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GENERALIZED FIRST-ORDER NONLINEAR EVOLUTION
EQUATIONS AND GENERALIZED YOSIDA APPROXIMATIONS

BASED ON H-MAXIMAL MONOTONICITY FRAMEWORKS

RAM U. VERMA

Abstract. First a general framework for the Yosida approximation is intro-
duced based on the relative H-maximal monotonicity model, and then it is

applied to the solvability of a general class of first-order nonlinear evolution

equations. The obtained results generalize and unify a wide range of results
to the context of the solvability of first-order nonlinear evolution equations in

several settings.

1. Preliminaries

Let X be a real Hilbert space with the norm ‖ · ‖ and the inner product 〈·, ·〉.
We consider a class of first-order nonlinear evolution equations of the form

u′(t) + Mu(t) = 0, 0 < t < ∞
u(0) = u0,

(1.1)

where M : dom(M) ⊆ X → X is a single-valued mapping on X, u : [0,∞) → X is
a continuous function such that (1.1) holds, and the derivative u′(t) exists in the
sense of weak convergence if and only if

u(t + h)− u(t)
h

⇀ u′(t) ∈ X as h → 0.

We note that in a Hilbert space setting, we have the fundamental equivalence:
M is maximal accretive if and only if M is maximal monotone

This equivalence provides a close connection among nonexpansive semigroups, first-
order evolutions, and the theory of monotone mappings. It is observed that the
solution set of (1.1) coincides with that of the Yosida approximate evolution equa-
tion

u′ρ(t) + Mρuρ(t) = 0, 0 < t < ∞
uρ(0) = u0,

(1.2)
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where Mρ = ρ−1(I−(I +ρM)−1), the Yosida approximation for M with parameter
ρ > 0. Moreover, as far as the solvability of (1.1) is concerned, it is easier to work
with (1.2). As Mρ is Lipschitz continuous, the Yosida approximate equation can
be easily solved by using the Picard-Lindelöf theorem [10, Theorem 3.A].

Now we state the theorem by Komura [3] on the solvability of (1.1) based on the
Yosida approximation

Theorem 1.1. Let M : dom(M) ⊆ X → X be a mapping on a real Hilbert space
H such that:

(i) M is monotone.
(ii) R(I+M)=X.

Then, for each u0 ∈ dom(M), there exists exactly one continuous function u :
[0,∞) → X such that (1.1) holds for all t ∈ (0,∞), where the derivative u′(t) is in
the sense of weak convergence.

Note that (i) and (ii) imply that M is maximal accretive if and only if M is
maximal monotone.

Remark 1.2. Note that the unique solution in Theorem 1.1 has the following
significant properties:

(a) u(t) ∈ D(M) for all t ≥ 0.
(b) u(·) is Lipschitz continuous on [0,∞).
(c) For almost all t ∈ (0,∞), the derivative u′(t) exists in the usual sense and

satisfies equation (1.1). Furthermore, we have ‖u′(t)‖ ≤ ‖Mu0‖.
(d) The function t 7→ u′(t) is the generalized derivative of the function t 7→ u(t)

on (0,∞). Besides, u′ ∈ Cw([0,∞), X), that is, u′(·) : [0,∞) → X is weakly
continuous.

(e) For all t ≥ 0, there exists a derivative u′+(t) from the right and

u′+(t) + Mu(t) = 0, u(0) = u0.

Next, we describe the connection of the solution to (1.1) with nonexpansive
semigroups.

Theorem 1.3 ([18, Corollary 31.1]). Let u = u(t) be the solution of (1.1). We set
S(t)u0 by

S(t)u0 = u(t) ∀ t ≥ 0, u0 ∈ dom(M). (1.3)
Then {S(t)} is a nonexpansive semigroup on dom(M) that can be uniquely extended
to a nonexpansive semigroup on dom(M), where the generator of {S(t)} on dom(M)
is −M .

It is worth mentioning the following convergence result on the maximal mono-
tonicity ([18, Proposition 31.6]) which quite useful in many ways.

Lemma 1.4. Let M : dom(M) ⊆ X → X be a mapping on a real Hilbert space X
be maximal monotone. Then we have:

Mun ⇀ b as n →∞,

un → u as n →∞,

or

Mun → b as n →∞,
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un ⇀ u as n →∞,

then Mu = b.

We intend in this communication to generalize Theorem 1.1 to the case of the
H-maximal accretivity based on the generalized Yosida approximations. Unlike to
the case of the maximal accretivity, the generalized Yosida approximation turns out
to be Lipschitz continuous, while we explored the best Lipschitz continuity constant
as well. The obtained results seem to be application-enhanced to problems arising
from other fields, including optimization and control theory, variational inequality
and variational inclusion problems, and unify a large class of results relating to
nonlinear first-order evolution equations. There are also some detailed results that
are investigated on the generalized Yosida approximations empowered by the H-
maximal monotonicity frameworks. Furthermore, the results are general in nature
and offer more unifying to other fields. For more details, we refer the reader to the
references in this article.

The content of this research is organized as follows: Section 1 deals, as usual, with
introductory and preliminary materials on first-order nonlinear evolution equations
based on the Yosida approximation. In Section 2, the H-maximal monotonicity/
maximal accretivity, and related auxiliary results are discussed, while in Section
3 the Yosida approximation is generalized to case of the resolvent operator based
on H-maximal monotonicity models with several results presented, especially for
the solvability of the generalized first-order nonlinear evolution equations. Section
4, deals with the main result on the solvability of (4.1) along with some auxiliary
results relating to Yosida approximations.

