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EXISTENCE OF WEAK SOLUTIONS FOR NONLINEAR
SYSTEMS INVOLVING SEVERAL P-LAPLACIAN OPERATORS

SALAH A. KHAFAGY, HASSAN M. SERAG

Abstract. In this article, we study nonlinear systems involving several p-
Laplacian operators with variable coefficients. We consider the system

−∆piui = aii(x)|ui|pi−2ui −
nX

j 6=i

aij(x)|ui|αi |uj |αj uj + fi(x),

where ∆p denotes the p-Laplacian defined by ∆pu ≡ div[|∇u|p−2∇u] with
p > 1, p 6= 2; αi ≥ 0; fi are given functions; and the coefficients aij(x)

(1 ≤ i, j ≤ n) are bounded smooth positive functions. We prove the existence

of weak solutions defined on bounded and unbounded domains using the theory
of nonlinear monotone operators.

1. Introduction

The generalized formulation of many boundary-value problems for partial differ-
ential equations leads to operator equations of the form

A(u) = f

on a Banach space V . For this operator equation, we have the so-called weak
formulation:

Find u ∈ V such that (A(u), v) = (f, v) for all v ∈ V .

Then functional analysis has tools for proving existence of generalized (weak)
solutions for a relatively wide class of differential equations that appear in mathe-
matical physics and industry.

The existence of weak solutions for 2× 2 nonlinear systems involving several p-
Laplacian operators have been proved, using the method of sub and super solutions
in [5], and using the theory of nonlinear monotone operators in [6].

Here, we use the theory of nonlinear monotone operators to prove the existence
of weak solutions for the following nonlinear systems involving several p-Laplacian
operators with variable coefficients defined on a bounded domain Ω of RN with
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boundary ∂Ω,

−∆pi
ui ≡ −div[|∇ui|pi−2∇ui]

= aii(x)|ui|pi−2ui −
n∑

j 6=i

aij(x)|ui|αi |uj |αj uj + fi(x) in Ω,

ui = 0, i = 1, 2, . . . , n, on ∂Ω.

Then, we generalize our results to systems defined on the whole space RN .
This article is organized as follow: In section 2 we introduce some technical

results and definitions concerning the theory of nonlinear monotone operators. We
study the existence of weak solutions for n × n nonlinear systems defined on a
bounded domain in section 3, and on unbounded domains in section 4.

2. Preliminary results

First, we introduce some results concerning the theory of nonlinear monotone
operators [4].

Let A : V → V ′ be an operator on a Banach space V . We say that the operator
A is:
Bounded if it maps bounded sets into bounded; i.e., for each r > 0 there exists
M > 0 (M depending on r) such that

‖u‖ ≤ r implies ‖A(u)‖ ≤ M, ∀u ∈ V ;

coercive if lim‖u‖→∞〈A(u), u〉/‖u‖ = ∞;
monotone if 〈A(u1)−A(u2), u1 − u2〉 ≥ 0 for all u1, u2 ∈ V ;
strictly monotone if 〈A(u1)−A(u2), u1 − u2〉 > 0 for all u1, u2 ∈ V , u1 6= u2;
continuous if uk → u implies A(uk) → A(u), for all uk, u ∈ V ;
strongly continuous if uk

w→ u implies A(uk) → A(u), for all uk, u ∈ V ;
continuous on finite-dimensional subspaces if A : Vn → V ′

n is continuous for each
subspace Vn of finite dimension.
demicontinuous if uk → u implies A(uk) w→ A(u), for all uk, u ∈ V ;
the operator A is said to be satisfy the M0-condition if uk

w→ u, A(uk) w→ f , and
[〈A(uk), uk〉 → 〈f, u〉] imply A(u) = f .

Remark 2.1. (i) Strongly continuous operators are continuous, and they are
continuous on finite dimensional subspaces.

(ii) Strongly continuous operators are bounded and satisfy the M0-condition.
(iii) Strictly monotone operators are monotone operators.
(iv) Monotone and continuous operators satisfy the M0-condition.

Theorem 2.2. Let V be a separable reflexive Banach space and A : V → V ′ an
operator which is: coercive, bounded, continuous on finite-dimensional subspaces
and satisfying the M0−condition. Then the equation A(u) = f admits a solution
for each f ∈ V ′.

