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EXISTENCE OF SOLUTIONS TO P-LAPLACE EQUATIONS
WITH LOGARITHMIC NONLINEARITY

JING MO, ZUODONG YANG

Abstract. This article concerns the the nonlinear elliptic equation

− div(|∇u|p−2∇u) = log up−1 + λf(x, u)

in a bounded domain Ω ⊂ RN with N ≥ 1 and u = 0 on ∂Ω. By means of a

double perturbation argument, we obtain a nonnegative solution.

1. Introduction

In this paper we consider the existence of solutions to the problem

−div(|∇u|p−2∇u) = log up−1 + λf(x, u), in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

(1.1)

where Ω is a bounded C2 domain in RN , N ≥ 2, 1 < p < ∞, λ is a positive
parameter. Equations of this form are mathematical models occurring in studies of
the p-Laplace equation, generalized reaction-diffusion theory [12], non-Newtonian
fluid theory [1,13], non-Newtonian filtration [11,21] and the turbulent flow of a
gas in a porous medium [6]. In the non-Newtonian fluid theory, the quantity p
is characteristic of the medium. Media with p > 2 are called dilatant fluids and
those with p < 2 are called pseudo-plastics. If p = 2, they are Newtonian fluids.
When p = 2, the existence of bounded positive solutions were proved by Deng [3].
When p 6= 2, the problem becomes more complicated since certain nice properties
inherent to the case p = 2 seem to be lost or at least difficult to be verified. The
main differences between p = 2 and p 6= 2 can be found in [8,9]. In recent years,
the existence and uniqueness of the positive solutions for the quasilinear eigenvalue
problem

div(|∇u|p−2∇u) + λf(x, u) = 0 in Ω,

u(x) = 0 on ∂Ω,
(1.2)

2000 Mathematics Subject Classification. 35B20, 35B65, 35J65.

Key words and phrases. Existence; logarithmic nonlinearity; supersolution; subsolution.
c©2009 Texas State University - San Marcos.

Submitted February 23, 2009. Published July 10, 2009.

Supported by grants 10871060 from the National Natural Science Foundation of China
and 08KJB110005 from the Natural Science Foundation of Educational Department,

Jiangsu Province, China.

1



2 J. MO, Z. YANG EJDE-2009/87

with λ > 0, p > 1 on a bounded domain Ω ⊂ RN , N ≥ 2 have been studied by
many authors see [9,10,19] and the references therein when f is strictly increasing
on R+, f(0) = 0, lims→0+ f(s)/sp−1 = 0 and f(s) ≤ α1 + α2s

µ, 0 < µ < p − 1, α1

and α2 > 0. It was shown in [10] that there exists at least two positive solutions
for equation (1.2) when λ > 0 is sufficiently large. If lim infs→0+(f(s)/(sp−1)) >
0, f(0) = 0 and the monotonicity hypothesis (f(s)/(sp−1))

′
< 0 holds for all s > 0,

it was proved in [9] that the problem (1.2) has a unique positive solution when λ
is sufficiently large.

For p = 2, some results to a semilinear elliptic equation with logarithmic nonlin-
earity

−∆u = log u+ h(x)uq, in BR,

u > 0, in BR,

u = 0, on ∂BR;
(1.3)

and
−∆u = χ{u>0}(log u+ λ f(x, u)), in Ω,

u ≥ 0, in; Ω,
u = 0, on ∂Ω,

(1.4)

have been extensively studied. (See, for example, [15,19] and their references.) In
[19], the authors obtained a positive radial solution u ∈ C2(BR\{0})

⋂
C(BR) of

(1.3) by means of a double perturbation argument. In [15], the authors study the
problem (1.4), which obtain a maximal solution uλ ≥ 0 for every λ > 0 and prove
its global regularity C1,γ(Ω). Motivated by the results of the above cited papers, we
shall attempt to treat such equation (1.1), the results of the semilinear equations
are extended to the quasilinear ones. We can find the related results for p = 2 in
[15]. In this paper, the authors obtained the maximal solution uλ ≥ 0 for every
λ > 0 and proved its global regularity C1,γ(Ω). Our strategy in the study of (1.1)
is to use the sub-super solution method and the mountain pass lemma.