2. H-MAXIMAL MONOTONICITY RESULTS

In this section we discuss some results based on the basic properties of the relative
H− maximal monotonicity.

Definition 2.1. Let A : D(A) ⊆ X → X and M : D(M) ⊆ X → X be single-
valued mappings such that D(A) ∩D(M) 6= ∅. The map M is said to be:

(i) Monotone if

〈M(u)−M(v), u− v〉 ≥ 0 ∀u, v ∈ D(M).

(ii) (r)-strongly monotone if there exists a positive constant r such that

〈M(u)−M(v), u− v〉 ≥ r‖u− v‖2 ∀u, v ∈ D(M).

(iii) (m)-relaxed monotone if there exists a positive constant m such that

〈M(u)−M(v), u− v〉 ≥ (−m)‖u− v‖2 ∀u, v ∈ D(M).

(iv) Cocoercive if

〈M(u)−M(v), u− v〉 ≥ ‖M(u)−M(v)‖2 ∀u, v ∈ D(M).

(v) (c)-cocoercive if there exists a positive constant c such that

〈M(u)−M(v), u− v〉 ≥ c‖M(u)−M(v)‖2 ∀u, v ∈ D(M).

(vi) Monotone with respect to A if

〈M(u)−M(v), A(u)−A(v)〉 ≥ 0 ∀u, v ∈ D(A) ∩D(M).



4 R. U. VERMA EJDE-2009/85

(vii) (r)-strongly monotone with respect to A if there exists a positive constant
r such that

〈M(u)−M(v), A(u)−A(v)〉 ≥ r‖u− v‖2 ∀u, v ∈ D(A) ∩D(M).

(viii) (m)-relaxed monotone with respect to A if there exists a positive constant
m such that

〈M(u)−M(v), A(u)−A(v)〉 ≥ (−m)‖u− v‖2 ∀u, v ∈ D(A) ∩D(M).

(ix) Cocoercive with respect to A if

〈M(u)−M(v), A(u)−A(v)〉 ≥ ‖M(u)−M(v)‖2 ∀u, v ∈ D(A) ∩D(M).

(x) (c)-cocoercive with respect to A

〈M(u)−M(v), A(u)−A(v)〉 ≥ c‖M(u)−M(v)‖2 ∀u, v ∈ D(A) ∩D(M).

As an example consider X = (−∞,+∞), M(x) = −x and H(x) = − 1
2x for all

x ∈ X. Then M is monotone with respect H but not monotone.
Note that the monotonicity of M with respect to H is also referred to as the

hyper monotonicity in the literature.

Definition 2.2. Let H : D(H) ⊆ X → X and M : D(M) ⊆ X → X be single-
valued mappings such that D(H) ∩D(M) 6= ∅. The map M : D(M) ⊆ X → X is
said to be H-maximal monotone relative to H if

(i) M is monotone with respect to H; that is,

〈M(u)−M(v),H(u)−H(v)〉 ≥ 0,

(ii) R(H + ρM) = X for ρ > 0.

Definition 2.3 ([2]). Let H : D(H) ⊆ X → X and M : D(M) ⊆ X → X be single-
valued mappings such that D(H) ∩D(M) 6= ∅. The map M : D(M) ⊆ X → X is
said to be H-maximal monotone if

(i) M is monotone, that is, 〈M(u)−M(v), u− v〉 ≥ 0;
(ii) R(H + ρM) = X for ρ > 0.

Definition 2.4. Let H : D(H) ⊆ X → X and M : D(M) ⊆ X → X be single-
valued mappings such that D(H) ∩D(M) 6= ∅. The map M : D(M) ⊆ X → X is
said to be H-accretive (or accretive with respect to H) if and only if H + ρM is
injective and (H + ρM)−1 is Lipschitz continuous for all ρ > 0.

Definition 2.5. Let H : D(H) ⊆ X → X and M : D(M) ⊆ X → X be single-
valued mappings such that D(H) ∩D(M) 6= ∅. The map M : D(M) ⊆ X → X is
said to be H-maximal accretive relative to H if and only if M is H-accretive and
(H + ρM)−1 exists on X for all ρ > 0.

For H = I in Definitions 2.4 and 2.5, we have Definitions 2.6 and 2.7.

Definition 2.6. Let M : D(M) ⊆ X → X be a single-valued mapping. The map
M : D(M) ⊆ X → X is said to be accretive if and only if I + ρM is injective and
(I + ρM)−1 is nonexpansive for all ρ > 0.

Definition 2.7. Let M : D(M) ⊆ X → X be a single-valued mapping. The map
M : D(M) ⊆ X → X is said to be maximal accretive (or m-accretive) if and only
if M is accretive and (I + ρM)−1 exists on X for all ρ > 0.
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Definition 2.8. Let H : D(H) ⊆ X → X and M : D(M) ⊆ X → X be single-
valued mappings such that D(H)∩D(M) 6= ∅. Let M be an H-maximal monotone
mapping. Then the generalized resolvent operator JM

ρ,H : X → D(H + ρM) is
defined by

JM
ρ,H(u) = (H + ρM)−1(u) ∀u ∈ X.