Next, we introduce the Sobolev space W 1,p(Ω), 1 < p < ∞, defined as the
completion of C∞(Ω) with respect to the norm (see [1])

‖u‖W 1,p =
[ ∫

Ω

|∇u|p + |u|p
]1/p

< ∞. (2.1)
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Since we are studying a Dirichlet problem, we define the space W 1,p
0 (Ω) as the

closure of C∞
0 (Ω) in W 1,p(Ω) with respect to the norm

‖u‖W 1,p
0

=
[ ∫

Ω

|∇u|p
]1/p

< ∞, (2.2)

which is equivalent to the norm given by (2.1). Both spaces W 1,p(Ω) and W 1,p
0 (Ω)

are well defined reflexive Banach Spaces. The space W 1,p
0 (Ω) is compactly imbedded

in the space Lp(Ω); i.e.,
W 1,p

0 (Ω) ↪→↪→ Lp(Ω), (2.3)
which implies

‖u‖Lp(Ω) ≤ c ‖u‖W 1,p
0 (Ω), i.e.,

∫
Ω

a(x)|u|p ≤ c′
∫

Ω

|∇u|p (2.4)

for every u ∈ W 1,p
0 (Ω), where a(x) is a smooth bounded positive function.

Now, we introduce some results [2] concerning the eigenvalue problem

−∆pu ≡ − div[|∇u|p−2∇u] = λa(x)|u|p−2u in Ω,

u = 0 on ∂Ω.
(2.5)

We will say that λ ∈ R is an eigenvalue of (2.5) if there exists u ∈ W 1,p
0 (Ω),

u 6= 0, such that ∫
Ω

|∇u|p−2∇u∇ϕ = λ

∫
Ω

a(x)|u|p−2uϕ

hods for all ϕ ∈ W 1,p
0 (Ω). Then u is called an eigenfunction corresponding to the

eigenvalue λ.

Lemma 2.3. The eigenvalue problem (2.5) admits a positive principal eigenvalue
λ = λa(Ω) > 0 which is associated with a positive eigenfunction u ≥ 0 a.e. in Ω
normalized by ‖u‖p = 1. Moreover, the first eigenvalue is characterized by

λa(Ω) = inf
{ ∫

Ω

|∇u|p :
∫

Ω

a(x)|u|p = 1
}
. (2.6)

Also, from the characterization of the first eigenvalue given by (2.6), we have

λa(Ω)
∫

Ω

a(x)|u|p ≤
∫

Ω

|∇u|p. (2.7)

3. Nonlinear systems defined on bounded domains

Let us consider the nonlinear system

−∆pi
ui = aii(x)|ui|pi−2ui −

n∑
j 6=i

aij(x)|ui|αi |uj |αj uj + fi(x) in Ω,

ui = 0, i = 1, 2, . . . , n, on ∂Ω,

(3.1)

where aii(x) is a smooth bounded positive function, Ω is a bounded domain of RN ,
and

αi ≥ 0, fi ∈ Lp∗i (Ω), (3.2)
1
pi

+
1
p∗i

= 1,
αi + 1

pi
=

1
2
, i = 1, 2, . . . , n. (3.3)
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Theorem 3.1. For (fi) ∈
∏n

i=1 Lp∗i (Ω), there exists a weak solution (ui) in the
space

∏n
i=1 W 1,pi

0 (Ω) for the system (3.1), if

λaii
(Ω) > 1, i = 1, 2, . . . , n. (3.4)

Proof. We transform the weak formulation of (3.1) to the operator form (A−B)U =
F , where, A, B and F are operators defined on

∏n
i=1 W 1,pi

0 (Ω) by

(AU,Φ) ≡ (A(u1, u2, . . . , un), (φ1, φ2, . . . , φn)) =
n∑

i=1

∫
Ω

|∇ui|pi−2∇ui∇φi, (3.5)

(BU, Φ) ≡ (B(u1, u2, . . . , un), (φ1, φ2, . . . , φn))

=
n∑

i=1

[
∫

Ω

aii(x)|ui|pi−2uiφi −
n∑

j 6=i

∫
Ω

aij(x)|ui|αi |uj |αj ujφi],
(3.6)

