6), the spatial cutoff and the frequency cutoff does not obey the scaling like in
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[13], [14], there we have good estimates for P±N with a natural spatial cutoff φ> 1
N

.
Indeed, when approaching the origin, the operator P± have strong singularities. To
get around this problem, we refine the estimates for the operator P±N with spatial
cutoff of the form φN−1−γ<·≤1. It turns out that there will be a loss of N to some
power related to γ. This loss of power is not too harmful for us if we make a
judicious choice of γ and other relevant parameters in the iteration scheme. We
give the detailed discussion on the properties of the operators in Section 3.

Having the operator estimate in hand, we then estimate the contribution from the
in-out wave by chopping the t-integration into different pieces. Since the stationary
phase point moves with time t at speed N , the contribution from the large time
piece is presumably fine due to the decay property of radial functions.

It turns out that the most troublesome term is the following local piece∥∥∥φN−1−γ<·≤1

∫ 1
N2−σ

0

P+
N e

−iτ∆φ≤1F (u)(τ)dτ
∥∥∥

L2
x

. (1.7)

Here 0 < σ < 2 is a small constant to be specified later in the proof. One observation
from the expression (1.7) is that it is spatially localized, which suggests that the
additional regularity should come from some sort of smoothing estimate.

The classical smoothing estimate [18, 10, 5] asserts that the linear propagation
gain half derivative locally. This is crucial to study the NLS containing first order
derivatives. In our setting, since we are considering the spherically symmetric
functions, we develop the following global smoothing estimate:

‖|x|(d−1)/2|∇|1/2eit∆u0‖L∞x L2
t (Rd×R) . ‖u0‖L2

x
. (1.8)

Using the dual form of this estimate, we can successfully control the term (1.7) and
close the argument. The proof of the estimate (1.8) can be found in Section 3.

We make two remarks here. First of all, it is worth pointing out that the strat-
egy here for upgrading the regularity is quite different from the one in [13, 14].
There the argument relies on the fact that the solution is almost periodic modulo
scaling, and the solution is uniformly flat. Namely, there exists N(t) > 0 such that
{N(t)−

d
2 u(t, x

N(t) )} is precompact in L2
x(Rd) and N(t) ≤ 1. In our setting, the

solution also enjoys such compactness, but there is no a priori control on N(t). Ac-
tually, the most difficult case is that N(t) can fluctuate out of any control. Secondly,
like in [12], our proof needs the assumption d ≥ 4 since the nonlinearity |u|4/du can
easily be controlled without knowing other information than M(u) being finite. It
is certainly an interesting problem to prove the theorem in lower dimensions.

2. Preliminaries

2.1. Some notation. We write X . Y or Y & X to indicate X ≤ CY for some
constant C > 0. We use O(Y ) to denote any quantity X such that |X| . Y . We use
the notation X ∼ Y whenever X . Y . X. The fact that these constants depend
upon the dimension d will be suppressed. If C depends upon some additional
parameters, we will indicate this with subscripts; for example, X .u Y denotes
the assertion that X ≤ CuY for some Cu depending on u. We denote by X± any
quantity of the form X ± ε for any ε > 0.

We use the ‘Japanese bracket’ convention 〈x〉 := (1 + |x|2)1/2.
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We write Lq
tL

r
x to denote the Banach space with norm

‖u‖Lq
t Lr

x(R×Rd) :=
(∫

R

(∫
Rd

|u(t, x)|r dx
)q/r

dt
)1/q

,

with the usual modifications when q or r are equal to infinity, or when the domain
R × Rd is replaced by a smaller region of spacetime such as I × Rd. When q = r
we abbreviate Lq

tL
q
x as Lq

t,x.
Throughout this paper, we will use φ ∈ C∞(Rd) be a radial bump function

supported in the ball {x ∈ Rd : |x| ≤ 25
24} and equal to one on the ball {x ∈ Rd :

|x| ≤ 1}. For any constant C > 0, we denote φ≤C(x) := φ
(

x
C

)
and φ>C := 1−φ≤C .

2.2. Basic harmonic analysis. For each number N > 0, we define the Fourier
multipliers

P̂≤Nf(ξ) := φ≤N (ξ)f̂(ξ)

P̂>Nf(ξ) := φ>N (ξ)f̂(ξ)

P̂Nf(ξ) := (φ≤N − φ≤N/2)(ξ)f̂(ξ)

and similarly P<N and P≥N . We also define

PM<·≤N := P≤N − P≤M =
∑

M<N ′≤N

PN ′

whenever M < N . We will usually use these multipliers when M and N are dyadic
numbers (that is, of the form 2n for some integer n); in particular, all summations
over N or M are understood to be over dyadic numbers. Nevertheless, it will
occasionally be convenient to allow M and N to not be a power of 2. As PN is not
truly a projection, P 2

N 6= PN , we will occasionally need to use fattened Littlewood-
Paley operators:

P̃N := PN/2 + PN + P2N . (2.1)

These obey PN P̃N = P̃NPN = PN .
Like all Fourier multipliers, the Littlewood-Paley operators commute with the

propagator eit∆, as well as with differential operators such as i∂t + ∆. We will use
basic properties of these operators many many times, including

Lemma 2.1 (Bernstein estimates). For 1 ≤ p ≤ q ≤ ∞,∥∥|∇|±sPNf
∥∥

Lp
x
∼ N±s‖PNf‖Lp

x
,

‖P≤Nf‖Lq
x

. N
d
p−

d
q ‖P≤Nf‖Lp

x
,

‖PNf‖Lq
x

. N
d
p−

d
q ‖PNf‖Lp

x
.