Definition 2.9. Let H : D(H) ⊆ X → X and M : D(M) ⊆ X → X be single-
valued mappings such that D(H)∩D(M) 6= ∅. Let M be an H-maximal monotone
mapping relative to H. Then the generalized relative resolvent operator RM

ρ,H :
X → D(H + ρM) is defined by

RM
ρ,H(u) = (H + ρM)−1(u) ∀u ∈ X.

Proposition 2.10. Let H : D(H) ⊆ X → X and M : D(M) ⊆ X → X be single-
valued mappings such that D(H) ∩ D(M) 6= ∅. Let H be (r)-strongly monotone,
and let M be an H-maximal monotone mapping relative to H. Then the generalized
resolvent operator associated with M and defined by

RM
ρ,H(u) = (H + ρM)−1(u) ∀u ∈ X

is single-valued.

Proposition 2.11. Let H : D(H) ⊆ X → X and M : D(M) ⊆ X → X be single-
valued mappings such that D(H) ∩ D(M) 6= ∅. Let H be (r)-strongly monotone,
and let M be an H-maximal monotone mapping relative to H. Then the generalized
resolvent operator associated with M and defined by

RM
ρ,H(u) = (H + ρM)−1(u) ∀u ∈ X

is ( 1
r )-Lipschitz continuous.

Proof. For any u, v ∈ X, it follows from the definition of the resolvent operator
RM

ρ,H that

ρ−1(u−H(RM
ρ,H)(u)) = M(RM

ρ,H)(u),

ρ−1(v −H(RM
ρ,H)(v)) = M(RM

ρ,H)(v).

Since M is monotone relative to H and H is (r)-strongly monotone, we have

ρ−1〈u−H(RM
ρ,H)(u)− (v −H(RM

ρ,H)(v)),H(RM
ρ,H)(u)−H(RM

ρ,H)(v)〉
= ρ−1〈u− v − [H(RM

ρ,H)(u)−H(RM
ρ,H)(v)],H(RM

ρ,H)(u)−H(RM
ρ,H)(v)〉 ≥ 0.

Therefore,

〈u− v,H(RM
ρ,H)(u)−H(RM

ρ,H)(v)〉
≥ 〈H(RM

ρ,H)(u)−H(RM
ρ,H)(v),H(RM

ρ,H)(u)−H(RM
ρ,H)(v)〉

= ‖H(RM
ρ,H)(u)−H(RM

ρ,H)(v)‖2.

It follows that

‖u− v‖ ‖H(RM
ρ,H)(u)−H(RM

ρ,H)(v)‖ ≥ ‖H(RM
ρ,H)(u)−H(RM

ρ,H)(v)‖2

which completes the proof. �

Proposition 2.12. Let H : D(H) ⊆ X → X and M : D(M) ⊆ X → X be single-
valued mappings such that D(H) ∩ D(M) 6= ∅. Let H be (r)-strongly monotone.
Then M is monotone (with respect to H) if and only if M is accretive (with respect
to H).
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Proof. Assume that M is H-accretive. Then, for all u, v ∈ D(H) ∩ D(M) and
ρ > 0, we have

‖(H(u) + ρM(u))− (H(v) + ρM(v))|2

= ‖H(u)−H(v)‖2 + 2ρ〈H(u)−H(v),M(u)−M(v)〉+ ρ2‖M(u)−M(v)‖2.

Therefore,

‖(H(u) + ρM(u))− (H(u) + ρM(u))|2 ≥ r2‖u− v‖2 ∀ ρ > 0

if and only if
〈M(u)−M(v),H(u)−H(v)〉 ≥ 0.

�

Proposition 2.13 ([18]). Let M : D(M) ⊆ X → X be a single-valued mapping.
Then M is monotone if and only if M is accretive.

Proposition 2.14. Let H : D(H) ⊆ X → X and M : D(M) ⊆ X → X be single-
valued mappings such that D(H)∩D(M) 6= ∅. Let H be (r)-strongly monotone and
(s)-Lipschitz continuous. Then the following statements are equivalent:

(i) M is monotone relative to H and R(H + λM) = X.
(ii) M is H-maximal accretive relative to H.
(iii) M is H-maximal monotone relative to H.

Proof. We just prove implications (i)⇒ (ii) ⇒ (iii). Let us begin with (i)⇒(ii).
From Proposition 2.12, it follows that M is accretive relative to H, and hence
RM

λ,H = (H + λM)−1 is (1
r )-Lipschitz continuous. Next all we need is to show for

the existence of RM
λ,H that H + λM is one-one and onto. It would be sufficient to

establish R(H + ρM) = X for all ρ > 0. We start with equation

H(u) + ρM(u) = w for u ∈ X, (2.1)

which is equivalent to
u = Lw(u) for u ∈ X, (2.2)

where
Lw(u) = RM

λ,H [(1− ρ−1λ)H(u) + ρ−1λw].

Furthermore, we observe that for ρ > λs(r + s), we have |1− ρ−1λ| < r/s and

‖Lw(u)− Lw(v)‖ ≤ s

r
|1− ρ−1λ|‖u− v‖ ∀u, v ∈ X.

