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EXISTENCE OF WEAK SOLUTIONS FOR NONLINEAR
SYSTEMS INVOLVING SEVERAL P-LAPLACIAN OPERATORS

SALAH A. KHAFAGY, HASSAN M. SERAG

ABSTRACT. In this article, we study nonlinear systems involving several p-
Laplacian operators with variable coefficients. We consider the system

n
—Apiui = au(@)|usl” " Pus = 3 4 (@)l g |y + fil@),
JF#i
where A, denotes the p-Laplacian defined by Apu = div[|Vu|P~2Vu] with
p > 1, p # 2 a > 0; f; are given functions; and the coefficients a;;(x)
(1 <4,j < n) are bounded smooth positive functions. We prove the existence
of weak solutions defined on bounded and unbounded domains using the theory
of nonlinear monotone operators.

1. INTRODUCTION

The generalized formulation of many boundary-value problems for partial differ-
ential equations leads to operator equations of the form

Au) = f

on a Banach space V. For this operator equation, we have the so-called weak
formulation:

Find u € V such that (A(u),v) = (f,v) for all v € V.

Then functional analysis has tools for proving existence of generalized (weak)
solutions for a relatively wide class of differential equations that appear in mathe-
matical physics and industry.

The existence of weak solutions for 2 x 2 nonlinear systems involving several p-
Laplacian operators have been proved, using the method of sub and super solutions
in [5], and using the theory of nonlinear monotone operators in [6].

Here, we use the theory of nonlinear monotone operators to prove the existence
of weak solutions for the following nonlinear systems involving several p-Laplacian
operators with variable coefficients defined on a bounded domain © of RY with
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boundary 052,

—Apu; = — div[|Vu, P2V

n

Py =y ag (@)
J#i

u; =0, i=1,2,...,n, on 9.

(623

= ay(x)|u; uj|Yu; + fi(x) in Q,

Then, we generalize our results to systems defined on the whole space RY.

This article is organized as follow: In section 2 we introduce some technical
results and definitions concerning the theory of nonlinear monotone operators. We
study the existence of weak solutions for n x n nonlinear systems defined on a
bounded domain in section 3, and on unbounded domains in section 4.

2. PRELIMINARY RESULTS

First, we introduce some results concerning the theory of nonlinear monotone
operators [4].

Let A:V — V' be an operator on a Banach space V. We say that the operator
A is:
Bounded if it maps bounded sets into bounded; i.e., for each r > 0 there exists
M > 0 (M depending on ) such that

|lu]l < r implies ||A(u)|| < M, Yu€V;

coercive if limy, | oo (A(u), u)/|lu| = oo;

monotone if (A(uy) — A(uz),u; —uz) > 0 for all uj,us € V;

strictly monotone if (A(u1) — A(ug),u; — ug) > 0 for all uy,us € V, ug # ug;
continuous if up, — w implies A(ux) — A(u), for all wuy,u € V;

strongly continuous if uj, — u implies A(ug) — A(u), for all ug,u € V;

continuous on finite-dimensional subspaces if A : V,, — V! is continuous for each
subspace V,, of finite dimension.

demicontinuous if up — u implies A(uy) = A(u), for all ug,u € V;

the operator A is said to be satisfy the My-condition if uj = u, A(ug) — f, and
[(A(ug), ur) — (f,u)] imply A(u) = f.

Remark 2.1. (i) Strongly continuous operators are continuous, and they are
continuous on finite dimensional subspaces.
(ii) Strongly continuous operators are bounded and satisfy the My-condition.
(iii) Strictly monotone operators are monotone operators.
(iv) Monotone and continuous operators satisfy the My-condition.

Theorem 2.2. Let V be a separable reflerive Banach space and A : V — V' an
operator which is: coercive, bounded, continuous on finite-dimensional subspaces
and satisfying the My—condition. Then the equation A(u) = f admits a solution
for each f eV’

Next, we introduce the Sobolev space W1P(Q2),1 < p < oo, defined as the
completion of C'*°(£2) with respect to the norm (see [I])

1/p
luflwre = [/ [VulP + |ulP < 00. (2.1)
Q
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Since we are studying a Dirichlet problem, we define the space Wy?(Q) as the
closure of C§°(Q2) in WP(Q) with respect to the norm

1/p
lullyar = [/Q V] < o, (2.2)

which is equivalent to the norm given by . Both spaces W1P(2) and W, " ()
are well defined reflexive Banach Spaces. The space WO1 P(Q) is compactly imbedded
in the space LP(Q); i.e.,

WP (Q) —— LP(Q), (2.3)

which implies
ull ey < c ||uHW01,p(Q), ie., /Qa(x)wp gC//Q|Vu|P (2.4)

for every u € Wy P(Q), where a(z) is a smooth bounded positive function.

