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EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR
THIRD-ORDER BOUNDARY-VALUE PROBLEM ON THE

HALF-LINE WITH DEPENDENCE ON THE FIRST ORDER
DERIVATIVE

SIHUA LIANG, JIHUI ZHANG

Abstract. By using fixed-point theorem for operators on a cone, sufficient
conditions for the existence of multiple positive solutions for a third-order

boundary-value problem on the half-line are established. In the case of the p-
Laplace operator our results for p > 1 generalize previous known results. The

interesting point lies in the fact that the nonlinear term is allowed to depend

on the first order derivative u′.

1. Introduction

Boundary value problems on the half-line arise naturally in the study of radially
symmetric solutions of nonlinear elliptic equations, see [3], and various physical phe-
nomena [2, 5], such as an unsteady flow of gas through a semi-infinite porous media,
the theory of drain flows, plasma physics, in determining the electrical potential in
an isolated neutral atom. In recently years, the boundary-value problems on the
half-line have received a great deal of attention in literature (see [1, 7, 10, 11, 15, 16]
and references therein). However, in [6, 13, 14] the authors only studied multi-point
boundary-value problems on the finite interval. They showed that there exist mul-
tiple positive solutions by using fixed-point theorems for operators on a cone. But
so far, very few results are obtained for a third-order multi-point boundary-value
problems on the half-line. To the author’s knowledge, there are no results about
third order multi-point boundary-value problems, whose non- linear term does not
depend on the first derivative u′. The goal of this paper is to fill the gap in this
area. In this paper, by using fixed-point theorem for operators on a cone, some
sufficient conditions for the existence of multiple positive solutions for third-order
boundary-value problem on the half-line are established, which are the complement
of previously known results. In the case of the p-Laplace operator our results for
some p > 1 generalize previous known results.
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In this paper, we study the existence of multiple positive solutions for the fol-
lowing third-order boundary-value problem with dependence on the first order de-
rivative on the half-line

(ϕ(−u′′)(t))′ = a(t)f(t, u, u′), 0 < t < +∞,

u(0)− βu′(0) = 0,

u′(∞) = 0, u′′(0) = 0,

(1.1)

where ϕ : R → R is an increasing homeomorphism and positive homomorphism with
ϕ(0) = 0 and f ∈ C([0,+∞)3, [0,+∞)) and β ∈ (0,+∞). a(t) is a nonnegative
measurable function defined in (0,+∞) and a(t) does not identically vanish on any
subinterval of (0,+∞).

A projection ϕ : R → R is called an increasing homeomorphism and positive
homomorphism (see [8]), if the following conditions are satisfied:

(i) if x ≤ y, then ϕ(x) ≤ ϕ(y), for all x, y ∈ R;
(ii) ϕ is a continuous bijection and its inverse mapping is also continuous;
(iii) ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈ [0,+∞).

In above definition, we can replace the condition (iii) by the following stronger
condition:

(iv) ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈ R, where R = (−∞,+∞).

Remark 1.1. (1) If conditions (i), (ii) and (iv) hold, then it implies that ϕ is
homogenous generating a p-Laplace operator; i.e., ϕ(x) = |x|p−2x, for some p > 1.

(2) It is well known that a p-Laplacian operator is odd. However, the operator
which we defined above is not necessary odd, see (5.2). We emphasize that the
results of the papers [10, 12, 13, 14] cannot be applied if ϕ is defined as above.

(3) The nonlinear term is allowed to depend on the first order derivative u′ which
is the complement of previously known results [6, 7, 13, 14].

In this article, the following hypotheses are needed:
(C1) f ∈ C([0,+∞)3, [0,+∞)), f(t, 0, 0) 6≡ 0 on any subinterval of (0,+∞) and

when u is bounded f(t, (1 + t)u, u′) is bounded on [0,+∞);
(C2) a(t) satisfies the following relations:∫ +∞

0

ϕ−1
( ∫ s

0

a(τ)dτ
)
ds < +∞,

∫ +∞

0

sϕ−1
( ∫ s

0

a(τ)dτ
)
ds < +∞.

The plan of the article is as follows. In Section 2 for the convenience of the reader
we give some background and definitions. In Section 3 we present some lemmas
in order to prove our main results. Section 4 is devoted to presenting and proving
our main results. Some examples are presented in Section 5 to demonstrate the
application of our main results.