Then by the Banach fixed point theorem [16, Theorem 1.A], Equation (2.2) has a
unique solution; that is,

R(H + ρM) = X for all ρ >
λs

r + s
.

Hence, based on an n-fold repetitions of the argument, we end up with

R(H + ρM) = X for all ρ >
λsn

(r + s)n
and all n.

To prove (ii)⇒ (iii), we begin with M as H-maximal accretive relative to H. Since
M is monotone relative to H in light of Proposition 2.12, all we need is to show
that R(H + ρM) = X. As M is H-maximal accretive relative to H, it implies
that (H + ρM)−1 exists and is ( 1

r )-Lipschitz continuous. It further follows that
R(H + ρM) = X. This completes the proof. �
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For ρ = 1 in Proposition 2.14, we have the following result.

Proposition 2.15. Let H : D(H) ⊆ X → X and M : D(M) ⊆ X → X be single-
valued mappings such that D(H) ∩ D(M) 6= ∅. Let H be (r)-strongly monotone.
Then the following statements are equivalent:

(i) M is monotone relative to H and R(H + M) = X.
(ii) M is H-maximal accretive relative to H.
(iii) M is H-maximal monotone relative to H.

Proposition 2.16 ([18, Proposition 31.5]). Let M : D(M) ⊆ X → X be a single-
valued mapping. Then the following statements are equivalent:

(i) M is monotone and R(I + M) = X.
(ii) M is maximal accretive.
(iii) M is maximal monotone.

3. Generalized Yosida approximations

Based on Proposition 2.11, we define the generalized Yosida approximation Mρ =
ρ−1(H −HoJM

ρ,HoH), where H : X → X is an (r)-strongly monotone mapping on
X, represents the generalized Yosida approximation of M for ρ > 0, which reduces
to the Yosida approximation of M for H = I:

Mρ = ρ−1(I −RM
ρ ),

where I is the identity and RM
ρ = (I + ρM)−1.

Proposition 3.1. Let H : D(H) ⊆ X → X and M : D(M) ⊆ X → X be single-
valued mappings such that D(H)∩D(M) 6= ∅. Let H be (r)-strongly monotone and
(s)-Lipschitz continuous, and let M be an H-maximal monotone mapping relative
to H. Then the generalized Yosida approximation Mρ of M defined by

Mρ = ρ−1(H −HoRM
ρ,HoH),

where
RM

ρ,H(u) = (H + ρM)−1(u) ∀u ∈ X,

is ( s(r+s)
ρr )-Lipschitz continuous.

Proof. Applying Proposition 2.11, for any u, v ∈ X, we have

‖Mρ(u)−Mρ(v)‖ = ρ−1[(H −HoRM
ρ,HoH)(u)− (H −HoRM

ρ,HoH)(v)]‖
= ρ−1[‖H(u)−H(v)‖+ ‖(HoRM

ρ,HoH)(u)− (HoRM
ρ,HoH)(v)‖]

≤ ρ−1[s‖u− v‖+ s‖(RM
ρ,HoH)(u)− (RM

ρ,HoH)(v)‖]

≤ ρ−1[s‖u− v‖+
s

r
‖H(u)−H(v)‖]

≤ ρ−1[s +
s2

r
]‖u− v‖.

�

For H = I, Proposition 3.1, reduces to the following statement, [18, Lemma
31.7],
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Proposition 3.2. Let M : D(M) ⊆ X → X be a single-valued mapping. Let M be
a maximal monotone mapping. Then the Yosida approximation Mρ of M defined
by

Mρ = ρ−1(I −RM
ρ ),

where
RM

ρ (u) = (I + ρM)−1(u) ∀u ∈ X,

is (2/ρ)-Lipschitz continuous.

Proposition 3.3. Let H : D(H) ⊆ X → X and M : D(M) ⊆ X → X be single-
valued mappings such that D(H)∩D(M) 6= ∅. Let H be (r)-strongly monotone and
(s)-Lipschitz continuous, and let M be an H-maximal monotone mapping relative to
H. Furthermore, if HoRM

ρ,HoH is cocoercive with respect to H, then the generalized
Yosida approximation Mρ of M defined by

Mρ = ρ−1(H −HoRM
ρ,HoH),

where
RM

ρ,H(u) = (H + ρM)−1(u) ∀u ∈ X,

is (s/ρ)-Lipschitz continuous.

Proof. Since, for any u, v ∈ D(H) ∩D(M),

H(u)−H(v) = ρ(Mρ(u)−Mρ(v)) + (HoRM
ρ,HoH)(u)− (HoRM

ρ,HoH)(v),

we have

〈Mρ(u)−Mρ(v),H(u)−H(v)〉
= 〈Mρ(u)−Mρ(v), ρ(Mρ(u)−Mρ(v))

+ (HoRM
ρ,HoH)(u)− (HoRM

ρ,HoH)(v)〉
= ρ‖Mρ(u)−Mρ(v)‖2 + 〈Mρ(u)−Mρ(v), (HoRM

ρ,HoH)(u)− (HoRM
ρ,HoH)(v)〉

= ρ‖Mρ(u)−Mρ(v)‖2 + 〈H(u)−H(v), (HoRM
ρ,HoH)(u)− (HoRM

ρ,HoH)(v)〉
− ‖(HoRM

ρ,HoH)(u)− (HoRM
ρ,HoH)(v)‖2

≥ ρ‖Mρ(u)−Mρ(v)‖2 + ‖(HoRM
ρ,HoH)(u)− (HoRM

ρ,HoH)(v)‖2

− ‖(HoRM
ρ,HoH)(u)− (HoRM

ρ,HoH)(v)‖2

= ρ‖Mρ(u)−Mρ(v)‖2.