While it is true that spatial cutoffs do not commute with Littlewood-Paley op-
erators, we still have the following result.

Lemma 2.2 (Mismatch estimates in real space). Let R,N > 0. Then∥∥φ>R∇P≤Nφ≤R
2
f
∥∥

Lp
x

.m N1−mR−m‖f‖Lp
x∥∥φ>RP≤Nφ≤R

2
f
∥∥

Lp
x

.m N−mR−m‖f‖Lp
x

for any 1 ≤ p ≤ ∞ and m ≥ 0.
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Proof. We will only prove the first inequality; the second follows similarly.
It is not hard to obtain kernel estimates for the operator φ>R∇P≤Nφ≤R

2
. Indeed,

an exercise in non-stationary phase shows∣∣φ>R∇P≤Nφ≤R/2(x, y)
∣∣ . Nd+1−2k|x− y|−2kφ|x−y|> R

2

for any k ≥ 0. An application of Young’s inequality yields the claim. �

Similar estimates hold when the roles of the frequency and physical spaces are
interchanged. The proof is easiest when working on L2

x, which is the case we will
need; nevertheless, the following statement holds on Lp

x for any 1 ≤ p ≤ ∞.

Lemma 2.3 (Mismatch estimates in frequency space). For R > 0 and N,M > 0
such that max{N,M} ≥ 4 min{N,M},∥∥PNφ≤RPMf

∥∥
L2

x
.m max{N,M}−mR−m‖f‖L2

x∥∥PNφ≤R∇PMf
∥∥

L2
x

.m M max{N,M}−mR−m‖f‖L2
x
.

for any m ≥ 0. The same estimates hold if we replace φ≤R by φ>R.

Proof. The first claim follows from Plancherel’s Theorem and Lemma 2.2 and its
adjoint. To obtain the second claim from this, we write

PNφ≤R∇PM = PNφ≤RPM∇P̃M

and note that ‖∇P̃M‖L2
x→L2

x
. M . �

We will need the following radial Sobolev embedding to exploit the decay prop-
erty of a radial function. For the proof and the more complete version, one refers
to see [21].

Lemma 2.4 (Radial Sobolev embedding, [21]). Let dimension d ≥ 2. Let s > 0,
α > 0, 1 < p, q < ∞ obeys the scaling restriction: α + s = d( 1

q −
1
p ). Then the

following holds:
‖|x|αf‖Lp

x
. ‖|∇|sf‖Lq

x
,

where the implicit constant depends on s, α, p, q. When p = ∞, we have

‖|x|(d−1)/2PNf‖L∞x . N1/2‖PNf‖L2
x
.

We will need the following fractional chain rule lemma.

Lemma 2.5 (Fractional chain rule for a C1 function, [4][19][24]). Let F ∈ C1(C),
σ ∈ (0, 1), and 1 < r, r1, r2 <∞ such that 1

r = 1
r1

+ 1
r2

. Then we have

‖|∇|σF (u)‖Lr
x

. ‖F ′(u)‖L
r1
x
‖|∇|σu‖L

r2
x
.

For a proof of the above lemma, see [4, 19] and [24].

2.3. Strichartz estimates. The free Schrödinger flow has the explicit expression

eit∆f(x) =
1

(4πt)d/2

∫
Rd

ei|x−y|2/4tf(y)dy,

We will frequently use the standard Strichartz estimate.
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Lemma 2.6 (Strichartz). Let d ≥ 2. Let I be an interval, t0 ∈ I, and let u0 ∈
L2

x(Rd) and F ∈ L2(d+2)/(d+4)
t,x (I × Rd). Then, the function u defined by

u(t) := ei(t−t0)∆u0 − i

∫ t

t0

ei(t−t′)∆F (t′) dt′

obeys the estimate

‖u‖L∞t L2
x

+ ‖u‖
L

2(d+2)/d
t,x

. ‖u0‖L2
x

+ ‖F‖
L

2(d+2)
d+4

t,x

,

where all spacetime norms are over I × Rd.

Proof. See, for example, [6, 20]. For the endpoint see [9]. �

We will also need a weighted Strichartz estimate, which exploits heavily the
spherical symmetry in order to obtain spatial decay.

Lemma 2.7 (Weighted Strichartz, [13, 14]). Let d ≥ 2. Let I be an interval, t0 ∈ I,
and let F : I × Rd → C be spherically symmetric. Then,∥∥∥∫ t

t0

ei(t−t′)∆F (t′) dt′
∥∥∥

L2
x

.
∥∥|x|− 2(d−1)

q F
∥∥

L
q

q−1
t L

2q
q+4
x (I×Rd)

for 4 ≤ q ≤ ∞.