(F,Φ) ≡ ((f1, f2, . . . , fn), (φ1, φ2, . . . , φn)) =
n∑

i=1

∫
Ω

fiφi. (3.7)

Now, consider the operator J defined by

(J(u), φ) =
∫

Ω

|∇u|p−2∇u∇φ. (3.8)

This operator is bounded: Since

|(J(u), φ)| ≤
∫

Ω

|∇u|p−1|∇φ|,

using Hölder’s inequality, we obtain

|(J(u), φ)| ≤
[ ∫

Ω

|∇u|p
] p−1

p
[ ∫

Ω

|∇φ|p
]1/p

= ‖u‖p−1

W 1,p
0 (Ω)

‖φ‖W 1,p
0 (Ω).

Also, we can prove that J is continuous, let us assume that uk → u in W 1,p
0 (Ω).

Then ‖uk − u‖W 1,p
0 (Ω) → 0, so that ‖∇uk − ∇u‖Lp(Ω) → 0. Applying Dominated

Convergence Theorem, we obtain

‖(|∇uk|p−2∇uk − |∇u|p−2∇u)‖Lp(Ω) → 0,

and hence

‖J(uk)− J(u)‖
Lp(Ω) ≤ ‖(|∇uk|p−2∇uk − |∇u|p−2∇u)‖Lp(Ω) → 0.

Finally, J is strictly monotone:

(J(u1)− J(u2), u1 − u2) =
∫

Ω

|∇u1|p−2∇u1∇u1 +
∫

Ω

|∇u2|p−2∇u2∇u2

−
∫

Ω

|∇u1|p−2∇u1∇u2 −
∫

Ω

|∇u2|p−2∇u2∇u1;
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using Hölder’s inequality, we obtain

(J(u1)− J(u2), u1 − u2)

≥
∫

Ω

|∇u1|p +
∫

Ω

|∇u2|p −
[ ∫

Ω

|∇u1|p
] p−1

p
[ ∫

Ω

|∇u2|p
] 1

p

−
[ ∫

Ω

|∇u2|p
] p−1

p
[ ∫

Ω

|∇u1|p
]1/p

= ‖u1‖p

W 1,p
0 (Ω)

+ ‖u2‖p

W 1,p
0 (Ω)

− ‖u1‖p−1

W 1,p
0 (Ω)

‖u2‖W 1,p
0 (Ω) − ‖u2‖p−1

W 1,p
0 (Ω)

‖u1‖W 1,p
0 (Ω),

and hence,

(J(u1)− J(u2), u1 − u2)

≥ (‖u1‖p−1

W 1,p
0 (Ω)

− ‖u2‖p−1

W 1,p
0 (Ω)

)(‖u1‖W 1,p
0 (Ω) − ‖u2‖W 1,p

0 (Ω)) > 0.

Now, AU can be written as the sum of J1(u1), J2(u2), . . . , Jn(un) where

(Ji(ui), φi) =
∫

Ω

|∇ui|pi
−2∇ui∇φi, i = 1, 2, . . . , n,

and as above, the operators J1, J2, . . . and Jn are bounded, continuous and strictly
monotone; so their sum, the operator A, will be the same.

For the operator B,

B :
n∏

i=1

W 1,pi

0 (Ω) →
n∏

i=1

Lpi(Ω),

we can prove that it is a strongly continuous operator. To prove that, let us assume
that uik

w→ ui in W 1,pi

0 (Ω), i = 1, 2, . . . , n. Then, using (2.3), (uik) → (ui) in∏n
i=1 Lpi(Ω). By the Dominated Convergence Theorem,

aii(x)|uik|pi−2uik → aii(x)|ui|pi−2ui in Lpi(Ω),

−aij(x)|uik|αi |ujk|αj ujk → −aij(x)|u
i
|αi |uj |αj uj in Lpj (Ω),

Since

(BUk −BU, W ) = (B(u1k, u2k, . . . , unk)−B(u1, u2, . . . , un), (w1, w2, . . . , wn))

=
n∑

i=1

[ ∫
Ω

aii(x)(|uik|pi−2uik − |ui|pi−2ui)wi

−
n∑

j 6=i

∫
Ω

aij(x)(|uik|αi |ujk|αj ujk − |ui
|αi |uj |αj uj)wi

]
,

it follows that

‖BUk −BU‖ ≤
n∑

i=1

[
‖aii(x)(|uik|pi−2uik − |ui|pi−2ui)‖Lpi (Ω)

+
n∑

j 6=i

‖aij(x)(|uik|αi |ujk|αj+1 − |ui |αi |uj |αj+1)
)
‖Lpi (Ω)] → 0.