Thus,
〈Mρ(u)−Mρ(v),H(u)−H(v)〉 ≥ ρ‖Mρ(u)−Mρ(v)‖2.

�

Remark 3.4. Note that the Lipschitz continuity constant s
ρ is more application-

enhanced than that of ρ−1[s + s2

r ] in Proposition 3.1.

Proposition 3.5. Let M : D(M) ⊆ X → X be a single-valued mapping. Let M be
a maximal monotone mapping. Then the Yosida approximation Mρ of M defined
by

Mρ = ρ−1(I −RM
ρ ),

where RM
ρ (u) = (I + ρM)−1(u) for all u ∈ X, is ( 1

ρ )-Lipschitz continuous.
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Proof. We include the proof for the sake of the completeness. It is well-known that
the resolvent operator RM

ρ is cocoercive as well as nonexpansive. Since, for any
u, v ∈ D(M),

u− v = ρ(Mρ(u)−Mρ(v)) + RM
ρ (u)−RM

ρ (v),

we have

〈Mρ(u)−Mρ(v), u− v〉
= 〈Mρ(u)−Mρ(v), ρ(Mρ(u)−Mρ(v)) + RM

ρ (u)−RM
ρ (v)〉

= ρ‖Mρ(u)−Mρ(v)‖2 + 〈Mρ(u)−Mρ(v), RM
ρ (u)−RM

ρ (v)〉
= ρ‖Mρ(u)−Mρ(v)‖2 + 〈u− v,RM

ρ (u)−RM
ρ (v)〉 − ‖RM

ρ (u)−RM
ρ (v)‖2

≥ ρ‖Mρ(u)−Mρ(v)‖2 + ‖RM
ρ (u)−RM

ρ (v)‖2 − ‖RM
ρ (u)−RM

ρ (v)‖2

= ρ‖Mρ(u)−Mρ(v)‖2.

Hence, we have

〈Mρ(u)−Mρ(v), u− v〉 ≥ ρ‖Mρ(u)−Mρ(v)‖2.

�

Lemma 3.6. Let H : D(H) ⊆ X → X and M : D(M) ⊆ X → X be single-valued
mappings such that D(H) ∩ D(M) 6= ∅. Let H be (r)-strongly monotone and (s)-
Lipschitz continuous, and let M be an H-maximal monotone mapping relative to
H. Furthermore, if HoRM

ρ,HoH is cocoercive with respect to H, then the generalized
Yosida approximation Mρ of M defined by

Mρ = ρ−1(H −HoRM
ρ,HoH),

where RM
ρ,H(u) = (H + ρM)−1(u) for all u ∈ X, satisfies the following conditions:

(i) For all ρ > 0 and for all u, v ∈ X, we have

ρ−1(H −HoRM
ρ,HoH) = MRM

ρ,H(H(u)).

(ii) Mρ is (ρ)− cocoercive with respect to H; that is,

〈Mρ(u)−Mρ(v),H(u)−H(v)〉 ≥ ρ‖Mρ(u)−Mρ(v)‖2.

Proof. The proof of (i) follows from the definition of the resolvent operator, while
the proof for (ii) is derived from the proof of Proposition 3.3 as follows:

〈Mρ(u)−Mρ(v),H(u)−H(v)〉 ≥ ρ‖Mρ(u)−Mρ(v)‖2.

�

Since H is (s)-Lipschitz continuous (and hence, I−H is monotone), we have the
following result in light of Proposition 3.3.

Lemma 3.7. Let H : D(H) ⊆ X → X and M : D(M) ⊆ X → X be single-valued
mappings such that D(H) ∩ D(M) 6= ∅. Let H be (r)-strongly monotone and (s)-
Lipschitz continuous, and let M be an H-maximal monotone mapping relative to
H. Suppose that HoRM

ρ,HoH is cocoercive with respect to H. Furthermore, if the
generalized Yosida approximation Mρ is cocoercive with respect to I −H, then Mρ

defined by
Mρ = ρ−1(H −HoRM

ρ,HoH),
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where RM
ρ,H(u) = (H + ρM)−1(u) for all u ∈ X, is monotone, that is,

〈Mρ(u)−Mρ(v), u− v〉 ≥ 0

and
〈Mρ(u)−Mρ(v), u− v〉 ≥ 〈Mρ(u)−Mρ(v),H(u)−H(v)〉.

Proof. Since Mρ is monotone with respect to H from Lemma 3.6, and under as-
sumptions it is cocoercive with respect to I −H, which is strongly monotone from
the (s)-Lipschitz continuity of H, we have

〈Mρ(u)−Mρ(v), u− v〉 − 〈Mρ(u)−Mρ(v),H(u)−H(v)〉
= 〈Mρ(u)−Mρ(v), (I −H)(u)− (I −H)(v)〉
≥ ‖Mρ(u)−Mρ(v)‖2.