3. Smoothing estimate and the refined operator estimates

3.1. Kato smoothing for radial solutions. Kato smoothing estimate [18, 10, 5]
plays an important role in studying the wellposedness for nonlinear Schrödinger
equation with derivative. In one spatial dimension, the typical Kato smoothing
takes the form:

‖|∇|1/2eit∂xxu0‖L∞x L2
t (R×R) . ‖u0‖L2

x
. (3.1)

The smoothing estimate in high dimensions involves the spatial localization or a
decay weight. We will not discuss in detail here. In this paper, we will need
the following smoothing estimate for radial functions, which can be viewed as an
extension of the one dimensional estimate (3.1).

Lemma 3.1 (Kato smoothing for radial functions with d ≥ 2). Let the dimension
d ≥ 2. Then for any radial function f we have∥∥|x| d−1

2 |∇|1/2eit∆f
∥∥

L∞x L2
t (Rd×R)

. ‖f‖2.

Proof. By passing to radial coordinates, we can write

|x|
d−1
2 |∇|1/2eit∆f = |x|

d−1
2

∫ ∞

0

k1/2e−itk2
f̂(k)kd−1

( ∫
|ω|=1

eik|x|ω1dσ(ω)
)
dk,

(3.2)
where f̂ is the Fourier transform of the function f and dσ(ω) is the the surface
measure on Sd−1. Since the Fourier transform of a radial function is still radial,
we can slightly abuse the notation f̂(k) to denote the Fourier transform of f . Now
consider the function

h(ρ) :=
∫
|ω|=1

eiρω1dσ(ω).

It is clear that
ρ

d−2
2 h(ρ) = J(d−2)/2(ρ),
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where J(d−2)/2 is the usual Bessel function of order d−2
2 . Then by using the asymp-

totics for Bessel functions, it is not difficult to see that

sup
ρ>0

ρ(d−1)/2|h(ρ)| ≤ C1 <∞, (3.3)

where C1 is a constant depending only on the dimension d. By Plancherel, one can
show that for any one-dimensional function F , we have∥∥∫ ∞

0

e−itk2
F (k)dk

∥∥2

L2
t

=
1
2

∫ ∞

0

|F (k)|2 dk
k
. (3.4)

Now by (3.2), (3.3), (3.4), we obtain∥∥|x|(d−1)/2|∇|1/2eit∆f
∥∥2

L2
t

=
1
2

∫ ∞

0

|f̂(k)|2 · |x|d−1 · k2(d−1) · |h(k|x|)|2dk

≤ 1
2

∫ ∞

0

|f̂(k)|2kd−1dk ·
(

sup
ρ>0

ρ
d−1
2 |h(ρ)|

)2

≤ C2
1‖f‖22.

The lemma is proved. �

3.2. The in-out decomposition and refined operator estimates. We will
need an incoming/outgoing decomposition; we will use the one developed in [13, 14].
As there, we define operators P± by

[P±f ](r) := 1
2f(r)± i

π

∫ ∞

0

r2−d f(ρ) ρd−1 dρ

r2 − ρ2
,

where the radial function f : Rd → C is written as a function of radius only. We
will refer to P+ is the projection onto outgoing spherical waves; however, it is not
a true projection as it is neither idempotent nor self-adjoint. Similarly, P− plays
the role of a projection onto incoming spherical waves; its kernel is the complex
conjugate of the kernel of P+ as required by time-reversal symmetry.

3.3. The two-dimensional case. For N > 0 let P±N denote the product P±PN

where PN is the Littlewood-Paley projection. We record the following properties
of P± from [13, 14]:

Proposition 3.2 (Properties of P±, [13, 14]).
(i) P+ + P− represents the projection from L2 onto L2

rad.
(ii) P± are bounded on L2(R2).
(iii) For |x| & N−1 and t & N−2, the integral kernel obeys

∣∣[P±N e∓it∆](x, y)
∣∣ .

(|x||y|)−1/2|t|−1/2 |y| − |x| ∼ Nt

N2

(N |x|)1/2〈N |y|〉1/2

〈
N2t+N |x| −N |y|

〉−m otherwise

for all m ≥ 0.
(iv) For |x| & N−1 and |t| . N−2, the integral kernel obeys∣∣[P±N e∓it∆](x, y)

∣∣ .
N2

(N |x|)1/2〈N |y|〉1/2

〈
N |x| −N |y|

〉−m

for any m ≥ 0.
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For a proof of the above proposition, see [13, 14].
We will also need the following Proposition concerning the properties of P±

in the small x regime (i.e. |x| . N−1) where Bessel functions have logarithmic
singularities. More precisely, we have the following result.

Proposition 3.3 (Properties of P±, small x regime, [16]). Let dimension d = 2.
(i) For t & N−2, N−3 . |x| . N−1, |y| � Nt or |y| � Nt, the integral kernel

satisfies∣∣[P±N e∓it∆](x, y)
∣∣ .

N2 logN
〈N |y|〉1/2

〈N2t+N |y|〉−m, ∀m ≥ 0.

(ii) For t & N−2, N−3 . |x| . N−1, |y| ∼ Nt, the integral kernel satisfies∣∣[P±N e∓it∆](x, y)
∣∣ .

