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REGULARITY ESTIMATES IN BESOV SPACES FOR
INITIAL-VALUE PROBLEMS OF GENERAL PARABOLIC

EQUATIONS

MING XU

Abstract. In this paper we give regularity estimates for solutions to initial-

value problem of general parabolic equations with data in adapted Besov spaces
characterized by heat kernels.

1. Introduction

The purpose of this paper is to consider the regularity estimates for solutions
of parabolic equations with data in adapted Besov spaces. The general parabolic
equation is defined by

∂tu + Lu = f, t ∈ [0, T ] (1.1)

u|t=0 = u0, (1.2)

where u0 ∈ D(Rn), f ∈ C([0, T ];D(Rn))(T > 0), the elliptic operator L is defined
by

L = −div A∇ (1.3)
where A = (ai,j)n×n is a matrix of complex-valued, measurable functions satisfying
the elliptic conditions

(1) λ|ξ|2 ≤ Re
∑

i,j ai,j(x)ξiξ̄j = Re〈Aξ, ξ〉;
(2) |〈Aξ, η〉| ≤ Λ|ξ||η|,

where 0 < λ ≤ Λ < ∞ and ξ, η ∈ Cn.
In the classical theory, if L denotes the Laplace operator, the regularity estimates

of the solution of the heat equations with data in the conventional Besov spaces
have been given by using Fourier analysis methods(see[4]). Naturally there is one
question, if L is defined by (1.3), what about the regularity estimates of the solution
of the corresponding parabolic equations in Besov spaces? The purpose of the paper
is to answer such question. The main difficulty here is that the Fourier analysis
methods can’t be used, since the heat kernel of e−tL for the divergence elliptic
operator L is not convolutional now. As we know, the regularity estimates of the
solution of the parabolic equations depend on the bound of the heat semigroup
e−tL. In [1], Auscher and Tchamitchian studied bounds for the heat kernel pt(x, y)
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of the semigroup e−tL(t > 0) for such divergence elliptic operator L as given in
(1.3). These will be described in the next section in detail. In this paper we firstly
define a kind of adapted Besov space associated to the parabolic equations by using
the heat kernel, then we apply some other harmonic analysis methods in place of
the Fourier transform methods to get our regularity estimates of the solution. From
this point of view, our results are new.

The paper is organized as follows: in section 2, we give two assumptions and the
definition of adapted Besov spaces, then give the main theorem; in section 3, we
give the proof of the main theorem.

Through the paper, the constant “C” and “c” may be different somewhere, but
it is not essential.

2. Two assumptions and main theorem

In this paper, we use two assumptions
Assumption (a) The holomorphic semigroup e−zL, | arg(z)| < π/2 − θ is repre-
sented by the kernel az(x, y) which satisfies the so-called Poisson bound; that is,
for all ν > θ,

|az(x, y)| ≤ cνh|z|(x, y)

for all x, y ∈ Rn and | arg(z)| < π/2 − ν, where ht(x, y) = s(|x−y|2/t)
|B(x,t1/2)| , in which

B(x, t1/2) denotes any ball with center x ∈ Rn and radius t1/2 > 0, and s is a
positive, bounded, decreasing function satisfying

lim
r→∞

rn+κs(r2) = 0,

for some κ > 0. Denote Pt = e−tL and its kernel is pt(x, y), and also assume that
pt(x, y) satisfies the Hölder continuity estimates

|pt(x+h, y)−pt(x, y)|+ |pt(y, x+h)−pt(y, x)| ≤ c
( |h|
t1/2 + |x− y|

)µ
ht(x, y), (2.1)

where 0 < µ ≤ 1 and |h| ≤ 1
2 (t1/2 + |x− y|).

Remark 2.1. Auscher and Tchamitchian [1], found that if A was real, symmetric
valued, the heat kernel pt(x, y) of the semigroup e−tL(t > 0) satisfied the upper
Gaussian bounds and the Hölder continuity estimates. More details about the
bound of e−tL for elliptic operators can be found in [1]. In fact here some other
elliptic operators have the above similar properties, such as Schrödinger operators
or degenerate elliptic operators, related details can be found in [7] or [2].