Now, we introduce some results [2] concerning the eigenvalue problem
~Apu = —div[|VulP?Vu] = Xa(z)|u[P?u  in Q,

(2.5)

u=0 on 0f.

We will say that A € R is an eigenvalue of (2.5) if there exists u € W, (),
u # 0, such that
/ |VulP2VuVyp = )\/ ax)|uP~2up
Q Q

hods for all ¢ € WO1 P(Q). Then u is called an eigenfunction corresponding to the
eigenvalue A.

Lemma 2.3. The eigenvalue problem (2.5) admits a positive principal eigenvalue
A = A (Q) > 0 which is associated with a positive eigenfunction u > 0 a.e. in §2
normalized by ||ul|, = 1. Moreover, the first eigenvalue is characterized by

:inf{/Q\VuV’:/ 2P = 1. (2.6)

Also, from the characterization of the first eigenvalue given by (12.6)), we have

)\a(Q)/ﬂa(x)|u|p§/Q|Vu|p. (2.7)

3. NONLINEAR SYSTEMS DEFINED ON BOUNDED DOMAINS
Let us consider the nonlinear system
—Apu; = ag;(2)|uwi P2 — Za” wi| *Hus|“u; + fi(z) in Q,

J#£i
u; =0, i=1,2,...,n, on 99,

(3.1)

where a;;(z) is a smooth bounded positive function, (2 is a bounded domain of RY,
and

a; >0, fi€LP(Q), (3.2)
1 1 ,+1 1
—+ = =1, Qi ==, i=12,...,n (3.3)
Di  D; Di 2
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Theorem 3.1. For (f;) € [, L? (Q), there exists a weak solution (u;) in the
space ]}, Wy (Q) for the system [B.1), if

A () >1, i=1,2,...,n. (3.4)

Proof. We transform the weak formulation of (3.1)) to the operator form (A—B)U =
F, where, A, B and F are operators defined on [, WP (Q) by

(AUa (P) = (A(ula Uz, ... 7un)v (¢17 ¢27 v 7¢n)) = Z[) |vui‘pi_2vuiv¢iv (35)
=1

(B[J7 CI)) = (B(ul,u27 . 7’U,n), (¢1,¢2, .. 7¢n))

_ - - pi—2, b - .. %oy Y, (3'6)
9 R e oy R !
(F,®) = ((f1s for s fu)s (61,0251 60)) = Z/ fids. (37)
i=1"9
Now, consider the operator J defined by
(J(u),¢) = / |VulP~2VuVe. (3.8)
Q

This operator is bounded: Since

(J(u), )] < /Q Va1V,

using Holder’s inequality, we obtain

p—1

o< [ [ wup] 7 [ 19or]" = iyt g 1ol

Also, we can prove that J is continuous, let us assume that ux — u in I/VO1 Q).
Then |lug — u||W01,p(Q) — 0, so that ||Vur — Vul[1r) — 0. Applying Dominated
Convergence Theorem, we obtain

(VP> Vug — [VulP~*Vu)| ) — 0,
and hence

||J(7.Lk) - J(U) S ||(|Vuk\p72Vuk - |Vu|p*2Vu)||Lp(Q) — 0.

|| LP(Q)

Finally, J is strictly monotone:
(J () — J(un), ur — us) = / Ve [P~2Vu Vg + / Vs P2 Vuy Vs
Q Q

7/ |Vu1|p72Vu1Vqu/ Vs [P~ 2Vuy Vuy
Q Q
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using Holder’s inequality, we obtain

(J(u1) — J(u2),ur — uz)

/|vu1|p /|qu\P /|Vu1|p B [/ Vul?]”
Q
T /p
[ 1vuar] 7 [ [ vwl]

iy + 102010 gy = Nt it N2 oy = T2l o oy
and hence,
(J(ul) — J( 2) Uy — ’U,g)
> (a2l )l gy = Ntz ) > O
Now, AU can be written as the sum of Jy(u1), Jo(ug), ..., J,(u,) where
(Jz(ul),(bz) = pFQVungzS,», 1=1,2,...,n,
and as above, the operators Jy, Js, ... and J, are bounded, continuous and strictly

monotone; so their sum, the operator A, will be the same.
For the operator B,

B: ﬁ Wy (Q) — ﬁ LPi(Q),
i=1 =1

we can prove that it is a strongly continuous operator. To prove that, let us assume
that wy, — u; in WyP(Q), i = 1,2,...,n. Then, using (2.3), (ui) — (u;) in
[T7_, L?*(Q2). By the Dominated Convergence Theorem,