The paper is organized as follows. In section 2, we obtain a subsolution of (1.1)
by adopting a double perturbation argument. Section 3 is dedicated to prove the
existence of a supersolution of (1.1) by the mountain pass lemma. In section 4, we
shall use the results of Section 2 and 3 to obtain a solution for the problem (1.1) by
using the sub-super solution method which proves our main result. Some regularity
properties of the solution of (1.1) are studied in section 5.

In this problem, the function f satisfies the following hypothesis:

(H1) f : Ω× [0,+∞) is measurable in x ∈ Ω with f is continuous;
(H2) f is nondecreasing, f 6= 0;
(H3) lims→∞ f(x, s)/sβ = 0, f(x, s)/sβ is decreasing where 0 < β < p− 1 (with

respect to s) uniformly in x ∈ Ω.

2. Subsolutions for (1.1)

In this section we obtain a subsolution of (1.1). We begin by considering the
family of perturbed problems

−div(|∇uε|p−2∇uε) = log
(uε)p + εuε + ε

uε + ε
+ λf(x, uε), in Ω,

uε = 0, on ∂Ω.
(2.1)
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We show that solutions to these problems converge to a subsolution of (1.1). For
0 < ε < 1, the solutions uε of (2.1) are a priori bounded, independently of ε. From
[14], we give the following comparison principle which will be used to obtain a
subsolution. (the proof can be found in [14,16])

Lemma 2.1. Let g(x, t) : Ω×R → R be measurable for x and nondecreasing for t,
let u, v ∈W 1,p(Ω) satisfy

−∆pu+ g(x, u) ≤ −∆pv + g(x, v)(x ∈ Ω).

If u ≤ v on ∂Ω, then u ≤ v on Ω.

Lemma 2.2. Suppose f satisfies (H1), (H3). For 0 < ε ≤ 1, let uε be a solution
of (2.1), then there exists a constant C1 > 0, such that sup0<ε<1 ‖uε‖L∞ ≤ C1.

Proof. We denote

hε(s) = log
sp + εs+ ε

s+ ε
.

Assume by contradiction that there exists a sequence εj → 0 as j → ∞, and
‖uεj‖L∞ →∞ as j →∞, where uεj solves (2.1), for each j ∈ N, we set

αj = ‖uεj‖L∞ , βj = inf
s≥0

hεj(s), Ωj = |βj |Ω, x̃ = x/|βj |

and define
Uεj(x) = uεj(x̃)/αj , x ∈ Ωj ,

clearly, ‖Uεj‖L∞(Ωj) = 1 for all j ∈ N. On the other hand

−div(|∇Uεj(x̃)|p−2∇Uεj(x̃)) =
hεj(uεj(x̃)) + λf(x̃, uεj(x̃))

(αj)p−1|βj |p−1

As a result, ‖Uεj‖C(Ωj)
→ 0 as j →∞, which contradicts ‖Uεj‖L∞(Ωj) = 1. �

We shall prove that (2.1) has a solution. First we find a supersolution which
is independent on ε. Clearly u = 0 is a subsolution of (2.1). Then our solution
uε ≥ 0.

Lemma 2.3. Suppose f satisfies (H1)–(H3), then for each λ > 0, there is a super-
solution ū of (2.1) for 0 < ε < 1.

Proof. First consider the solution Y of the problem

−div(|∇Y |p−2∇Y ) = 1, in Ω,
Y = 0, on ∂Ω,

(2.2)

Since Y is bounded in Ω, we choose θ > 0 such that θ‖Y ‖L∞ ≤ 1, next we fix
M > 0 and c1 > 0 in a such way that (see (H3)), f(x, u) ≤ θuβ for all u ≥M and
f(x, u) ≤ c1 for all u ≤ M . In fact we may choose θ < β+1