In the following, we assume that pt(x, y) is the kernel of Pt = e−tL which can be
seen as an approximation to identity. Set Qt = tLe−tL,then it can be proved that
its kernel vt(x, y) also satisfies the Poisson bound and Hölder continuity estimates
by using the Cauchy formula with the previous assumption.

Moreover it is easy to see that e−tL(1) = 1 and Le−tL(1) = 0. We also notice
that the adjoint operator L∗ has the similar properties to L. Set Q̃t =

√
tLe−tL

,which kernel also satisfies the Poisson bound and Hölder continuity estimates due
to the representation of L1/2. Here it’s obvious that Q̃t(1) = 0 and Q̃∗t (1) = 0,
where Q̃∗t is the adjoint operator of Q̃t. Here for simplicity, we assume that L is a
self-adjoint operator.
Assumption (b) The operator L has a bounded H∞-calculus in L2(Rn). About
the definition and related properties of H∞-calculus, readers can refer to [5][1].
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Remark 2.2. By the previous assumptions ,the following equality holds in the
sense of the norm of W 1,p(Rn) for 1 < p < ∞

L1/2f =
1

π−1/2

∫ ∞

0

e−tLLf
dt√

t
. (2.2)

Moreover if matrix A is real, symmetric valued, the above equality holds in the
norm of W 1,p. Here we mention that following representation formula also holds in
the sense of the norm of Lp for 1 < p < ∞ on basis of previous two assumptions,

I = c

∫ ∞

0

QtQt
dt

t
. (2.3)

Related details can be found in [5][1].

Next we give the adapted Besov space for the corresponding parabolic equations.

Definition 2.3. Let 1 < p, q < ∞ and α ∈ [−µ, µ]. For u ∈ Lp(Rn)

‖u‖Bα,q
p

= ‖u‖Lp +
{∫ 1

0

s−
1
2 αq‖Qs(u)‖q

p

ds

s

}1/q

< ∞.

For T > 0, 1 ≤ ρ ≤ ∞,

‖u‖L̃ρ
T (Bα,q

p ) = ‖u‖Lρ
T (Lp) +

{∫ 1

0

s−
1
2 αq‖Qs(u)‖q

Lρ
T (Lp)

ds

s

}1/q

< ∞,

where for any u ∈ Lρ
T (Lp)(Rn),

‖u‖Lρ
T (Lp) =

{∫ T

0

‖u‖ρ
Lpdt

}1/ρ

< ∞.

Remark 2.4. Note that for any u ∈ Lρ
T (W k,p)(Rn), similar definition can be given

in the following form

‖u‖Lρ
T (W k,p) = {

∫ T

0

‖u‖ρ
W k,pdt}1/ρ < ∞,

where W k,p(Rn) is Sobolev space and k ∈ Z+. Here for p, q, ρ = ∞, definitions
for the above spaces can be given conventionally. Moreover by the coordinate
transform, we have

‖u‖Bα,q
p

∼ ‖u‖Lp +
{∫ 2

0

s−
1
2 αq‖Qs(u)‖q

p

ds

s

}1/q

< ∞.

Now we give the main theorem in the paper.

Theorem 2.5. Suppose that L satisfies assumptions (a) and (b). Let α ∈ (−µ, µ)

(0 < µ ≤ 1) and 1 < p, q, ρ < ∞. Let u0 ∈ Bα,q
p and f ∈ L̃ρ

T (B
α−2+ 2

ρ ,q
p ) ∩

L∞T (Lp). Then the initial-value problem of the parabolic equation has a solution

u ∈ L̃ρ
T (B

α+ 2
ρ ,q

p ) ∩ L1
T (W 2,p) and there exists a constant C > 0 depending only on

n and such that

‖u‖
L̃ρ

T (B
α+ 2

ρ1
,q

p )
≤ C

(
(1 + T 1/ρ1)‖u0‖Bα,q

p
+ (1 + T 1+ 1

ρ1
− 1

ρ )‖f‖
L̃ρ

T (B
α−2+ 2

ρ
,q

p )

)
,

where ρ1 ∈ (ρ,+∞) satisfying |α + 2
ρ1
| ≤ µ and |α− 2 + 2

ρ | ≤ µ.
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3. The proof of main theorem

Before we prove the main theorem, we need the following lemmas.