2. Some definitions and fixed point theorems

In this section, we provide background definitions from the cone theory in Banach
spaces.

Definition 2.1. Let (E, ‖ · ‖) be a real Banach space. A nonempty, closed, convex
set P ⊂ E is said to be a cone provided the following are satisfied:

(a) if y ∈ P and λ ≥ 0, then λy ∈ P ;
(b) if y ∈ P and −y ∈ P , then y = 0.
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If P ⊂ E is a cone, we denote the order induced by P on E by ≤, that is, x ≤ y if
and only if y − x ∈ P .

Definition 2.2. A map α is said to be a nonnegative, continuous, concave func-
tional on a cone P of a real Banach space E, if α : P → [0,∞) is continuous,
and

α(tx + (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ P and t ∈ [0, 1].

Definition 2.3. An operator is called completely continuous if it is continuous and
maps bounded sets into precompact sets.

The following fixed point theorems are fundamental and important to the proofs
of our main results.

Theorem 2.4. [4] Let E be a Banach space and P ⊂ E be a cone in E. Let r > 0
define Ωr = {x ∈ P : ‖x‖ < r}. Assume that T : P

⋂
Ωr → P is completely

continuous operator such that Tx 6= x for x ∈ ∂Ωr.

(i) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Ωr, then i(T,Ωr, P ) = 1.
(ii) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Ωr, then i(T,Ωr, P ) = 0.

Theorem 2.5. [6] Let K be a cone in a Banach space X. Let D be an open bounded
set with Dk = D ∩K 6= ∅ and Dk 6= K. Let T : Dk → K be a compact map such
that x 6= Tx for x ∈ ∂Dk. Then the following results hold:

(1) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Dk, then ik(T,Dk) = 1.
(2) Suppose there is e ∈ K, e 6= 0 such that x 6= Tx + λe for all x ∈ ∂Dk and

all λ > 0, then ik(T,Dk) = 0.
(3) Let D1 be open in X such that D1 ⊂ Dk. If ik(T,Dk) = 1 and ik(T,D1

k) =
0, then T has a fixed point in Dk\D1

k. Then same result holds if ik(T,Dk) =
0 and ik(T,D1

k) = 1.

3. Preliminaries and Lemmas

Let E be the set defined as

E =
{
u ∈ C1[0,+∞) : sup

0≤t<+∞

|u(t)|
1 + t

< +∞, lim
t→+∞

u′(t) = 0.
}

Then E is a Banach space, equipped with the norm ‖u‖ = ‖u‖1 + ‖u‖2, where
‖u‖1 = sup0≤t<+∞

|u(t)|
1+t < +∞, ‖u‖2 = sup0≤t<+∞ |u′(t)|.

Also, define the cone K ⊂ E by

K =
{
u ∈ E : u(t) ≥ 0, t ∈ [0,+∞), u(0)− βu′(0) = 0,

u(t) is concave on [0,+∞).
}

To prove the main results in this paper, we will employ several lemmas.

Lemma 3.1. For any p ∈ C[0,+∞), the problem

(ϕ(−u′′(t)))′ = p(t), 0 < t < +∞, (3.1)

u(0)− βu′(0) = 0, u′(∞) = 0, u′′(0) = 0 (3.2)
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has a unique solution

u(t) =
∫ +∞

t

(t− s)ϕ−1
( ∫ s

0

p(τ)dτ
)
ds +

∫ +∞

0

sϕ−1
( ∫ s

0

p(τ)dτ
)
ds

+ β

∫ +∞

0

ϕ−1
( ∫ s

0

p(τ)dτ
)
ds.

(3.3)

Proof. Necessity. By taking the integral of the equation (3.1) on [0, t], we have

ϕ(−u′′(t))− ϕ(−u′′(0)) =
∫ t

0

p(τ)dτ. (3.4)

By the boundary condition and ϕ(0) = 0, we have

u′′(t) = −ϕ−1

(∫ t

0

p(τ)dτ

)
. (3.5)

By taking the integral of (3.5) on [t,+∞), we obtain

u′(∞)− u′(t) = −
∫ +∞

t

ϕ−1
( ∫ s

0

p(τ)dτ
)
ds. (3.6)

By the boundary condition u′(∞) = 0, we obtain

u′(t) =
∫ +∞

t

ϕ−1
( ∫ s

0

p(τ)dτ
)
ds. (3.7)

By taking the integral of (3.7) on [t,+∞), we have

u(t) =
∫ +∞

t

∫ +∞

s

ϕ−1
( ∫ τ

0

p(η)dη
)
dτds + u(0). (3.8)

Substituting u(0) = βu′(0) and integrating by parts, we obtain

u(t) =
∫ +∞

t

(t− s)ϕ−1
( ∫ s

0

p(τ)dτ
)
ds +

∫ +∞

0

sϕ−1
( ∫ s

0

p(τ)dτ
)
ds

+ β

∫ +∞

0

ϕ−1
( ∫ s

0

p(τ)dτ
)
ds.