N2 logN
〈N |y|〉1/2

.

For a proof of the above proposition, see [16].

3.4. The case d ≥ 3. The next lemma allows us to bound the operator P±N slightly
below the |x| ∼ 1/N barrier, i.e. in the regime 1

N1+γ ≤ |x| ≤ 1
N for some γ > 0.

The price to pay is a polynomial growth factor in N .

Lemma 3.4. Let the dimension d ≥ 3. Fix N & 1 and γ > 0. For any spherically
symmetric function f ∈ L2

x(Rd),

∥∥P±PNf
∥∥

L2
x( 1

N1+γ ≤|x|≤ 1
N )

.


N

(d−4)γ
2 ·

∥∥f∥∥
L2

x(Rd)
, if d ≥ 5,

〈logN〉1/2 ·
∥∥f∥∥

L2
x(Rd)

, if d = 4,∥∥f∥∥
L2

x(Rd)
, if d = 3,

where the implied constant depends only on γ and d. Here 〈·〉 is the Japanese
bracket.

Proof. We shall only prove the inequality for P+. The result for P− is similar (or
one can use the fact P+ + P− acts as an identity on L2

rad(Rd)). By the definition
of P+, we have∥∥P±PNf

∥∥2

L2
x( 1

N1+γ ≤|x|≤ 1
N )

=
∫ 1

N

1
N1+γ

∣∣∣ ∫ ∞

0

H
(1)
d−2
2

(kr)f̂(k)kd/2ψ( k
N )dk

∣∣∣2rdr. (3.5)

Since k ∼ N , 1
N1+γ ≤ r ≤ 1

N , 1
Nγ ≤ kr . 1, we have∣∣H(1)

(d−2)/2(kr)
∣∣ . (kr)−(d−2)/2.

Therefore, by Cauchy-Schwartz, we obtain

RHS of (3.5) .
∫ 1

N

1
N1+γ

r3−ddr ·N2−d ·
∫ ∞

0

|f̂(k)|2kd−1dk ·
∫ ∞

0

|ψ(
k

N
)|2kdk

.
∫ 1

N

1
N1+γ

r3−ddr ·N4−d · ‖f‖2L2
x(Rd).

(3.6)
Now if d ≥ 5, then ∫ 1

N

1
N1+γ

r3−ddr . N (1+γ)(d−4)
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and RHS of (3.6) . N (d−4)γ‖f‖2L2
x(Rd).

If d = 4, then ∫ 1
N

1
N1+γ

r3−ddr . logN

and RHS of (3.6) . (logN) · ‖f‖2L2
x(Rd).

If d = 3, then clearly

RHS of (3.6) . ‖f‖2L2
x(Rd).

The lemma is proved. �

In the next lemma we shall give bounds of some integrals needed later in the
kernel estimates. To fix notations, we assume g̃1, g̃2 are one-dimensional functions
such that ∣∣dmg̃i(r)

drm

∣∣ . 1, ∀0 < r . 1, m ≥ 0, i = 1, 2, (3.7)

and a(·) is a one-dimensional function such that∣∣dma(r)
drm

∣∣ . 〈r〉−m, ∀r ≥ 0, m ≥ 0, (3.8)

where 〈·〉 is the Japanese bracket. We shall denote by ψ the multiplier function
from the Littlewood-Paley projection. With these notations, we state the following
lemma.

Lemma 3.5. Let N & 1 be a dyadic number. Assume 0 < c1, c2 . 1
N are two fixed

numbers. Then for any t & N−2, we have∫ ∞

0

g̃1(kc1)g̃2(kc2)eitk2
ψ( k

N )dk . N · 〈N2t+Nc2〉−m, ∀m ≥ 0. (3.9)

If c3 is a number such that 1
N . c3 � Nt, then∫ ∞

0

g̃1(kc1)
a(kc3)
〈kc3〉1/2

ei(tk2±c3k)dk .
N

〈Nc3〉1/2
· 〈N2t+Nc3〉−m, ∀m ≥ 0. (3.10)

Similarly if c4 is such that c4 � Nt, then∫ ∞

0

g̃1(kc1)
a(kc4)
〈kc4〉1/2

ei(tk2±c4k)dk .
N

〈Nc4〉1/2
· 〈N2t+Nc4〉−m, ∀m ≥ 0. (3.11)

Proof. All the estimates (3.9)–(3.11) essentially follow from integrating by parts.
Let k = Nk̃, then k̃ ∼ 1 due to the cut-off function ψ. Change k to Nk̃ in (3.9)–
(3.11). Note by (3.7) and the fact that 0 < c1, c2 . 1

N , N & 1, we have∣∣ dm

dk̃m
(g̃i(k̃ciN))

∣∣ . 1, ∀ k̃ ∼ 1, m ≥ 0, i = 1, 2.

Also by (3.8) and the assumptions on c3, c4, we have∣∣ dm

dk̃m
a(k̃c3N)

∣∣ +
∣∣ dm

dk̃m
a(k̃c4N)

∣∣ . 1, ∀ k̃ ∼ 1, m ≥ 0.