Qi (.’L’) piiz’ui in LP (Q),

—Qij (fﬂ) in LY (Q)a

PP uge — ag(x)

—a;;(x)

Since

(BU, — BU,W) = (B(u1k, Uk, - - -y Unk) — B(u1,ug, ..., up), (w1, wa, ..., wy))

n
e I R e
i1 -JQ
=3 [ o et g s
JFi
it follows that
n
1BU = BUI < [llasi(@) (uae 21 = sl ~2us)l| 10
i=1
—I-ZH(J,” |uzk|w|ujk|% —|u 'I|uj|aj+1))||LPi(Q)] — 0.
J#i

This proves that B is a strongly continuous operators. According to Remark 23]
the operator A — B satisfies the Mj-condition. Now, to apply Theorem it
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remains to prove that A — B is a coercive operator

(A— B)U,U)
_ 2 [/Q 4z

zZ/ |V [P —Z/ agi(z) w7
=179 =179
Using (2.7]), we obtain
(A= BU,V) / [Vl - Z e o ARATIE

n

=Z /Ivuzlp‘

a“

Syt

J#i

]

and hence,

(A= B)U,U) > kZHm

plqu(Q) kH(u'L)”H" IPL(Q)

So that

(A=B)U,U) = oo as [[(ui)|n_ wiriq) = 00

This proves the coercivity condition and so, the existence of a weak solution for
systems ((3.1)). O

4. NONLINEAR SYSTEMS DEFINED ON R¥

We consider the nonlinear system

Pi=2y, —Za” Nuwil® Jui|“u; + fi(x), = e€RY,
VE) (41)
lim u;(z) =0, i=1,2,...,n, zcRY,

|z]— o0

[e23

—Apu; = ay(z)|u;

We assume that 1 < p; < N, i =1,2,...,n, and the coefficients a;;(z) and a;;(x)
are smooth bounded positive functions such that

0 < ais(z) € L7 (RN) N LPRY), 0 < ay(z) € L7777 (RY) N L=(RY). (4.2)

To discuss this problem, we need the following results which are studied in [3] and
that we recall briefly.
Let us introduce the Sobolev reflexive Banach space

DYP(RN) = {u € L¥5 (RY) : Vau € (LP(RV))"},

which is defined as the completion of C§°(RY) with respect to the norm
1/p
fullosamy = [ [ 19uP] " <o (13)
RN

Moreover D'P(R¥) is embedded continuously in the space Lv% (RM); that is,
Np
DYP(RN) < L~v-»(RYN), which implies

RN) k llull pre @) (4.4)
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Lemma 4.1. The eigenvalue problem
~Au = —div[|VulP2Vu] = Aa(x)[uP2u  in RY, (4.5)
u(r) =0 asl|z|—o0, u>0 inRY, .

admits a positive principal eigenvalue X = A, () which is associated with a positive
eigenfunction u € DYP(RN). Moreover, the principal eigenvalue \o(Q) is charac-
terized by

AG(Q)/ a(@)|ul? < / VP, ¥ ue DYP(RY) (4.6)
RN RN
where N
0 <a(z) € L» (RY)n L>(RY). (4.7)
In this section, we assume that
Np;
a; >0, fie L¥@-— (RY), o +a;+2<N,1<p;<n
1 1 11 (4.8)
—+ =1, ot =—, +1=1,2,...,n.
Pi P Di 2
Np;
Theorem 4.2. For (f;) € [[}—, L¥@ -1+ (RN), there exists a weak solution (u;)
in [T, DVPi(RN) for system (4.1)), if
Ay () >1, i=1,2,...,n (4.9)

Proof. As in section 3, we transform the weak formulation of the system (4.1) to
the operator form (A — B)U = F, where, A, B and F are operators defined on
[Ii=; D7 (RY) by

(AU’(I))E(A(UDU%H',U ) (¢1»¢2a"'a¢n))
- Z/ |VU P 2V’UJZV¢1 - Z( l(ul)a¢1)7
(BU,(I))E(B(U17U2,... ) (¢1,¢2,...,¢n))

zj:/ aii ()| ui [P 2wy — Z/ agj(x

J#i
(F, @)

(4.10)

(4.11)

1,

(s fore o o) (B0, 621 60) jij”/“ fibi (412)