Sufficiency: Let u be as in (3.3). Taking the derivative of (3.3), it implies that

u′(t) =
∫ +∞

t

ϕ−1
( ∫ s

0

p(τ)dτ
)
ds.

Furthermore, we obtain

u′′(t) = −ϕ−1
( ∫ t

0

p(τ)dτ
)
,

ϕ(−u′′(t)) =
∫ t

0

p(τ)dτ,

taking the derivative of this expression yields (ϕ(−u′′(t)))′ = p(t). Routine calcula-
tion verifies that u satisfies the boundary value conditions, so that u given in (3.3)
is a solution of (3.1)-(3.2).

It is easy to see that the problem

(ϕ(−u′′(t)))′ = 0, u(0)− βu′(0) = 0, u′(∞) = 0, u′′(0) = 0,

has only the trivial solution. Thus u in (3.3) is the unique solution of (3.1)-(3.2).
The proof is complete. �
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Lemma 3.2. For any p(t) ∈ C[0,+∞) and p(t) ≥ 0, the unique solution u of
(3.1)-(3.2) satisfies

u(t) ≥ 0, for t ∈ [0,+∞).

Lemma 3.3. For any u ∈ K, it holds that β‖u‖2 ≤ ‖u‖1 ≤ µ‖u‖2, where µ =
max{β, 1}.

Proof. Since u(t) is concave and nondecreasing, together with u′(∞) = 0, we have
‖u‖2 = u′(0) and

u(t)
1 + t

≤ 1
1 + t

( ∫ t

0

u′(s)ds + βu′(0)
)
≤ t + β

1 + t
u′(0) ≤ µ‖u‖2.

On the other hand,

‖u‖1 = sup
0≤t<+∞

|u(t)|
1 + t

≥ u(0)
1 + 0

= βu′(0) = β‖u‖2.

So we can obtain the desired result. �

Lemma 3.4. Let u ∈ K. Then mint∈[1/a,a] u(t) ≥ δ(t)‖u‖, where a > 1, δ(t) =
1
2 min{λ(t), β/a},

λ(t) =

{
σ, t ≥ σ,

t, t ≤ σ,

and σ = inf{ξ ∈ [0,+∞) : supt∈[0,+∞)
|u(t)|
1+t = u(ξ)

1+ξ }.

Proof. From [7, Lemma 3.2], we know that

min
t∈[ 1

a ,a]
u(t) ≥ λ(t)‖u‖1. (3.9)

On the other hand, since u ∈ K, we have

min
t∈[ 1

a ,a]
u(t) = u(

1
a
) ≥ β

a
u′(0) =

β

a
‖u‖2. (3.10)

So (3.9) and (3.10) imply that the result of Lemma 3.4 holds. �

Remark 3.5. From the definition of λ(t), we know that 0 < δ(t) < 1, for t ∈ (0, 1).

Define T : K → E by

(Tu)(t) =
∫ +∞

t

(t− s)ϕ−1
( ∫ s

0

a(τ)f(τ, u(τ), u′(τ))dτ
)
ds

+
∫ +∞

0

sϕ−1
( ∫ s

0

a(τ)f(τ, u(τ), u′(τ))dτ
)
ds

+ β

∫ +∞

0

ϕ−1
( ∫ s

0

a(τ)f(τ, u(τ), u′(τ))dτ
)
ds.

(3.11)

Obviously, we have (Tu)(t) ≥ 0, for t ∈ (0,+∞), and

(Tu)′(t) =
∫ +∞

t

ϕ−1
( ∫ s

0

a(τ)f(τ, u(τ), u′(τ))dτ
)
ds ≥ 0.

Furthermore,

(Tu)′′(t) = −ϕ−1
( ∫ t

0

a(s)f(s, u(s), u′(s))ds
)
≤ 0,
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and (Tu)(0)− β(Tu)′(0) = 0. This shows (TK) ⊂ K.
To obtain the complete continuity of T , the following lemma is needed.