The desired estimates (3.9)–(3.11) now follow from integration by parts and the
above derivative estimates on g̃1, g̃2, a. �

Proposition 3.6 (Properties of P±, small x regime). Let dimension d ≥ 3 and
assume γ > 0. Let N & 1 be a dyadic number.
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(i) For t & N−2, 1
N1+γ . |x| . N−1, |y| � Nt or |y| � Nt, the integral kernel

satisfies∣∣[P±N e∓it∆](x, y)
∣∣ .

N (1+γ)(d−2)+2

〈N |y|〉1/2
〈N2t+N |y|〉−m, ∀m ≥ 0.

(ii) For t & N−2, 1
N1+γ . |x| . N−1, |y| ∼ Nt, the integral kernel satisfies∣∣[P±N e∓it∆](x, y)

∣∣ .
N (1+γ)(d−2)+2 logN

〈N |y|〉1/2
.

Proof. We shall only provide the proof for P+
N e

−it∆ since the other kernel is its
complex conjugate. The first claim is an exercise in stationary phase. By Fourier
transform we have the following formula for the kernel

[P+
N e

−it∆](x, y)

= 1
2

(
|x||y|

)−(d−2)/2
∫ ∞

0

H
(1)
(d−2)/2(k|x|)J(d−2)/2(k|y|)eitk2

ψ
(

k
N

)
k dk

(3.12)

where ψ is the multiplier function from the Littlewood–Paley projection. First note
that

H
(1)
(d−2)/2(r) = J(d−2)/2(r) + iY(d−2)/2(r). (3.13)

Since k ∼ N , 1
N1+γ . |x| . 1

N , we have r = k|x| satisfies 1
Nγ . r . 1. Now using

the expansion

J(d−2)/2(r) =
∞∑

m=0

(−1)m

m!Γ(m+ d
2 )
· ( r

2 )2m+ d−2
2 ,

we can write
r−(d−2)/2J(d−2)/2(r) = g̃1(r), (3.14)

where ∣∣∂mg̃1(r)
∂rm

∣∣ . 1, ∀m ≥ 0, r . 1.

Here the factor r−(d−2)/2 in (3.14) is needed since the dimension d may possibly
be a odd integer. To treat the function Y d−2

2
in the regime 1

Nγ . r . 1, we discuss
two cases. If the dimension d is even, then we use the series

Y(d−2)/2(r) = −
( r
2 )−(d−2)/2

π

d−4
2∑

k=0

(d−4
2 − k)!
k!

·
(1
4
r2

)k +
2
π

log( r
2 )J(d−2)/2(r)

−
( r
2 )

d−2
2

π

∞∑
k=0

(
ψ0(k + 1) + ψ0(n+ k + 1)

)
·

(− 1
4r

2)k

k!(d−2
2 + k)!

,

where ψ0 is the digamma function defined by

ψ0(n) = −γ0 +
n−1∑
k=1

1
k
,

and γ0 is the Euler-Masheroni constant. It follows easily that

Y(d−2)/2(r) = r−(d−2)/2g̃2(r) + log r · r
d−2
2 g̃3(r) + r

d−2
2 · g̃4(r), (3.15)

where ∣∣∂mg̃j(r)
∂rm

∣∣ . 1, ∀m ≥ 0, r . 1, j = 2, 3, 4.
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Now if the dimension d is odd, then we use the formula

Y d−2
2

(r) = Y d−3
2 + 1

2
(r) = −

2 · ( r
2 )

d−2
2√

π · (d−3
2 )!

·
(
1 +

d2

dr2

) d−3
2 (cos r

r

)
.

It follows that we can write

r−(d−2)/2 · Y(d−2)/2(r) = r−(d−2)g̃5(r), (3.16)

where ∣∣∂mg̃5(r)
∂rm

∣∣ . 1, ∀m ≥ 0, r . 1.

Next we also use the following information about Bessel functions in the regime
r & 1:

J(d−2)/2(r) =
a(r)eir

〈r〉1/2
+
ā(r)e−ir

〈r〉1/2
, (3.17)

where a(r) obeys the symbol estimates∣∣∣∂ma(r)
∂rm

∣∣∣ . 〈r〉−m for all m ≥ 0, r & 1

Finally substitute (3.13), (3.14), (3.15) (when d is even), (3.16) (when d is odd),
(3.17) into (3.12). Consider three regimes of y: 1/N . |y| � N |t|, |y| . 1/N ,
|y| � N |t| and use different asymptotics of the Bessel function in these regimes.
Note also that the singular part of the Hankel function near r = 0 adds only a
power of N due to our lower bound on x. It is then easy to see that a stationary
phase point can only occur when |y| ∼ Nt. Since we assume |y| � Nt or |y| � Nt,
integrating by parts and using Lemma 3.5 yield the first claim. The second claim
follows from a trivial L1 estimate. We omit the details. �

4. The proof of Theorem 1.5

We first explain why it suffices for us to show that such two way non-scattering
solution with minimal mass must be regular: u0 ∈ H1

x. Indeed, if u0 ∈ H1
x and the

corresponding solution blows up at finite time, according to Merle’s result [17], we
know it must scatter one way which contradicts our assumption. Then the solution
must be global, here a direct application of Theorem 1.4 immediately yields the
coincidence of the solution with SW up to symmetries.