First, we prove that A, B and F are bounded operators on [[;_, D7 (RY).
For the operator A, by using (4.10) and applying Holder inequality, we have

(A8 <Y [ vul vl

i=1
1 (i—1)/p:
[
-1

||uz\ pres @y 193l pre )

(Em

pl} 1/p:

IN

II'M: I:\M:

b)) (10Dl D) )-
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This proves the boundedness of the operator A.
For the operator B, we have

n
|(BU, ®)| < Z/ a;i(z)|u;|? 1|¢|+Z/ aij () u;
=1
o @i DNV -py)  N-p;
<) [(/ %)N(/ T I T
RN RN

o +2 s (N—ps
n N . I-%—NJ+ Np; 1(]1\;fmm)
+ § |: al] o<,+0¢_7+ :| |: |ul|N—p7:|

RN
(e +1)(N—pj)

Nop: o N-p;
SR I g
RN RN

i*l
< Y kil 50, gy I ll oo vy

[e23

w7 i)

3

=1
i i+1
+ liHuiHaDl,m (RN) ||’I,Lj ||aDJ1,pj (RN) H¢7;||D1,pi (RN):|
J#i
n n
i—1 i i+1
- [Z [killuill’gl,m(RN) + 3 Lilluill i, oy s 1 50 M(RN)H
=1 J#i

X [(@a) 11z, Dres vy

For the operator F', we have (F,®) = Zf\; Jgn fi®b and so
N
=3 [ ol
N n(pi—1)+p; np, 1 DPi
S ] [ ]

i=1

N

(Il @Iy, prviny-

L —1)+p; 71>+p (R™)

—

Now, as in section 3, the operator A defined by (AU, ®) = Y7  (Ji(w;),®) is
continuous. Also it is strictly monotone on []}_, D1Pi(RY), since

(Ji(ur) = Ji(uz), u1 — uz)

> (luall e vy = lu2llprm: vy (luallpre: @y = lluzll pre: gey) > 0.

For the operator B, we can prove that it is a strongly continuous operator by
using Dominated Convergence theorem and continuous imbedding property for the

Npj
space [[;—, D*Pi(R") into ], L% (RY). To prove that, let us assuine that
Pi
wi, — u; in DYPY(RN), i = 1,2,...,n. Then (ui) — (w;) in [[_, L™ (RV).
Now, the sequence (u;;) is bounded in D7 (RY), i = 1,2,...,n, then it is contain-

Np;
ing a subsequence again denoted by (u;) converges strongly to u; in L¥-7i (B,,),
i = 1,2,...,n, for any bounded ball B,, = {z € RN : ||z|| < ro}. Since
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Np;
Uik, U; € LN=7i (By,), Then using the Dominated Convergence Theorem, we have

llaii () (Juir P 2uig — [ug P2 )H - ——
N(p;—1)+p;
i (@) (e * ] e — |ug ai*l|“j\a’+lua‘)| _ Np, . — 0,

N(pi—1)+p;
for i =1,2,...,n. Since

((BU, — BU),W) = (B(u1g, U2k, - - - s Unk) — Blug,ug, ..., uy), (w1, wa,...,wy,))

Z {/ aii () (Ju; k\pl Wi — \ui|pi_2ui)wi

— Z/ (Z'LJ |U i U5 |a]U‘7)’LU,L:|,
J#i
it follows that
||BUk —BU”l—In Dl'pi(Bro)
< Z L e A e
N(p;—1)+p;
+3 oy (@) T N I e 1 P Y
N(p;—1)+p;

J#i
As in [06], we can prove that, the norm

IBUr — BU |1z, pres )

tends strongly to zero and then the operator B is strongly continuous. According to
Remark[2.1] the operator A— B satisfies the My-condition. Now, to apply Theorem
it remains to prove that the operator A — B is a coercive operator,

((A-B)U,U)

n

$ [ St -5 f et
i=1 i=1

J#i
=59 LR oY BRI
i=1 /RY i=1 JRY
Using (4.6]), we obtain
n n 1
A-B)U,U) > / P — 7/ T us
(( ) ) Z RN Z )‘GH(Q) RN|

i=1

- 2 ﬂ) /R

i+1 |’LL |(x]+1j|

Ppi

From (4.9)), we deduce

(A=B)UU) = kZHuzllDl vy = Kl (i), pros ey
=1

So that ((A—B)U,U) — oo as ||(w;)|[[1_, pr.wi@ny — oo. This proves the coercivity
condition and so, the existence of a weak solution for systems (4.1)). (]
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