Lemma 3.6 ([9]). Let W be a bounded subset of K. Then W is relatively compact in
E if { v(t)

1+t , v ∈ W} and {v′(t), v ∈ W} are equicontinuous on any finite subinterval
of [0,+∞) and for any ε > 0, there exists T = T (ε) > 0 such that∣∣ v(t1)

1 + t1
− v(t2)

1 + t2

∣∣ < ε, |v′(t1)− v′(t2)| < ε

uniformly with respect to v ∈ W as t1, t2 ≥ T .

Lemma 3.7. Let (C1), (C2) hold. Then T : K → K is completely continuous.

Proof. Firstly, it is easy to check that T : K → K is well defined. Let un → u in
K, then from the definition of E, we can choose r0 such that supn∈N\{0} ‖un‖ < r0.
Let Ar0 = sup{f(t, (1 + t)u, v), (t, u, v) ∈ [0,+∞)× [0, r0]2} and we have∫ +∞

t

ϕ−1
( ∫ s

0

a(τ)|f(τ, un, u′n)− f(τ, u, u′)|dτ
)
ds

≤ 2ϕ−1(Ar0)
∫ +∞

0

ϕ−1
( ∫ s

0

a(τ)dτ
)
ds.

Therefore, by the Lebesgue dominated convergence theorem,

|(Tun)′(t)− (Tu)′(t)| =
∣∣∣ ∫ +∞

t

ϕ−1
( ∫ s

0

a(τ)(f(τ, un, u′n)− f(τ, u, u′))dτ
)
ds

∣∣∣
≤

∫ +∞

t

ϕ−1
( ∫ s

0

a(τ)|f(τ, un, u′n)− f(τ, u, u′)|dτ
)
ds

→ 0, as n → +∞.

From Lemma 3.3, we have

‖Tun − Tu‖ ≤ (1 + µ)‖Tun − Tu‖2 → 0, as n → +∞.

Thus T is continuous.
Let Ω be any bounded subset of K. Then there exists r > 0 such that ‖u‖ ≤ r

for all u ∈ Ω and we have

‖Tu‖2 =
∫ +∞

0

ϕ−1
( ∫ s

0

a(τ)f(τ, u, u′)dτ
)
ds

≤ ϕ−1(Ar)
∫ +∞

0

ϕ−1
( ∫ s

0

a(τ)dτ
)
ds < +∞.

From Lemma 3.3, we have ‖Tu‖ ≤ (1 + µ)‖Tu‖2 < +∞. So TΩ is bounded.
Moreover for any S ∈ (0,+∞) and t1, t2 ∈ [0, S]. Without loss of generality, let
t1 ≥ t2. Then we have∣∣ (Tu)(t1)

1 + t1
− (Tu)(t2)

1 + t2

∣∣ ≤ [ ∫ +∞

0

sϕ−1
( ∫ s

0

a(τ)f(τ, u, u′)dτ
)
ds

+ β

∫ +∞

0

ϕ−1
( ∫ s

0

a(τ)f(τ, u, u′)dτ
)
ds

]∣∣ 1
1 + t1

− 1
1 + t2

∣∣
+

∫ +∞

t2

ϕ−1
( ∫ s

0

a(τ)f(τ, u, u′)dτ
)
ds

∣∣ t1
1 + t1

− t2
1 + t2

∣∣
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+
∫ +∞

t1

sϕ−1
( ∫ s

0

a(τ)f(τ, u, u′)dτ
)
ds

∣∣ 1
1 + t1

− 1
1 + t2

∣∣
+

1
1 + t2

∫ t1

t2

sϕ−1
( ∫ s

0

a(τ)f(τ, u, u′)dτ
)
ds

→ 0, uniformly as t1 → t2

and

|(Tu)′(t2)− (Tu)′(t1)| =
∫ t2

t1

ϕ−1
( ∫ s

0

a(τ)f(τ, u(τ), u′(τ))dτ
)
ds → 0,

uniformly as t1 → t2. We obtain that TΩ is equicontinuous on any finite subinterval
of [0,+∞).