2pC(N,p)β+1 . We fix k > 0
such that

kp−1 − log(kp−1‖Y ‖p−1
L∞ + 1) ≥ λθkp−1‖Y ‖p−1

L∞

and
kp−1 − log(Mp−1 + 1) ≥ c1,
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setting ūε = ū = kY , we obtain a supersolution of (2.1) for all 0 < ε < 1. Indeed,
recall the definition of hε, if u ≥M , we have

−∆pū− hε(ū) = kp−1 − hε(ū)

≥ kp−1 − log(ūp−1 + 1)

= kp−1 − log(kp−1Y p−1 + 1)

≥ kp−1 − log(kp−1‖Y ‖p−1
L∞ + 1)

≥ λθkp−1‖Y ‖p−1
L∞

≥ λθūp−1 ≥ λθūβ

≥ λf(x, ū).

Whenever ū ≤M , we obtain

−∆pū− hε(ū) = kp−1 − hε(ū) ≥ kp−1 − log(ūp−1 + 1)

≥ kp−1 − log(Mp−1 + 1) ≥ c1

≥ λf(x, ū).

Consequently, ūε = kY is a supersolution of (2.1) for all ε > 0. �

Lemma 2.4. Let 0 < ε < ε0 and λ > 0 be fixed. Then the problem (2.1) has a
solution uε > 0.

Proof. Let ε > 0 be fixed and

Fε(x, u) = log
up + εu+ ε

u+ ε
+ λf(x, u) + aεu

where the constant aε is fixed in such a way that u → Fε(x, u) is increasing on
[uε, ūε] uniformly in x ∈ Ω. Starting with u0 = ūε, we define the sequence {un} of
(unique) solution of the problem

−div(|∇un|p−2∇un) + aεun = Fε(x, un−1), in Ω,
un = 0, on ∂Ω,

(2.3)

Then we have uε ≤ . . . ,≤ un+1 ≤ un . . . ≤ u0 = ūε. In fact, it follows by the
comparison principle in lemma 2.1 applied to the problem

−div(|∇u0|p−2∇u0) + aεu0 ≥ −div(|∇u1|p−2∇u1) + aεu1, in Ω,
u0 ≥ u1, on ∂Ω,

(2.4)

that u0 ≥ u1 ≥ 0. Similarly, uε ≤ u1 in Ω. There is a function uε defined by
pointwise limit

uε(x) = lim
n→∞

un(x), x ∈ Ω.

By a standard bootstrap argument, we may take the limn → ∞, so we conclude
that u satisfies (2.1). �

Lemma 2.5. The pointwise u(x) = limε→0 u
ε(x)(x ∈ Ω) is the subsolution of (1.1),

in other words∫
Ω

|∇u|p−2∇u∇ϕdx+
∫

Ω

(− log up−1)ϕdx ≤
∫

Ω

λf(x, u)ϕdx (2.5)

for all ϕ ∈ C∞0 (Ω) with ϕ ≥ 0 in Ω.
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Proof. Let ϕ ∈ C∞0 (Ω) with ϕ ≥ 0 in Ω, λ > 0 and recall the definition of hε. For
each 0 < ε < ε0, we have∫

Ω

|∇uε|p−2∇uε∇ϕdx =
∫

Ω

h(uε)ϕ+
∫

Ω

λf(x, uε)ϕdx (2.6)

The dominated convergence theorem implies

lim
ε→0

∫
Ω

λf(x, uε)ψdx =
∫

Ω

λf(x, u)ϕdx (2.7)

Analogously,

lim
ε→0

∫
Ω

|∇uε|p−2∇uε∇ϕdx =
∫

Ω

|∇u|p−2∇u∇ϕdx (2.8)

Since
lim inf

ε→0
−hε(uε) ≥ − log(uε)p−1,

from the Fatou’s Lemma, it follows that

lim inf
ε→0

∫
Ω

−hε(uε)ϕdx ≥
∫

Ω

− log(uε)p−1ϕdx (2.9)

Letting ε→ 0 in (2.6) and using (2.7)-(2.8), we obtain (2.5). �

3. Supersolutions for (1.1)

In this section we use that that
(F1) log up−1 ≤ uq−1 for all u > 0, q > p.