Since the following proof of upgrading the regularity works for all two-way non-
scattering solutions, for the sake of simplicity, we assume the solution is global. The
discussion of the finite time blowup solutions is only notationally more complicated.

To begin with, we recall the following result. The proof of this result is implicitly
contained in [12].

Lemma 4.1 (Regularity of solutions away from the origin, [12]). Let d ≥ 4. Let
u0 ∈ L2

x(Rd) be spherically symmetric and M(u0) = M(Q). Let u(t, x) be the
corresponding solution such that it does not scatter in both time directions:

‖u‖
L

2(d+2)
d

t,x ((−∞,0]×Rd)
= ‖u‖

L
2(d+2)

d
t,x ([0,∞)×Rd)

= ∞.

Then there exists ε = ε(d) > 0 such that

‖φ>1PNu(t)‖L2
x

. N−1−ε, ∀N ≥ 1, t ∈ R.
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In particular,
‖φ>1∇u(t)‖L2

x
. 1, ∀t ∈ R.

Now we use this information to upgrade the regularity of the initial data. To this
end, we seek for the refined decay estimate for single frequency PNu0 with N ≥ 1.
Let γ > 0 be a small parameter to be chosen later, we use triangle inequality to
bound

‖PNu0‖L2
x

. ‖φ≤N−1−γPNu0‖L2
x

(4.1)

+ ‖φN−1−γ<·≤1PNu0‖L2
x

(4.2)

+ ‖φ>1PNu0‖L2
x
. (4.3)

First of all, Lemma 4.1 yields that (4.3) . N−1−ε. Next, using Hölder and Bern-
stein, (4.1) can be controlled rather easily:

(4.3) . N
d
2 (−1−γ)‖PNu0‖L∞x . N−s− d

2 γ‖u0‖Hs
x

. N−s− d
2 γ .

The task now is to estimate (4.2), for which we will use the in-out decomposition
and the improved Duhamel formula as we explain now. Since the solution u does
not scatter in both time directions and has minimal mass, according to [22, 14] 1

we have

u(t) = lim
T→∞

−i
∫ T

t

ei(t−s)∆F (u(s))ds (4.4)

= lim
T→−∞

i

∫ t

T

ei(t−s)∆F (u(s))ds, (4.5)

where F (u) = |u|4/du and the limit is understood in the weak L2
x sense. Using the

in-out decomposition and (4.4), (4.5), we estimate

(4.2) ≤ ‖φN−1−γ<·≤1P
+
Nu0‖L2

x
+ ‖φN−1−γ<·≤1P

−
N u0‖L2

x

. ‖φN−1−γ<·≤1P
+
N

∫ ∞

0

e−iτ∆F (u(τ))dτ‖L2
x

(4.6)

+ ‖φN−1−γ<·≤1P
−
N

∫ ∞

0

eiτ∆F (u(−τ))dτ‖L2
x
. (4.7)

Expression (4.6) and (4.7) will give the same contribution so we only need to esti-
mate one of them. By splitting into different time pieces and introducing spatial
cutoffs, we estimate (4.6) as follows

(4.6) . ‖φN−1−γ<·≤1P
+
N

∫ ∞

1
N

e−iτ∆φ> Nτ
2
F (u(τ))dτ‖L2

x
(4.8)

+ ‖φN−1−γ<·≤1P
+
N

∫ ∞

1
N

e−iτ∆φ≤Nτ
2
F (u(τ))dτ‖L2

x
(4.9)

+ ‖φN−1−γ<·≤1P
+
N

∫ 1
N

1
N2−σ

e−iτ∆φ> Nτ
2
F (u(τ))dτ‖L2

x
(4.10)

+ ‖φN−1−γ<·≤1P
+
N

∫ 1
N

1
N2−σ

e−iτ∆φ≤Nτ
2
F (u(τ))dτ‖L2

x
(4.11)

1The first reference established the improved Duhamel formula for minimal-mass non-scattering

solution in which the scattering wave vanish when the t approaches the maximal life time. The

second one identifies M(Q) as the minimal mass within all the spherically symmetric solutions.
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+ ‖φN−1−γ<·≤1P
+
N

∫ 1
N2−σ

0

e−iτ∆F (u(τ))dτ‖L2
x
, (4.12)

where 0 < σ < 2 is a small constant to be fixed later. We first look at (4.9), (4.11)
where the desired decay in N comes from the kernel estimate Lemma 3.3. Let
A = (1 + γ)(d− 2) + 2, then for any τ > 1

N2 , m > 0,∣∣∣(φN−1−γ<·≤1P
+
N e

−iτ∆φ≤Nτ
2

)
(x, y)

∣∣∣ .m NA〈N2τ +N |x|+N |y|〉−2m

.m NA|N2τ |−m〈N |x− y|〉−m.