For any u ∈ Ω, we have

lim
t→+∞

∣∣ (Tu)(t)
1 + t

∣∣ = lim
t→+∞

1
1 + t

{∫ +∞

t

(t− s)ϕ−1
( ∫ s

0

a(τ)f(τ, u(τ), u′(τ))dτ
)
ds

+
∫ +∞

0

sϕ−1
( ∫ s

0

a(τ)f(τ, u(τ), u′(τ))dτ
)
ds

+ β

∫ +∞

0

ϕ−1
( ∫ s

0

a(τ)f(τ, u(τ), u′(τ))dτ
)
ds

}
≤ lim

t→+∞
ϕ−1(Ar)

∫ +∞

t

ϕ−1
( ∫ s

0

a(τ)dτ
)
ds

= 0

and

lim
t→+∞

|(Tu)′(t)| = lim
t→+∞

ϕ−1(Ar)
∫ +∞

t

ϕ−1
( ∫ s

0

a(τ)dτ
)
ds = 0.

So TΩ is equiconvergent at infinity. By Lemma 3.6, TΩ is relatively compact.
Therefore we know that T is compact. So T : K → K is completely continuous.
The proof is complete. �

Let k > 1 be a fixed constant and choose a = k. Then define

γ = δ(
1
k

)
δ
(

1
k

)
β

∫ k

1/k
ϕ−1

( ∫ s

1/k
a(τ)dτ

)
ds

(1 + µ)
∫ +∞
0

ϕ−1
( ∫ s

0
a(τ)dτ

)
ds

,

γ1 =
δ
(

1
k

)
β

∫ k

1/k
ϕ−1

( ∫ s

1/k
a(τ)dτ

)
ds

(1 + µ)
∫ +∞
0

ϕ−1
( ∫ s

0
a(τ)dτ

)
ds

,

Kρ = {u ∈ K : ‖u‖1 ≤ ρ},
Ωρ = {u ∈ K : min

t∈[ 1
k ,k]

u(t) < γρ} = {u ∈ K : γ‖u‖1 ≤ min
t∈[ 1

k ,k]
u(t) < γρ}.

Lemma 3.8 ([6]). The set Ωρ has the following properties:
(a) Ωρ is open relative to K.
(b) Kγρ ⊂ Ωρ ⊂ Kρ.
(c) u ∈ ∂Ωρ if and only if mint∈[ 1

k ,k] u(t) = γρ.
(d) u ∈ ∂Ωρ, then γρ ≤ u(t) ≤ ρ for t ∈ [ 1

k , k].
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Now, we introduce the following notation. Let

fρ
γρ = min

{f(t, (1 + t)u, v)
ϕ(ρ)

: t ∈ [1/k, k], u ∈ [γρ, ρ], v ∈ [0, ρ/β]
}
,

fρ
0 = sup

{f(t, (1 + t)u, v)
ϕ(ρ)

: t ∈ [0,+∞), u ∈ [0, ρ], v ∈ [0, ρ/β]
}
,

fα = lim
u→α

sup
{f(t, (1 + t)u, v)

ϕ(u)
: t ∈ [0,+∞)

}
,

fα = lim
u→α

min
{f(t, (1 + t)u, v)

ϕ(u)
: t ∈ [1/k, k]

}
(α := ∞ or 0+),

1
m

= (1 + µ)
∫ +∞

0

ϕ−1
( ∫ s

0

a(τ)dτ
)
ds,

1
M

= δ
(1
k

)
β

∫ k

1/k

ϕ−1
( ∫ s

1/k

a(τ)dτ
)
ds.

Remark 3.9. It is easy to see that 0 < m, M < ∞ and Mγ = Mγ1δ( 1
k ) =

δ( 1
k )m < m.

Lemma 3.10. If f satisfies the condition

fρ
0 ≤ ϕ(m) and u 6= Tu for u ∈ ∂Kρ, (3.12)

then ik(T,Kρ) = 1.

Proof. By (3.11) and (3.12), for u(t) ∈ ∂Kρ, we have ‖u‖1 = sup0≤t<+∞
|u(t)|
1+t = ρ.

Moreover, Lemma 3.3 implies that ‖u‖2 ≤ 1
β ‖u‖1 = 1

β ρ, Therefore, from definition
of fρ

0 we have
f(t, u, u′) ≤ ϕ(ρ)ϕ(m) = ϕ(ρm).