As in lemma 2.3, we only consider the case u ≥M and f(x, u) ≤ θuβ , 0 < β < p−1.
In fact, when u ≤M and λf(x, u) ≤ c1, we can easily show that the problem

−div(|∇u|p−2∇u) = uq−1 + C1, in Ω,
u = 0, on ∂Ω,

(3.1)

has a solution β0(x). Obviously, β0(x) is the supersolution of (1.1). Next we
consider a supersolution of (1.1) which comes from the mountain pass lemma. We
consider the problem

−div(|∇u|p−2∇u) = uq−1 + λθuβ , in Ω,
u = 0, on ∂Ω,

(3.2)

Lemma 3.1 (Mountain pass lemma). Let E be a Banach space and I ∈ C1(E,R)
satisfy the Palais-Smale condition. Assume also that:

(1) I(0) = 0;
(2) There exists constant r, a > 0 such that I(u) ≥ a if ‖u‖ = r;
(3) There exists an element v ∈ H with ‖v‖ > r, I(v) ≤ 0.

Define
Γ := {g ∈ C[0, 1];H : g(0) = 0, g(1) = 1}.

Then c = infg∈Γ max0≤t≤1 I[g(t)] is a critical value of I.

In the following, we define the space D1,p(Ω) as the closure of the set C∞c (Ω)
with the norm

‖u‖D1,p(Ω) =
( ∫

Ω

|∇u|pdx
)1/p

.

Lemma 3.2. There exists a solution u of the problem (3.2).
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To prove the existence of a solution of (3.2), we will apply the mountain pass
lemma to the energy functional

J(u) =
1
p

∫
Ω

|∇u|pdx− 1
q

∫
Ω

uqdx− λθ

β + 1

∫
Ω

uβ+1dx (3.3)

The facts that D1,p(Ω) is a Banach space (reflexive) and that J ∈ C1(D1,p(Ω),R)
satisfies the Palais-Smale condition are basic results (see [2]). It remains to see the
two following points to prove that the functional J has a mountain pass geometry:

(C1) There exists R > 0 and a > 0 such that ‖u‖D1,p(Ω) = R implies J(u) ≥ a;
(C2) There exists u0 ∈ D1,p(Ω) such that ‖u0‖D1,p(Ω) > R and J(u0) < a.

Proof of Lemma 3.2. Let ε =
∫
Ω
|∇u|pdx < 1,

J(u) =
ε

p
− 1
q

∫
Ω

uqdx− λθ

β + 1

∫
Ω

uβ+1dx.

By Hölder inequality and Sobolev embeddings, we arrive to

J(u) ≥ ε

p
− 1
q
C(N, p)qεq − λθ

β + 1
C(N, p)β+1εβ+1

where C(N, p) is the Sobolev constant. We can also choose ε as small as we want
such that

C(N, p)q

q
εq <

λθ

β + 1
C(N, p)β+1εβ+1 (q > p > β + 1). (3.4)

So

J(u) ≥ ε

p
− 2λθ
β + 1

C(N, p)β+1εβ+1

≥ ε

p
− 2λθ
β + 1

C(N, p)β+1ε

= ε(
1
p
− 2λθ
β + 1

C(N, p)β+1).

Finally, when

θ < (β + 1)(2pC(N, p)β+1)−1

if we take two constant R = ε > 0 and a = ε( 1
p −

2λθ
β+1C(N, p)β+1) > 0, the

functional J satisfies the condition (C1).
Let u ∈ C∞0 (Ω) fixed such that u > 0 in Ω, u ≥ 0 on ∂Ω.

J(ku) =
kp

p

∫
Ω

|∇u|pdx− kq

q

∫
Ω

uqdx− λθkβ+1

β + 1

∫
Ω

uβ+1dx (3.5)

for all k > 0. As q > p > 1, we obtain J(ku) → −∞ when k → ∞. So putting
u0 = ku, there exists some k great enough that ‖u0‖D1,p(Ω) > R and J(u0) < a
which are exactly satisfying the condition (C2). Thus we have a solution β(x) of
the problem (3.2) by the mountain pass lemma. It is easy to show that it is the
supersolution of (1.1). �
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4. Solution for (1.1)

We have obtained a solution for problem (3.2), noted β(x) = u, but affirming that
solution is the corresponding supersolution of the subsolution of (1.1), it remains
to prove that it is greater than the subsolution u.