Using this and Young’s inequality, (4.9), (4.11) can be bounded as follows

(4.9) .m NA

∫ ∞

1
N

|N2τ |−m‖〈N | · |〉 ∗ F (u(τ))‖L2
x
dτ

.m NAN−2m

∫ ∞

1
N

τ−mdτ‖〈N | · |〉‖
L

d
d−2
x

‖F (u)‖
L∞t L

2d
d+4
x

.m N−m+1+A−d‖u‖1+
4
d

L∞t L2
x

.m N−m+1+A−d.

Thus, by taking m large enough depending on d,

(4.9) . N−10.

Expression (4.11) can be estimated in a similar way:

(4.11) .m NA

∫ 1
N

1
N2−σ

|N2τ |−m‖〈N | · |〉 ∗ F (u(τ))‖L2
x
dτ

.m N−2m+A+2−d

∫ 1
N

1
N2−σ

τ−mdτ

.m NA−(m−1)σ−d.

For (4.8) and (4.10), we will use the weighted Strichartz estimate Lemma 2.7. In
what follows we shall only present the details for d ≥ 5. The case d = 4 is similar
and will be omitted. In dimension d ≥ 5, from the L2

x-boundedness of the operator
φ> 1

N1+γ
P+

N Lemma 3.4, Lemma 2.7 and Lemma 2.6, we have

(4.8) . N
γ
2 (d−4)

∥∥∥∫ ∞

1
N

e−iτ∆P̃Nφ> Nτ
2
F (u(τ))dτ

∥∥∥
L2

x

. N
γ
2 (d−4)

∥∥∥∫ ∞

1
N

e−iτ∆P̃Nφ> Nτ
2
F (uφ> Nτ

4
)(τ)dτ

∥∥∥
L2

x

. N
γ
2 (d−4)

(∥∥∥∫ ∞

1
N

e−iτ∆P̃Nφ> Nτ
2
P≤N/8F (uφ> Nτ

4
)(τ)dτ

∥∥∥
L2

x

+
∥∥∥∫ ∞

1
N

e−iτ∆P̃Nφ> Nτ
2
P>N/8F (uφ> Nτ

4
)(τ)dτ

∥∥∥
L2

x

)
. N

γ
2 (d−4)

(
‖P̃Nφ> Nτ

2
P≤N/8F (uφ> Nτ

4
)‖L1

τ L2
x([ 1

N ,∞)×Rd) (4.13)

+ ‖(Nτ)−
2(d−1)

d P>N/8F (uφ> Nτ
4

)‖
L

d
d−1
τ L

2d
d+4
x ([ 1

N ,∞)×Rd)

)
. (4.14)
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Using the mismatch estimate Lemma 2.3, we can bound (4.13) as

(4.13) . ‖(N2τ)−11P≤NF (uφ> Nτ
4

)‖L1
τ L2

x([ 1
N ,∞)×Rd)

. N−20‖τ−11F (uφ> Nτ
4

)‖
L1

τ L
2d

d+4
x ([ 1

N ,∞)×Rd)

. N−20‖τ−11‖L1
τ ([ 1

N ,∞)) . N−10.

For (4.14), we use Bernstein estimate and Lemma 4.1 to get

(4.14) . N− 2(d−1)
d ‖τ−

2(d−1)
d N−1‖∇F (uφ> Nτ

4
)‖

L
2d

d+4
x

‖
L

d
d−1
τ ([ 1

N ,∞))

. N−1− 2(d−1)
d ‖τ−

2(d−1)
d ‖uφ> Nτ

4
‖4/d

L2
x
‖∇(uφ> Nτ

4
)‖L2

x
‖

L
d

d−1
τ ([ 1

N ,∞))

. N−1− 2(d−1)
d ‖τ−

2(d−1)
d ‖

L
d/(d−1)
τ ( 1

N ,∞)

. N−1− d−1
d .

Therefore, summarizing the two pieces together we have

(4.8) . N
γ
2 (d−4)N−1− d−1

d .

Now we look at the piece (4.10) where the uniform kinetic energy estimate
Lemma 4.1 is no longer available. Instead, we will use the fact u0 ∈ Hs

x, there-
fore locally we have the bound

‖u‖L∞τ Hs
x([0,1]×Rd) .u0 1. (4.15)

Using this information, Lemma 3.4, Lemma 2.3 and Lemma 2.7, we control (4.10)
as

(4.10) . N
γ
2 (d−4)

∥∥∥P̃N

∫ 1
N

1
N2−σ

e−iτ∆φ> Nτ
2
F (u(τ))dτ

∥∥∥
L2

x

. N
γ
2 (d−4)

(∥∥∥P̃N

∫ 1
N

1
N2−σ

e−iτ∆φ> Nτ
2
P≤N

8
F (u(τ))dτ

∥∥∥
L2

x

+
∥∥∥P̃N

∫ 1
N

1
N2−σ

e−iτ∆φ> Nτ
2
P>N/8F (u(τ))dτ

∥∥∥
L2

x

)
. N

γ
2 (d−4)

(
‖P̃Nφ> Nτ

2
P≤N/8F (u)‖L1

τ L2
x([ 1

N2−σ , 1
N ]×Rd)

+ ‖|Nτ |−
2(d−1)

d P> N
8
F (u(τ))‖

L
d

d−1
τ L

2d
d+4
x ([ 1

N2−σ , 1
N ]×Rd)