Therefore,

‖Tu‖ = ‖Tu‖1 + ‖Tu‖2 ≤ (1 + µ)‖Tu‖2

= (1 + µ)
∫ +∞

0

ϕ−1
( ∫ s

0

a(τ)f(τ, u(τ), u′(τ))dτ
)
ds

≤ ρm(1 + µ)
∫ +∞

0

ϕ−1
( ∫ s

0

a(τ)dτ
)
ds

≤ ρ = ‖u‖1 ≤ ‖u‖.
This implies that ‖Tu‖ ≤ ‖u‖ for u(t) ∈ ∂Kρ. By Theorem 2.4 (1) we have
ik(T,Kρ) = 1. �

Lemma 3.11. If f satisfies the conditions

fρ
γρ ≥ ϕ(Mγ) and u 6= Tu for u ∈ ∂Ωρ, (3.13)

then ik(T,Ωρ) = 0.

Proof. Let e(t) ≡ 1 for t ∈ [0,+∞). Then e ∈ ∂K1, and we claim that

u 6= Tu + λe, u ∈ ∂Ωρ, λ > 0.

If not, there exist u0 ∈ ∂Ωρ and λ0 > 0 such that u0 = Tu0 + λ0e. By (3.11) and
(3.13) we have

u0 = Tu0(t) + λ0e
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≥ δ
(1
k

)
‖Tu0‖1 + λ0

= δ
(1
k

)
sup

t∈[0,+∞)

|Tu0|
1 + t

+ λ0

≥ δ
(1
k

) (Tu)(0)
1 + 0

+ λ0

= δ
(1
k

)
β

∫ +∞

0

ϕ−1
( ∫ s

0

a(τ)f(τ, u(τ), u′(τ))dτ
)
ds + λ0

≥ δ
(1
k

)
β

∫ k

1/k

ϕ−1
( ∫ s

1/k

a(τ)f(τ, u(τ), u′(τ))dτ
)
ds + λ0

≥ δ
(1
k

)
Mγρβ

∫ k

1/k

ϕ−1
( ∫ s

1/k

a(τ)dτ
)
ds + λ0

≥ γρ + λ0.

This implies that γρ ≥ γρ + λ0 which is a contradiction. Hence by Theorem 2.4
(2), we have ik(T,Ωρ) = 0. �

4. Main results

The main results in this articles are the following.

Theorem 4.1. Assume that one of the following conditions holds:
(C3) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 < γρ2 and ρ2 < ρ3 such that

fρ1
0 ≤ ϕ(m), fρ2

γρ2
≥ ϕ(Mγ), u 6= Tu for u ∈ ∂Ωρ2 and fρ3

0 ≤ ϕ(m).

(C4) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 < ρ2 < γρ3 such that

fρ1
γρ1

≥ ϕ(Mγ), fρ2
0 ≤ ϕ(m), u 6= Tu for u ∈ ∂Kρ2 and fρ3

γρ3
≥ ϕ(Mγ).

Then (1.1) has two positive solutions in K. Moreover if in (C3) fρ1
0 ≤ ϕ(m) is

replaced by fρ1
0 < ϕ(m), then (1.1) has a third positive solution u3 ∈ Kρ1 .

Proof. The proof is similar to the one in [6, Theorem 2.10]. We omit it here. �

As a special case of Theorem 4.1 we obtain the following result.

Corollary 4.2. If there exists ρ > 0 such that one of the following conditions holds:
(C5) 0 ≤ f0 < ϕ(m), fρ

γρ ≥ ϕ(Mγ), u 6= Tu for u ∈ ∂Ωρ and 0 ≤ f∞ < ϕ(m),
(C6) ϕ(M) < f0 ≤ ∞, fρ

0 ≥ ϕ(m), u 6= Tu for u ∈ ∂Kρ and ϕ(M) < f∞ ≤ ∞.
Then (1.1) has two positive solutions in K.

Proof. We show that (C5) implies (C3). It is easy to verify that 0 ≤ f0 < ϕ(m)
implies that there exist ρ1 ∈ (0, γρ) such that fρ1

0 < ϕ(m). Let a ∈ (f∞, ϕ(m)).
Then there exists r > ρ such that supt∈[0,+∞) f(t, (1+t)u, v) ≤ aϕ(u) for u ∈ [r,∞)
since 0 ≤ f0 < ϕ(m). Let

β = max
{

sup
t∈[0,+∞)

f(t, (1 + t)u, v) : 0 ≤ u ≤ r, 0 ≤ v ≤ r

β

}
and

ρ3 > ϕ−1
( β

ϕ(m)− a

)
.
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Then

sup
t∈[0,+∞)

f(t, (1 + t)u, v) ≤ aϕ(u) + β ≤ aϕ(ρ3) + β < ϕ(m)ϕ(ρ3)

for u ∈ [0, ρ3]. This implies that fρ3
0 < ϕ(m) and (C3) holds. Similarly, (C6)

implies (C4). �

By an argument similar to that of Theorem 4.1 we obtain the following result.