This proves that B is a strongly continuous operators. According to Remark 2.1,
the operator A − B satisfies the M0-condition. Now, to apply Theorem 2.2, it
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remains to prove that A−B is a coercive operator

((A−B)U,U)

=
n∑

i=1

∫
Ω

|∇ui|pi −
n∑

i=1

[ ∫
Ω

aii(x)|ui|pi −
n∑

j 6=i

∫
Ω

aij(x)|ui |αi+1|uj |αj+1
]

≥
n∑

i=1

∫
Ω

|∇ui|pi −
n∑

i=1

∫
Ω

aii(x)|ui|pi .

Using (2.7), we obtain

((A−B)U,U) ≥
n∑

i=1

∫
Ω

|∇ui|pi −
n∑

i=1

1
λaii

(Ω)

∫
Ω

| 5 ui|pi

=
n∑

i=1

(1− 1
λaii

(Ω)
)
∫

Ω

| 5 ui|pi ,

and hence,

((A−B)U,U) ≥ k
n∑

i=1

‖ui‖pi

W
1,pi
0 (Ω)

= k‖(ui)‖Qn
i=1 W

1,pi
0 (Ω)

.

So that
((A−B)U,U) →∞ as ‖(ui)‖Qn

i=1 W
1,pi
0 (Ω)

→∞.

This proves the coercivity condition and so, the existence of a weak solution for
systems (3.1). �

4. Nonlinear systems defined on RN

We consider the nonlinear system

−∆pi
ui = aii(x)|ui|pi−2ui −

n∑
j 6=i

aij(x)|ui|αi |uj |αj uj + fi(x), x ∈ RN ,

lim
|x|→∞

ui(x) = 0, i = 1, 2, . . . , n, x ∈ RN .

(4.1)

We assume that 1 < pi < N , i = 1, 2, . . . , n, and the coefficients aii(x) and aij(x)
are smooth bounded positive functions such that

0 < aii(x) ∈ L
N
pi (RN ) ∩ L∞(RN ), 0 < aij(x) ∈ L

N
αi+αj+2 (RN ) ∩ L∞(RN ). (4.2)

To discuss this problem, we need the following results which are studied in [3] and
that we recall briefly.

Let us introduce the Sobolev reflexive Banach space

D1,p(RN ) = {u ∈ L
Np

N−p (RN ) : ∇u ∈ (Lp(RN ))n},
which is defined as the completion of C∞

0 (RN ) with respect to the norm

‖u‖D1,p(RN ) =
[ ∫

RN

|∇u|p
]1/p

< ∞. (4.3)

Moreover D1,p(RN ) is embedded continuously in the space L
Np

N−p (RN ); that is,
D1,p(RN ) ↪→ L

Np
N−p (RN ), which implies

‖u‖
L

Np
N−p (RN )

≤ k ‖u‖D1,p(RN ). (4.4)
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Lemma 4.1. The eigenvalue problem

−∆
P
u ≡ −div[|∇u|p−2∇u] = λa(x)|u|p−2u in RN ,

u(x) → 0 as |x| → ∞, u > 0 in RN ,
(4.5)

admits a positive principal eigenvalue λ = λa(Ω) which is associated with a positive
eigenfunction u ∈ D1,p(RN ). Moreover, the principal eigenvalue λa(Ω) is charac-
terized by

λa(Ω)
∫

RN

a(x)|u|p ≤
∫

RN

|∇u|p, ∀ u ∈ D1,p(RN ) (4.6)

where
0 < a(x) ∈ L

N
p (RN ) ∩ L∞(RN ). (4.7)

In this section, we assume that

αi ≥ 0, fi ∈ L
Npi

N(pi−1)+pi (RN ), αi + αj + 2 < N, 1 < pi < n

1
pi

+
1
p∗i

= 1,
αi + 1

pi
=

1
2
, i = 1, 2, . . . , n.