Hence, we have

〈Mρ(u)−Mρ(v), u− v〉 − 〈Mρ(u)−Mρ(v),H(u)−H(v)〉 ≥ 0.

It follows that

〈Mρ(u)−Mρ(v), u− v〉 ≥ 〈Mρ(u)−Mρ(v),H(u)−H(v)〉.

�

4. Generalized first-order evolution equations

Let H : D(H) ⊆ X → X and M : D(M) ⊆ X → X be single-valued mappings
such that D(H) ∩ D(M) 6= ∅. In this section, we consider the solvability of first-
order nonlinear evolution equations of the form

u′(t) + Mu(t) = 0, 0 < t < ∞
u(0) = u0,

(4.1)

where M is H-maximal monotone relative to H and the Yosida approximation of
M is defined by

Mρ = ρ−1(H −HoRM
ρ,HoH),

where o denotes composition of functions. We generalize the theorem of Komura [3]
to the case of the H-maximal monotonicity framework in the context of generalized
Yosida approximations.

Theorem 4.1. Let H : D(H) ⊆ X → X and M : D(M) ⊆ X → X be single-
valued mappings such that D(H)∩D(M) 6= ∅, where X is a real Hilbert space. Let
H be (r)−strongly monotone and (s)-Lipschitz continuous, and let M be H-maximal
monotone relative to H. Suppose that HoRM

ρ,HoH is cocoercive with respect to H,
and M and the generalized Yosida approximation Mρ are cocoercive with respect to
I − H, where I is the identity mapping. Then, for each u0 ∈ D(M), there exists
exactly one continuous function u : [0,∞) → X such that equation (4.1) holds for
all t ∈ (0,∞), where the derivative u′(t) is in the sense of weak convergence, that
is,

u(t + h)− u(t)
h

⇀ u′(t) in X as h → 0.
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Proof. We start the proof with the uniqueness of the solution to (4.1). Suppose
that u : [0,∞) → X is a solution to (4.1), where u is continuous and u′(t) exists
for all t ∈ (0,∞) in the sense of the weak convergence. It is well-known that

d

dt
〈u(t), u(t)〉 =

d

dt
‖u(t)‖2 = 2〈u′(t), u(t)〉 ∀ t ∈ (0,∞).

If we assume that v is another solution to (4.1), then, for t ∈ (0,∞), the mono-
tonicity of M relative to H, and the cocoercivity of M with respect to I−H imply
that

d

dt
‖u(t)− v(t)‖2 = 2〈u′(t)− v′(t), u(t)− v(t)〉

= −〈M(u(t))−M(v(t)), u(t)− v(t)〉
≤ −〈M(u(t))−M(v(t)),H(u(t))−H(v(t))〉 ≤ 0.

It follows that
‖u(t)− v(t)‖ ≤ ‖u(0)− v(0)‖ ∀ t ≥ 0.

Since u(0) = v(0), we have u(t) = v(t) for all t ≥ 0.
Next, we prove the existence of a solution to (4.1). We begin with the generalized

resolvent operator RM
ρ,H = (H + ρM)−1 for ρ > 0, and conclude that M is H-

maximal accretive relative to H in light of Proposition 2.14. Therefore, RM
ρ,H exists

for all ρ > 0 and
RM

ρ,H : X → D(H + ρM)

is bijective (that is, H + ρM is one-one and onto), while RM
ρ,H is ( 1

r )-Lipschitz
continuous. Under the assumptions of the theorem, it is sufficient to show that
H + ρM is injective, that is, if we assume u 6= v for u, v ∈ D(H) ∩ D(M), and
(H + ρM)(u) = (H + ρM)(v), we have

〈(H + ρM)(u)− (H + ρM)(v),H(u)−H(v)〉
= 〈H(u)−H(v),H(u)−H(v)〉+ ρ〈M(u)−M(v),H(u)−H(v)〉
≥ r‖u− v‖2 + ρ〈M(u)−M(v),H(u)−H(v)〉
≥ r‖u− v‖2.

This implies u = v, a contradiction.
Now we look back at Section 3 and examine some of the properties of the gen-

eralized Yosida approximation Mρ = ρ−1(H −HoRM
ρ,HoH) as follows:

(i)
ρ−1(H −HoRM

ρ,HoH) = MRM
ρ,H(H(u))∀u ∈ x.

(ii) Mρ is ( s(r+s)
ρr )-Lipschitz continuous for all u ∈ X.

(iii) Mρ is monotone with respect to H, that is,

〈Mρ(u)−Mρ(v),H(u)−H(v)〉 ≥ 0∀u ∈ X.

(iv) ‖Mρ(u)‖ ≤ s
r‖M(u)‖ for all u ∈ D(M).

Most of these properties follow from the definition of Mρ = ρ−1(H −HoRM
ρ,HoH),

but consider (iv) as follows: Using the definition of Mρ and the ( 1
r )-Lipschitz con-

tinuity of RM
ρ,H , we have

‖Mρ(u)‖ = ρ−1‖(H −HoRM
ρ,HoH)(u)‖

= ρ−1‖H(RM
ρ,H(H + ρM))(u)−H(RM

ρ,HH)(u)‖
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≤ ρ−1s‖(RM
ρ,H(H + ρM)(u)− (RM

ρ,HH)(u)‖

≤ s

ρr
‖ρM(u)‖

=
s

r
‖M(u)‖.