Lemma 3.1. Let ks,t(x, y) be the kernel of Pt(Qs). If t ≥ s, there exists a constant
c > 0 such that

|ks,t(x, y)| ≤ c
(√

s/t
)µ

hs(x, y). (3.1)
If t ≤ s, there exists a constant c > 0 such that

|ks,t(x, y)| ≤ cht(x, y). (3.2)

Proof. The proof is similar to [3, Lemma B.1], which uses the vanishing conditions
of the kernel of Qs and Hölder continuity conditions. �

Remark 3.2. Here the kernels of Qt(Qs) and Qt(Q̃s) have better properties due
to the vanishing moment conditions; that is, let Ks,t(x, y) be the kernel of Qt(Qs),
then if t ≥ s, there exists a constant c > 0 such that

|Ks,t(x, y)| ≤ c
(√

s/t
)µ

hs(x, y); (3.3)

Also if t ≤ s, there exists a constant c > 0 such that

|Ks,t(x, y)| ≤ c
(√

t/s
)µ

ht(x, y). (3.4)

Lemma 3.3. Let 1 < p, q < ∞ and α ∈ (−µ, µ). For u ∈ Lp(Rn),

‖u‖Bα,q
p

∼ ‖u‖Lp +
{∫ 1

0

s−
1
2 αq‖Q̃s(u)‖q

p

ds

s

}1/q

< ∞.

Proof. Firstly we prove there exists a constant c > 0 such that

‖u‖Bα,q
p

≤ c(‖u‖Lp +
{∫ 1

0

s−
1
2 αq‖Q̃s(u)‖q

p

ds

s

}1/q

) < ∞.

Here we need to verify that{∫ 1

0

s−
1
2 αq‖Qs(u)‖q

p

ds

s

}1/q

≤ c
(
‖u‖Lp +

{∫ 1

0

s−
1
2 αq‖Q̃s(u)‖q

p

ds

s

}1/q)
. (3.5)

Note that the following identity holds in Lp for 1 < p < ∞,

I =
∫ ∞

0

Qt
dt

t
= c

∫ ∞

0

Q2t
dt

t
.

Also note that Q2t = Q̃tQ̃t, then

I = c

∫ ∞

0

Q̃tQ̃t
dt

t
.

Next{∫ 1

0

s−
1
2 αq‖Qs(u)‖q

p

ds

s

}1/q

=
{∫ 1

0

s−
1
2 αq‖

∫ ∞

0

QsQ̃tQ̃t(u)
dt

t
‖q

p

ds

s

}1/q

=
{∫ 1

0

s−
1
2 αq‖

∫ s

0

QsQ̃tQ̃t(u)
dt

t
‖q

p

ds

s

}1/q

+
{∫ 1

0

s−
1
2 αq‖

∫ ∞

s

QsQ̃tQ̃t(u)
dt

t
‖q

p

ds

s

}1/q

= I + II.
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Using Lemma 3.1, remark 3.1 and standard harmonic analysis technique, we can
obtain

I ≤ c
{∫ 1

0

( ∫ 1

t

s−
1
2 α(

√
t

s
)µ‖Q̃t(u)‖p

ds

s

)q dt

t

}1/q

≤ c
{∫ 1

0

t−
1
2 αq‖Q̃t(u)‖q

p

dt

t

}1/q

.

Similarly we can also get

II ≤ c
{∫ 1

0

( ∫ t

0

s−
1
2 α(

√
s/t)µ‖Q̃t(u)‖p

ds

s

)q dt

t

}1/q

≤ c
{∫ 1

0

t−
1
2 αq‖Q̃t(u)‖q

p

dt

t

}1/q

.