(4.8)

Theorem 4.2. For (fi) ∈
∏n

i=1 L
Npi

N(pi−1)+pi (RN ), there exists a weak solution (ui)
in

∏n
i=1 D1,pi(RN ) for system (4.1), if

λaii(Ω) > 1, i = 1, 2, . . . , n. (4.9)

Proof. As in section 3, we transform the weak formulation of the system (4.1) to
the operator form (A − B)U = F , where, A, B and F are operators defined on∏n

i=1 D1,pi(RN ) by

(AU,Φ) ≡ (A(u1, u2, . . . , un), (φ1, φ2, . . . , φn))

=
n∑

i=1

∫
RN

|∇ui|pi−2∇ui∇φi =
n∑

i=1

(Ji(ui), φi),
(4.10)

(BU, Φ) ≡ (B(u1, u2, . . . , un), (φ1, φ2, . . . , φn))

=
n∑

i=1

[
∫

RN

aii(x)|ui|pi−2uiφi −
n∑

j 6=i

∫
RN

aij(x)|ui|αi |uj |αj ujφi],
(4.11)

(F,Φ) ≡ ((f1, f2, . . . , fn), (φ1, φ2, . . . , φn)) =
n∑

i=1

∫
RN

fiφi. (4.12)

First, we prove that A,B and F are bounded operators on
∏n

i=1 D1,pi(RN ).
For the operator A, by using (4.10) and applying Holder inequality, we have

|(AU,Φ)| ≤
n∑

i=1

∫
RN

|∇ui|pi−1|∇φi|

≤
n∑

i=1

[ ∫
RN

|∇ui|pi

](pi−1)/pi
[ ∫

RN

|∇φi|pi

]1/pi

=
n∑

i=1

‖ui‖pi−1
D1,pi (RN )

‖φi‖D1,pi (RN )

=
( n∑

i=1

‖ui‖pi−1
D1,pi (RN )

)(
‖(φi)‖Qn

i=1 D1,pi (RN )

)
.
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This proves the boundedness of the operator A.
For the operator B, we have

|(BU, Φ)| ≤
n∑

i=1

[
∫

RN

aii(x)|ui|pi−1|φi|+
n∑

j 6=i

∫
RN

aij(x)|ui|αi |uj |αj+1|φi|]

≤
n∑

i=1

[( ∫
RN

aii(x)
N
p

) p
N

( ∫
RN

|ui|
Npi

N−pi

) (pi−1)(N−pi)
Npi

( ∫
RN

|φi|
Npi

N−pi

)N−pi
Npi

+
n∑

j 6=i

[ ∫
RN

(aij(x))
N

αi+αj+2
]αi+αj+2

N
[ ∫

RN

|ui|
Npi

N−pi

]αi(N−pi)
Npi

×
[ ∫

RN

|uj |
Npj

N−pj

] (αj+1)(N−pj)
Npj

[ ∫
RN

|φi|
Npi

N−pi

]N−pi
Npi

]
≤

n∑
i=1

[
ki‖ui‖pi−1

D1,pi (RN )
‖φi‖D1,pi (RN )

+
n∑

j 6=i

li‖ui‖αi

D1,pi (RN )
‖uj‖

αj+1

D1,pj (RN )
‖φi‖D1,pi (RN )

]
=

[ n∑
i=1

[
ki‖ui‖pi−1

D1,pi (RN )
+

n∑
j 6=i

li‖ui‖αi

D1,pi (RN )
‖uj‖

αj+1

D1,pj(RN )

]]
× ‖(φi)‖Qn

i=1 D1,pi (RN )

For the operator F , we have (F,Φ) =
∑N

i=1

∫
Rn fiφi and so

|(F,Φ)| =
∣∣ N∑

i=1

∫
Rn

fiφi

∣∣
≤

N∑
i=1

[ ∫
Rn

|fi|
npi

n(pi−1)+pi

]n(pi−1)+pi
npi

[ ∫
Rn

|φi|
npi

n−pi

]n−pi
npi

=
N∑

i=1

(‖fi‖
L

npi
n(pi−1)+pi (Rn)

)‖(φi)‖QN
i=1 D1,pi (Rn).