At the crucial stage of the proof, we extend the map M : D(M) ⊆ X → X to the
Hilbert space Z by defining a map M∗ : D(M∗) ⊆ Z → Z, where Z = L2(0, T ;X)
for fixed T > 0. We set

(M∗u)(t) = Mu(t) for almost all t ∈ [0, T ], (4.2)

and define the domain D(M∗) as the set of all u ∈ Z such that u(t) ∈ D(M)
holds for almost all t ∈ [0, T ] and t 7→ Mu(t) belongs to Z. We observe that
the H-maximal accretivity of M : D(M) ⊆ X → X relative to H implies that
M∗ : D(M∗) ⊂ Z → Z is H-maximal accretive and H- maximal monotone relative
to H in light Proposition 2.14. Let Z = L2(0, T ;X) for fixed T > 0. Then M∗ is
monotone relative to H. Furthermore, for all u, v ∈ D(M∗), the monotonicity of
M relative to H and the cocoercivity of M (from the hypotheses of the theorem)
imply

〈M∗(u)−M∗(v), u− v〉Z =
∫ T

0

〈Mu(t)−Mv(t), u(t)− v(t)〉dt

≥
∫ T

0

〈Mu(t)−Mv(t),Hu(t)−Hv(t)〉dt ≥ 0.

To this context, we need show that R(H + M∗) = Z. Suppose that w ∈ Z, and set

u(t) = (H + M)−1w(t), u0 = (H + M)−1(0).

We know that (H + M)−1 is (1
r )-Lipschitz continuous, and it implies

‖u(t)− u(0)‖2 = ‖(H + M)−1w(t)− (H + M)−1(0)‖2 ≤ 1
r2
‖w(t)‖2.

If we integrate over [0, T ], we find that u− u0 ∈ Z, and hence, u ∈ Z. Thus, M∗ is
H-maximal accretive and H-maximal monotone relative to H by Proposition 2.14.

To our next leg of the proof, we consider the solvability of the auxiliary problem

u′ρ(t) + Mρuρ(t) = 0, 0 < t < ∞
uρ(0) = u0 ∈ D(M).

(4.3)

Mρ is Lipschitz continuous with Lipschitz constant s
ρ from Proposition 3.3 on X,

while the global Picard-Lindelöf theorem [10, Corollary 3.8] implies that (4.3) has
exactly one C1− solution u : R → X.

To show the uniqueness of the solution to (4.3), like in the beginning of the
proof, assume uρ and vρ be two solutions to (4.3). Since, based on Lemma 3.7, Mρ

is monotone, we have

‖uρ(t)− vρ(t)‖ ≤ ‖uρ(0)− vρ(0)‖ ∀ t ≥ 0. (4.4)

In order for us to prove the convergence of uρ in X, we need the following
inequalities. For all t, s ≥ 0 and all ρ, λ > 0, we have

‖u′ρ(t)‖ = ‖Mρuρ(t)‖ ≤
s

r
‖M(u0)‖, (4.5)
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‖uρ(t)− uρ(s)‖ ≤
s

r
‖M(u0)‖ |t− s|, (4.6)

‖Huρ(t)−HRM
ρ,HHuρ(t)‖ ≤

ρs

r
‖M(u0)‖, (4.7)

‖uρ(t)− uλ(t)‖ ≤ 2s

r

√
ρ + λ(t‖M(u0)‖). (4.8)

Note that since H is (s)-Lipschitz continuous, it follows from (4.8) that

‖Huρ(t)−Huλ(t)‖ ≤ 2s2

r

√
ρ + λ(t‖M(u0)‖). (4.9)

Let us start the proof of (4.5) with t 7→ uρ(t). The function t 7→ uρ(t+h) is also
a solution to (4.3) with suitable initial values. Applying (4.4), we have

‖uρ(t)− uρ(t + h)‖ ≤ ‖uρ(0)− uρ(h)‖.
Dividing by h and letting h → +0, it turns out using (iv) in the proof that

‖u′ρ(t)‖ ≤ ‖u′ρ(0)‖ = ‖Mρ(u0)‖ ≤
s

r
‖M(u0)‖.

The proofs of (4.6) and (4.7) follow easily from (4.5) and the definition of Mρ, we
move to prove (4.8) by setting

∆ = −〈Mρuρ(t)−Mλuλ(t),HRM
λ,HHuλ(t)−Huλ(t) + Huρ(t)−HRM

ρ,HHuρ(t)〉.
It follows from applying (4.5) and (4.7) that

|∆| ≤ 2s2

r2
(ρ + λ)‖Mu0‖2.

If we apply (4.3), Mρ = MRM
ρ,H(H(u)), the monotonicity of M with respect to H,

and Lemma 3.7, then we have
1
2

d

dt
‖uρ(t)− uλ(t)‖2 = 〈u′ρ(t)− u′λ(t), uρ(t)− uλ(t)〉

= −〈Mρuρ(t)−Mλuλ(t), uρ(t)− uλ(t)〉
≤ −〈Mρuρ(t)−Mλuλ(t),Huρ(t)−Huλ(t)〉
= −〈MRM

ρ,HHuρ(t)−MRM
λ,HHuλ(t),HRM

ρ,HHuρ(t)−HRM
λ,HHuλ(t)〉+ ∆

≤ ∆.