Thus we have end the proof of (3.5). The proof of the reverse inequality of (3.5)
depends on (2.3) and Lemma 3.1, which proof is similar to the above one. We omit
the details, the proof is end. �

Now we present the proof of main theorem.

Proof of Theorem 2.1. Similar to the classical theory of parabolic equations, by
using the contraction mapping theorem(Here readers can refer to the Chapter 4
in [6]), for u0 ∈ Lp and f ∈ L∞(Lp) for 1 < p < ∞, there exists a solution
u ∈ L1

T (W 2,p) for (1.3) and

u(t, x) = e−tL(u0)(x) +
∫ t

0

e(τ−t)L(f)(τ, x)dτ. (3.6)

More precisely, by using the bound of e−tL and (3.6), for 1 < ρ < ρ1 < ∞, we have

‖u‖Lp ≤ ‖e−tL(u0)(·)‖Lp +
∫ t

0

‖e(τ−t)L(f)(τ, ·)‖Lpdτ

≤ c(‖u0‖Lp + T 1−1/ρ‖f‖Lρ
T (Lp)),

then
‖u‖L

ρ1
T (Lp) ≤ c(T 1/ρ1‖u0‖Lp + T 1+ 1

ρ1
− 1

ρ ‖f‖Lρ
T (Lp)). (3.7)

Now apply (3.6) to Q2s(u), then

Q2s(u) = e−tL(Q2s(u0)) +
∫ t

0

e(τ−t)L(Q2s(f))dτ.

Since Q2s = Q̃sQ̃s, then for 1 < p < ∞

‖Q2s(u)‖Lp ≤ c(‖e−tLQ̃sQ̃s(u0)‖Lp +
∫ t

0

‖e(τ−t)LQ̃sQ̃s(f)‖Lpdτ).

Next by using Lemma 3.1, we have

‖Q2s(u)‖L
ρ1
T (Lp) ≤ c

({∫ T

0

min
((√

s/t
)µ

, 1
)ρ1

dt
}1/ρ1

‖Q̃s(u0)‖Lp

+ ‖
∫ t

0

min
((√ s

t− τ

)µ
, 1

)
‖Q̃s(f)‖Lpdτ‖L

ρ1
T

)
.

For the second term of the above inequality, we use the young inequality, then by
some simple calculus,we have

‖Q2s(u)‖L
ρ1
T (Lp) ≤ c(s

1
2ρ1 ‖Q̃s(u0)‖Lp + s

1
2ρ2 ‖Q̃s(f)‖Lρ

T (Lp)),
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where 1
ρ2

= 1+ 1
ρ1
− 1

ρ . By using Definition 2.2 and Lemma 3.2 and (3.7), we obtain
the inequality

‖u‖
L̃ρ

T (B
α+ 2

ρ1
,q

p )
≤ C

(
(1 + T 1/ρ1)‖u0‖Bα,q

p
+ (1 + T 1+ 1

ρ1
− 1

ρ )‖f‖
L̃ρ

T (B
α−2+ 2

ρ
,q

p )

)
,

This completes the proof of the theorem. �

Remark 3.4. For higher regularity and the cases of critical indexes for Besov
spaces, the method in the paper doesn’t work because some difficulties arise in
the process. We will consider these cases later. For the weighted case, we notice
that recently Cruz-Uribe and Rios ([2]) studied the boundedness of the semigroup
e−tLω (t > 0) for ω ∈ A2, where the elliptic operator was defined by

Lω = −ω−1 div A∇ (3.8)

where A = (ai,j)n×n was a matrix of complex-valued, measurable functions sat-
isfying some degenerate elliptic conditions. They pointed that if A is real and
symmetric valued, the heat kernel pt(x, y) of the semigroup e−tLω (t > 0) also satis-
fies Gaussian upper bounds. We think that regularity results in adapted weighted
Besov spaces for solutions of the corresponding parabolic equations can also be
obtained by using similar methods to the ones described in this paper.
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