Now, as in section 3, the operator A defined by (AU,Φ) =
∑n

i=1(Ji(ui),Φ) is
continuous. Also it is strictly monotone on

∏n
i=1 D1,pi(RN ), since

(Ji(u1)− Ji(u2), u1 − u2)

≥ (‖u1‖pi−1
D1,pi (RN )

− ‖u2‖pi−1
D1,pi (RN )

)(‖u1‖D1,pi (RN ) − ‖u2‖D1,pi (RN )) > 0.

For the operator B, we can prove that it is a strongly continuous operator by
using Dominated Convergence theorem and continuous imbedding property for the

space
∏n

i=1 D1,pi(RN ) into
∏n

i=1 L
Npi

N−pi (RN ). To prove that, let us assume that

uik
w→ ui in D1,pi(RN ), i = 1, 2, . . . , n. Then (uik) → (ui) in

∏n
i=1 L

Npi
N−pi (RN ).

Now, the sequence (uik) is bounded in D1,pi(RN ), i = 1, 2, . . . , n, then it is contain-

ing a subsequence again denoted by (uik) converges strongly to ui in L
Npi

N−pi (Br0),
i = 1, 2, . . . , n, for any bounded ball Br0 = {x ∈ RN : ‖x‖ ≤ r0}. Since
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uik, ui ∈ L
Npi

N−pi (Br0), Then using the Dominated Convergence Theorem, we have

‖aii(x)(|uik|pi−2uik − |ui|pi−2ui)‖ Npi
N(pi−1)+pi

→ 0,

‖aij(x)(|uik|αi−1|ujk|αj+1ujk − |ui|αi−1|uj |αj+1uj)‖ Npi
N(pi−1)+pi

→ 0,

for i = 1, 2, . . . , n. Since

((BUk −BU),W ) = (B(u1k, u2k, . . . , unk)−B(u1, u2, . . . , un), (w1, w2, . . . , wn))

=
n∑

i=1

[ ∫
RN

aii(x)(|uik|pi−2uik − |ui|pi−2ui)wi

−
n∑

j 6=i

∫
RN

aij(x)(|uik|αi |ujk|αj ujk − |ui |αi |uj |αj uj)wi

]
,

it follows that

‖BUk −BU‖Qn
i=1 D1,pi (Br0 )

≤
n∑

i=1

[
‖aii(x)(|uik|pi−2uik − |ui|pi−2ui)‖ Npi

N(pi−1)+pi

+
n∑

j 6=i

‖aij(x)(|uik|αi |ujk|αj+1 − |u
i
|αi |uj |αj+1)‖ Npi

N(pi−1)+pi

]
→ 0.

As in [6], we can prove that, the norm

‖BUk −BU‖Qn
i=1 D1,pi (RN )

tends strongly to zero and then the operator B is strongly continuous. According to
Remark 2.1, the operator A−B satisfies the M0-condition. Now, to apply Theorem
2.2, it remains to prove that the operator A−B is a coercive operator,

((A−B)U,U)

=
n∑

i=1

∫
RN

|∇ui|pi −
n∑

i=1

[ ∫
RN

aii(x)|ui|pi −
n∑

j 6=i

∫
RN

aij(x)|u
i
|αi+1|uj |αj+1

]
≥

n∑
i=1

∫
RN

|∇ui|pi −
n∑

i=1

∫
RN

aii(x)|ui|pi .

Using (4.6), we obtain

((A−B)U,U) ≥
n∑

i=1

∫
RN

|∇ui|pi −
n∑

i=1

1
λaii

(Ω)

∫
RN

| 5 ui|pi

=
n∑

i=1

(1− 1
λaii

(Ω)
)
∫

RN

| 5 ui|pi .

From (4.9), we deduce

((A−B)U,U) ≥ k
n∑

i=1

‖ui‖pi

D1,pi (RN )
= k‖(ui)‖Qn

i=1 D1,pi (RN ).

So that ((A−B)U,U) →∞ as ‖(ui)‖Qn
i=1 D1,pi (RN ) →∞. This proves the coercivity

condition and so, the existence of a weak solution for systems (4.1). �
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