Since uρ(0)− uλ(0) = 0, integrating over [0,t] completes the proof of (4.8).
In next steps, we consider the convergence of uρ(t) in X as ρ → +0. It follows

from (4.8) that uρ(t) converges to a certain u(t) in X as ρ → +0. As a matter of
fact, it converges uniformly with respect to all compact t-intervals. Inequality (4.6)
yields

‖u(t)− u(s)‖ ≤ s

r
‖M(u0)‖ |t− s| ∀ t, s ≥ 0. (4.10)

On the other hand, we examine the convergence in Z = L2(0, T ;X) as ρ → +0.
Indeed, the uniform convergence follows from the preceding step in the following
manner

uρ → u ∈ Z as ρ → +0.

Applying (4.10), the function t 7→ u(t) is Lipschitz continuous on R+. In light
of [17, Corollary 23.22], the derivative u′(t) exists for almost all t ∈ R+, while it
follows from (4.10) that

‖u′(t)‖ ≤ s

r
‖M(u0)‖ for almost all t ∈ R+.
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This implies that u′ ∈ Z. Moreover, u′ is the generalized derivative of u on each
interval (0,T). It follows from (4.5) that there exists a constant c such that

‖u′ρ‖Z ≤ c ∀ ρ > 0.

Since Z is a Hilbert space, Z is reflexive. Therefore, by choosing a suitable subse-
quence, we obtain

uρ → u ∈ Z and u′ρ ⇀ w ∈ Z as ρ → +0.

Then, by [17, Proposition 23.19], it follows that u′ = w. Since

u′ρ(t) = −Mρuρ(t) = −(MRM
ρ,HH)uρ(t),

applying the (r)-expansiveness of H; that is,

‖Hu−Hv‖ ≥ r‖u− v‖,

due to (4.7), we have RM
ρ,HHuρ → u ∈ Z as ρ → +0, and

−M∗RM
ρ,HHu ⇀ w ∈ Z as ρ → +0.

The map M∗ is H-maximal monotone. Therefore, u ∈ D(M∗) and

−M∗u = w or −M∗u = u′.

It follows that u′(t) = −Mu(t) for almost all t ∈ R+.
Finally, it turns out that the function t 7→ Mu(t) is continuous from the right on

R+, and as a result, it follows that the function (for each w ∈ X) t 7→ 〈Mu(t), w〉
is continuous on [0,∞). �

5. Concluding remarks

Remark 5.1. If we generalize Definition 2.2 to the case of another single-valued
mapping A : D(A) ⊆ X → X, then we could achieve a mild generalization to
Theorem 4.1.

Definition 5.2. Let B : D(B) ⊆ X → X, H : D(H) ⊆ X → X, and M : D(M) ⊆
X → X be single-valued mappings such that D(B)∩D(H)∩D(M) 6= ∅. The map
M : D(M) ⊆ X → X is said to be H-maximal monotone relative to B if

(i) M is monotone with respect to B, that is,

〈M(u)−M(v), B(u)−B(v)〉 ≥ 0,

(ii) R(H + ρM) = X for ρ > 0.

This clearly reduces to Definition 2.2 when B = H.

We do have further generalization to Definition 5.2 to the case of the A-maximal
(m)-relaxed monotonicity as follows:

Definition 5.3. Let A : D(A) ⊆ X → X, B : D(B) ⊆ X → X, and M : D(M) ⊆
X → X be single-valued mappings such that D(A)∩D(B)∩D(M) 6= ∅. The map
M : X → 2X is said to be A-maximal (m)-relaxed monotone relative to B if

(i) M is (m)-relaxed monotone relative to B for m > 0.
(ii) R(A + ρM) = X for ρ > 0.
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Remark 5.4. We consider a class of first order evolution inclusions of the form

u′(t) + M(u(t)) 3 0 for 0 < t < ∞,

u(0) = u0

(5.1)

where M : X → 2X is A-maximal (m)-relaxed monotone [9], u : [0,∞) → X is such
that (5.1) holds, and the derivative u′(t) exists in the sense of the weak convergence.
Furthermore, the A-maximal (m)-relaxed monotone mapping M : X → 2X is
defined as follows.

Definition 5.5. Let A : X → X be a single-valued mapping, and let M : X → 2X

be a set-valued mappings on X. The map M : X → 2X is said to be A-maximal
(m)-relaxed monotone if

(i) M is (m)-relaxed monotone for m > 0.
(ii) R(A + ρM) = X for ρ > 0.

Based on Theorem 4.1, we can define Mρ = ρ−1(A−AoRM
ρ,AoA), where A : X →

X is an (r)−strongly monotone mapping on X, represents the generalized Yosida
regularization of M for ρ > 0, that reduces to the Yosida regularization of M for
A = I. Theory of A-maximal (m)-relaxed monotone mappings generalizes most of
the existing notions on maximal monotone mappings to Hilbert as well as Banach
space settings, and its applications range from nonlinear variational inequalities,
equilibrium problems, optimization and control theory, management and decision
sciences, and mathematical programming to engineering sciences.

In a subsequent communication on the solvability of the differential inclusions
of the form (5.1), based on the generalized Yosida regularization/approximation,
is planned, but the real problem could arise due to the presence of the relaxed
monotonicity achieving the uniqueness of the solution.
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