Lemma 4.1 (A comparison principle, [14, Thm 4.1]). Suppose ψ1 and ψ2 satisfies
ψ1(x, z) ≤ ψ2(x, z) and let ψ1 (or ψ2) satisfy

(F2) For each x ∈ Ω, the function t 7→ f(x, t)t1−p is decreasing on (0,∞).
Furthermore, let u, v ∈W 1,p(Ω) with u ∈ L∞(Ω), u > 0, v > 0 on Ω be such that

−∆pu ≤ ψ1(x, u) and −∆pv ≥ ψ2(x, v) on Ω.

If u ≤ v on ∂Ω and ψ1(x, u) (or ψ2(x, u)) belongs to L1(Ω), then u ≤ v on Ω.

Lemma 4.2. u < u in Ω.

Proof. From section 2 and section 3, we know that

−∆pu ≤ log up−1 + λf(x, u)

and
−∆pu ≥ log up−1 + λf(x, u)

in weak sense. From (F1) and (F2), we know that

log up−1 + λf(x, u) < uq−1 + λθuβ

and
−∆pu ≥ uq−1 + λθuβ .

Furthermore, log up−1+λf(x,u)
up−1 is decreasing on u ∈ (0,∞) uniformly in x ∈ Ω and

u ≤ u on ∂Ω, by lemma 4.1, we get u ≤ u on Ω, but we clearly know that u 6= u,
so u < u on Ω.

Next we use the sub and super solution from section 2 and section 3 (u and u
respectively) to obtain a solution for (1.1). Define the function

G(x, u) = log up−1 + λf(x, u) + b(x)u, u > 0

where we choose b in such a way that the function u 7→ G(x, u) is increasing in u
on [u, u] for all x ∈ Ω. �

Theorem 4.3. There exists a solution for (1.1).

Proof. As noted above we start with u0 = u. We define the sequence {un} of
(unique) solution of the problems

−div(|∇un|p−2∇un) + bun = G(x, un−1), in Ω
un = 0, on ∂Ω

(4.1)

we apply the comparison principle in lemma 2.1 to the problem

−div(|∇u0|p−2∇u0) + bu0 ≥ −div(|∇u1|p−2∇u1) + bu1, in Ω
u0 ≥ u1, on ∂Ω

(4.2)

it follows that u0 ≥ u1 ≥ 0, similarly, u ≤ u1 in Ω. So u ≤ . . . ,≤ un+1 ≤ un . . . ≤
u0 = ū. There is a function u defined by pointwise limits

u(x) = lim
n→∞

un(x), x ∈ Ω.
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We see that u ≤ u ≤ u, x ∈ Ω. By a standard bootstrap argument, we may take
the limn→∞. The function u(x) is in fact a solution of (1.1). �

5. Regularity Properties of the Solution

In this section, we study some regularity properties of the solution to (1.1).
Firstly, we state the following lemma, due to DiBenedetto [5], which is the local
regularity for the elliptic equation.

Lemma 5.1. Let u ∈W 1,p
loc (Ω)

⋂
L∞loc(Ω) be a local weak solution of −∆pu = b(x, r)

in Ω, an open domain in RN , where b(x, r) is measurable in x ∈ Ω and continuous in
r ∈ R such that |b(x, r)| ≤ γ on Ω×R. Given a sub-domain compact Ω′ ⊂⊂ Ω, there
exists positive constants C0, C1 and α ∈ (0, 1), depending only upon N, p, γ,M =
ess supΩ′ |u| and dist(Ω′,Ω) such that ‖∇u(x)‖∞,Ω′ ≤ C0 and x 7→ ∇u(x) is locally
Hölder continuous in Ω′; i.e.,

|uxi
(x)− uxi

(y)| ≤ C1|x− y|α, x, y ∈ Ω′, i = 1, 2, . . . , N (5.1)

Theorem 5.2. Assume f satisfies (H1–H2). For the solution u of (1.1) there
holds:

(1) u ∈ C1,α(Ω) where 0 < α < 1;
(2) There exists λ > 0 such that, for each λ ≥ λ, the solution to (1.1) is positive

in Ω;
(3) Let λ1 be the first eigenvalue of −∆p in W 1,p

0 (Ω). There exists θ > 0 such
that, if λ1(Ω) < θ, then u > 0 for all λ > 0.