Theorem 4.3. Assume that one of the following conditions holds:
(C7) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < γρ2 such that fρ1

0 ≤ ϕ(m) and fρ2
γρ2

≥
ϕ(Mγ).

(C8) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that fρ1
γρ1

≥ ϕ(Mγ) and
fρ2
0 ≤ ϕ(m).

Then (1.1) has a positive solution in K.

As a special case of Theorem 4.3 we obtain the following result.

Corollary 4.4. If there exists ρ > 0 such that one of the following conditions holds:
(C5) 0 ≤ f0 < ϕ(m), fρ

γρ ≥ ϕ(Mγ), u 6= Tu for u ∈ ∂Ωρ and 0 ≤ f∞ < ϕ(m),
(C6) ϕ(M) < f0 ≤ ∞, fρ

0 ≥ ϕ(m), u 6= Tu for u ∈ ∂Kρ and ϕ(M) < f∞ ≤ ∞.
Then (1.1) has two positive solutions in K.

5. Examples

As an example we mention the boundary-value problem
(ϕ(−u′′)(t))′ = a(t)f(t, u, u′), 0 < t < +∞,

u(0)− u′(0) = 0,

u′(∞) = 0, u′′(0) = 0,

(5.1)

where

ϕ(u) =

{
u3

1+u2 , u ≤ 0,

u2 u > 0,
(5.2)

and

f(t, u, v) =

{
10−5| sin t|+

(
u

1+t

)9 + 1
100

(
v

1000

)
, u ≤ 2,

10−5| sin t|+
(

2
1+t

)9 + 1
100

(
v

1000

)
, u ≥ 2.

We choose k = 2, β = 1, δ(t) = t/2 and so∫ +∞

0

ϕ−1
( ∫ s

0

a(τ)dτ
)
ds = 4,

∫ 2

1
2

ϕ−1
( ∫ s

1
2

a(τ)dτ
)
ds = 2.

It is easy to see by calculating that µ = 1, γ = 1/64, γ1 = 1/16 and

1
m

= (1 + µ)
∫ +∞

0

ϕ−1
( ∫ s

0

a(τ)dτ
)
ds = 8,

1
M

= δ
(1
2
)
β

∫ 2

1
2

ϕ−1
( ∫ s

1
2

a(τ)dτ
)
ds =

1
2
.

Thus m = 1/8, M = 2 and let ρ1 = 1/2, ρ2 = 128, ρ3 = 320. After some simple
calculation we have

f(t, (1 + t)u, u′) ≤ 10−5 +
1

512
+

1
2
× 10−5 <

1
256

= ϕ(mρ1) = ϕ(m)ϕ(ρ1),
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for all (t, u, u′) ∈ [0,+∞) × [0, 1/2] × [0, 1
2 ]. Therefore, fρ1

0 < ϕ(m). On the other
hand,

f(t, (1 + t)u, u′) ≥ 29 = 512 > 16 = ϕ(Mγρ2) = ϕ(M)ϕ(γρ2),

for all (t, u, u′) ∈ [1/2, 2]× [2, 128]× [0, 128]. We have fρ2
γρ2

> ϕ(Mγ). At last

f(t, (1 + t)u, u′) ≤ 10−5 + 29 + 320× 10−5 < 513 < 1600 = ϕ(mρ3) = ϕ(m)ϕ(ρ3),

for all (t, u, u′) ∈ [0,+∞)× [0, 320]× [0, 320]. Thus we have fρ3
0 < ϕ(m). Then the

condition (C3) in Theorem 4.1 is satisfied. So boundary-value problem (5.1) has at
least three positive solutions in K.

Remark 5.1. From (5.2), we can see that ϕ is not odd, therefore the boundary-
value problem with p-Laplacian operator [10, 12, 13, 14] do not apply to (5.2). So
we generalize a p-Laplace operator for some p > 1 and the function ϕ which we
defined above is more comprehensive and general than p-Laplace operator.
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