)
.m N

γ
2 (d−4)

(
‖|N2τ |−m‖P≤N/8F (u)‖L2

x
‖L1

τ ([ 1
N2−σ , 1

N ])

+ ‖|Nτ |−
2(d−1)

d N−s‖|∇|sP>N/8F (u)‖
L

2d
d+4
x

‖
L

d
d−1
τ ([ 1

N2−σ , 1
N ])

.m,u0 N
γ
2 (d−4)(N2−2m‖τ−m‖L1

τ ([ 1
N2−σ , 1

N ])

+N−s− 2(d−1)
d ‖τ−

2(d−1)
d ‖

L
d

d−1
τ ([ 1

N2−σ , 1
N ])

)
.m,u0 N

γ
2 (d−4)(N−σ(m−1) +N−s− d−1

d σ).
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Finally, we give the estimate of (4.12) which can firstly be trivially bounded as

(4.12) . ‖φN−1−γ<·≤1

∫ 1
N2−σ

0

P+
N e

−iτ∆φ>1P̃NF (u(τ))dτ‖L2
x

(4.16)

+ ‖φN−1−γ<·≤1

∫ 1
N2−σ

0

P+
N e

−iτ∆φ≤1P̃NF (u(τ))dτ‖L2
x
. (4.17)

For (4.16), we use the L2
x boundedness Lemma 3.4, weighted Strichartz Lemma

2.7, Bernstein and local estimate (4.15) to get

(4.16) . N
γ
2 (d−4)‖

∫ 1
N2−σ

0

e−iτ∆φ>1P̃NF (u(τ))dτ‖L2
x

. N
γ
2 (d−4)‖P̃NF (u)‖

L
d

d−1
τ L

2d
d+4
x ([0, 1

N2−σ ]×Rd)

. N
γ
2 (d−4)N−(2−σ) d−1

d N−s‖|∇|sF (u)‖
L∞τ L

2d
d+4
x

.u0 N
γ
2 (d−4)N− (2−σ)(d−1)

d N−s.

To estimate (4.17), we will use the duality of the smoothing estimate (1.8) as follows:

‖
∫

R
e−iτ∆|∇|1/2f(τ)dτ‖L2

x
. ‖|x|−

d−1
2 f‖L1

xL2
t (Rd×R). (4.18)

Let η > 0 be a tiny number to be chosen later, using Lemma 3.4 and (4.18) we have

(4.17) . N
γ
2 (d−4)N−1/2‖

∫
R
e−iτ∆|∇|1/2(φ≤1P̃NF (u(τ))χ0<τ≤ 1

N2−σ
)dτ‖L2

x

. N
γ
2 (d−4)N−1/2‖|x|−

d−1
2 φ≤1P̃NF (u)‖L1

xL2
τ (Rd×[0, 1

N2−σ ])

. N
γ
2 (d−4)N−1/2‖|x| 12−ηP̃NF (u)‖L2

τ,x([0, 1
N2−σ ]×Rd)‖|x|−

d
2 +ηφ≤1‖L2

x
.

. N
γ
2 (d−4)− 1

2−
2−σ

2 ‖|x| 12−ηP̃NF (u)‖L∞τ L2
x([0, 1

N2−σ ]×Rd).

Now, using the radial Sobolev embedding Lemma 2.4, Bernstein, and (4.15), we
bound the F (u) term as

‖|x| 12−ηP̃NF (u)‖L2
x

. ‖|∇|ηP̃NF (u)‖
L

2d
d+1
x

. NηNd( d2+4d−8s

2d2 − d+1
2d )‖P̃NF (u)‖

L

2d2
d2+4d−8s
x

. Nη+ 3d−8s
2d N−s‖|∇|su‖L2

x
‖u‖4/d

L
2d

d−2s
x

.u0 N
η+ 3

2−
4s
d −s.

Plugging in this estimate back to the estimate of (4.17) we have

(4.17) .u0 N
γ
2 (d−4)+η+ σ

2−
4s
d −s.

Combining the estimate for (4.16) and (4.17) together gives the final estimate of
(4.12):

(4.12) .u0 N
γ
2 (d−4)(N− (2−σ)(d−1)

d −s +Nη+ σ
2−

4s
d −s).
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Now adding all the estimate for (4.8) through (4.12), we finish estimating the term
(4.6). This together with the estimate for (4.1) and (4.3) finally gives that

‖PNu0‖L2
x

.m,u0 N
−1−ε +N−s− d

2 γ +N (1+γ)(d−2)+2−d−σ(m−1)

+N
γ
2 (d−4)(N− d−1

d σ−s +N−σ(m−1) +N− d−1
d (2−σ)−s +Nη+ σ

2−
4s
d −s).

For any s > 0, choosing σ = s
100d , η = s

1000d , γ = s
1000d2 , m = 1 + 200d

s , we finally
obtain

‖PNu0‖L2
x

.u0 N
−1−ε +N−s− s

2000d .

It is easy to see that after finite many times of iteration we obtain

‖PNu0‖L2
x

.u0 N
−1−, ∀N ≥ 1.

Therefore, u0 ∈ H1
x. The proof of Theorem 1.5 is complete.
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