Proof. (1) Since we have got the weak solution of (1.1), u ∈ W 1,p
0 (Ω). From the

interior C1,α estimate in lemma 5.1, we conclude that |∇u| ∈ Cα(Ω) for some
α ∈ (0, 1) and we find that u ∈ C1,α(Ω) for α ∈ (0, 1).

(2) We just need to find a strictly positive subsolution. Let Y be the solution of
(2.2) and φ be the solution of the following problem

−div(|∇φ|p−2∇φ) = λf(x, δν(x)), in Ω,
φ = 0, on ∂Ω,

(5.2)

where δ(x) = dist(x, ∂Ω) is the distance function independently of λ, and ν > 1
will be fixed latter. Since f(x, δν(x)) is not identically zero in Ω, there exists a
constant C > 0 such that φ ≥ 2C‖Y ‖L∞ . We set v := φ− C‖Y ‖L∞ and u := kvν ,
where k > 0 to be fixed accordingly. We choose Ω′ ⊂ Ω and η1, η2 > 0 such that

|∇v|p ≥ η1 > 0, in Ω\Ω′, v ≥ η2 > 0 in Ω′.

Since

log(kvν)p−1 − (kν)p−1(ν − 1)(p− 1)v(ν−1)(p−1)−1|∇v|p

≤ log(kvν)p−1 − (kν)p−1(ν − 1)(p− 1)v(ν−1)(p−1)−1η1

≤ 0 in Ω\Ω′.

we obtain u = kvν is strictly positive subsolution for λ ≤ (kν)p−1‖v‖(ν−1)(p−1)|L∞ ,
which proves (2).

(3) Similarly as in the above proof, we need to find a positive subsolution for (1.1)
with λ = 0. Thus, let Y be the solution of (2.2) and ϕ1 be the first eigenfunction
associated with λ1. There exists a constant C > 0 such that ϕ1 ≥ 2C‖Y ‖L∞ . We
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set v := φ − C‖Y ‖L∞ and u := kvν , where k > 0 to be fixed accordingly. Then if
ν > 1, we have

−∆pu = −(kν)p−1(ν − 1)(p− 1)v(ν−1)(p−1)−1|∇v|p

+ (kν)p−1v(ν−1)(p−1)λ1|v + C‖Y ‖L∞ |p−2(v + C‖Y ‖L∞)

≤ −(kν)p−1(ν − 1)(p− 1)v(ν−1)(p−1)−1η1

+ (kν)p−1v(ν−1)(p−1)λ1(v + C‖Y ‖L∞)p−1

≤ (kν)p−1v(ν−1)(p−1)
[
λ1(‖v‖L∞ + C‖Y ‖L∞)p−1 − (ν − 1)(p− 1)η1

‖v‖L∞ + C‖Y ‖L∞

]
.

Suppose that

λ1 <
(ν − 1)(p− 1)η1

‖v‖(L∞ + C‖Y ‖L∞)p
,

then

(kν)p−1v(ν−1)(p−1)[λ1(‖v‖L∞ + C‖Y ‖L∞)p−1 − (ν − 1)(p− 1)η1
‖v‖L∞ + C‖Y ‖L∞

] → −∞

So

− div(|∇u|p−2∇u)

≤ (kν)p−1v(ν−1)(p−1)[λ1(‖v‖L∞ + C‖Y ‖L∞)p−1 − (ν − 1)(p− 1)η1
‖v‖L∞ + C‖Y ‖L∞

]

≤ log(kvν)

for some k > 0. The proof is complete. �
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