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SECOND-ORDER BOUNDARY ESTIMATES FOR SOLUTIONS
TO SINGULAR ELLIPTIC EQUATIONS

CLAUDIA ANEDDA

Abstract. Let Ω ⊂ RN be a bounded smooth domain. We investigate the

effect of the mean curvature of the boundary ∂Ω in the behaviour of the so-
lution to the homogeneous Dirichlet boundary value problem for the singular

semilinear equation ∆u + f(u) = 0. Under appropriate growth conditions on

f(t) as t approaches zero, we find an asymptotic expansion up to the second
order of the solution in terms of the distance from x to the boundary ∂Ω.

1. Introduction

In this article, we study the Dirichlet problem
∆u+ f(u) = 0 in Ω

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded smooth domain in RN , N ≥ 2, and f(t) is a decreasing and
positive smooth function in (0,∞), which approaches infinity as t → 0. Equation
(1.1) arises in problems of heat conduction and in fluid mechanics.

Problems with singular data are discussed in many papers; see, for instance,
[8, 9, 10, 12, 16, 17] and references therein. Let f(t) = t−γ . For γ > 0, in [7] it is
shown that there exists a positive solution continuous up to the boundary ∂Ω. For
γ > 1, in [13] it is shown that the solution u satisfies

0 < c1 ≤ u(x)(δ(x))−
2

1+γ ≤ c2,

where δ = δ(x) denotes the distance of x from the boundary ∂Ω. Actually, in [7]
and in [13] the more general equation ∆u+p(x)u−γ = 0 with p(x) > 0 is discussed.
For equation (1.1) in case 1 < γ < 3, in [6] it is shown that there exists a constant
B > 0 such that ∣∣∣u(x)− ( γ + 1√

2(γ − 1)
δ
) 2

1+γ
∣∣∣ < Bδ

2γ
γ+1 .

For γ > 3, in [15] it is proved that∣∣∣u(x)− ( γ + 1√
2(γ − 1)

δ
) 2

1+γ
∣∣∣ < Bδ

γ+3
γ+1 .
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In [1], for γ > 3, it is proved that

u(x) =
( γ + 1√

2(γ − 1)
δ
) 2

1+γ
[
1 +

N − 1
3− γ

Kδ + o(δ)
]
,

where K = K(x) stands for the mean curvature of the surface {x ∈ Ω : δ(x) =
constant}.

In this article we extend the latter estimate to more general nonlinearities. More
precisely, assume

f ′(t)F (t)
f2(t)

=
γ

1− γ
+O(1)tβ , F (t) =

∫ 1

t

f(τ)dτ (1.2)

where γ > 3, β > 0 and O(1) denotes a bounded quantity as t → 0. In addition,
we suppose there is M finite such that for all θ ∈ (1/2, 2) and for t small we have

|f ′′(θt)|t2

f(t)
≤M. (1.3)

An example which satisfies these conditions is f(t) = t−γ + t−ν with 0 < ν < γ.
Here β = min[γ − ν, γ − 1].

When φ(δ) is defined as ∫ φ(δ)

0

(2F (t))−1/2dt = δ (1.4)

and γ > 3, we prove that

u(x) = φ(δ)
[
1 +

N − 1
3− γ

Kδ +O(1)δσ+1
]
, (1.5)

where σ is any number such that 0 < σ < min[γ−3
γ+1 ,

2β
γ+1 ]. Note that φ is a solution

to the one dimensional problem

φ′′ + f(φ) = 0, φ(0) = 0.

The estimate (1.5) shows that the expansion of u(x) in terms of δ has the first part
which is independent of the geometry of the domain, and the second part which
depends on the mean curvature of the boundary as well as on γ. For 1 < γ < 3,
the first part of the expansion is still independent of the geometry of the domain,
but it is not possible to find the second part in terms of the mean curvature even
in the special case f(t) = t−γ , see [1] for details.

We observe that similar results are known for boundary blow-up problems, see
[3, 4, 5]. In [3] the problem

∆u = f(u), u→∞ as x→ ∂Ω

is discussed under the assumption that f(t) is positive, increasing and satisfying

f ′(t)F(t)
f2(t)

=
p

1 + p
+O(1)t−β , F(t) =

∫ t

0

f(τ)dτ,

where p > 1, β > 0 and O(1) is a bounded quantity as t → ∞. Under some
additional conditions for f , in [3] it is shown that

u(x) = Φ(δ)
[
1 +

N − 1
p+ 3

Kδ + o(δ)
]
, (1.6)
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where Φ is defined as ∫ ∞

Φ(δ)

(2F (t))−1/2dt = δ.

Note that Φ satisfies
Φ′′ = f(Φ), Φ(0) = ∞.

We underline that (1.6) holds for p > 1, in contrast to (1.5) which holds when
γ > 3. Moreover, when f(t) = tp with p close to one, it is possible to find other
terms in the expansion (1.6). For example, the third term depends on the mean
curvature K as well as on its gradient ∇K (see [2]). Instead, the estimate (1.5)
cannot be improved for any value of γ because 0 < σ < 1.

2. Preliminary results

Let f(t) be a decreasing and positive smooth function in (0,∞), which ap-
proaches infinity as t → 0. Assume condition (1.2) with γ > 1 and β > 0. Let us
rewrite (1.2) as

(F (t))
1

1−γ

( (F (t))
γ

γ−1

f(t)

)′
= O(1)tβ . (2.1)

Since by [14, Lemma 2.1],

lim
t→0

F (t)
f(t)

= 0, (2.2)

integration by parts on (0, t) of (2.1) yields

F (t)
tf(t)

=
1

γ − 1
+O(1)tβ . (2.3)

Using the latter estimate and (1.2) again we find

tf ′(t)
f(t)

= −γ +O(1)tβ . (2.4)

Let us write (2.4) as
f ′(t)
f(t)

= −γ
t

+O(1)tβ−1.

Integration over (t, 1) yields

log
f(1)
f(t)

= log tγ +O(1).

Therefore, we can find two positive constants C1, C2 such that

C1t
−γ < f(t) < C2t

−γ , ∀t ∈ (0, 1). (2.5)

Since F (t) =
∫ 1

t
f(τ)dτ , using (2.5) we find two positive constants C3, C4 such that

C3t
1−γ < F (t) < C4t

1−γ , ∀t ∈ (0, 1/2). (2.6)

Lemma 2.1. Let A(ρ,R) ⊂ RN , N ≥ 2, be the annulus with radii ρ and R centered
at the origin, let f(t) > 0 smooth, decreasing for t > 0 and such that f(t) →∞ as
t → 0. Assume condition (1.2) with γ > 3. If u(x) is a solution to problem (1.1)
in Ω = A(ρ,R) and v(r) = u(x) for r = |x|, then

v(r) > φ(R− r)− C

∫ 1

v
(F (t))1/2dt

(F (v))1/2
(R− r), r̃ < r < R, (2.7)
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and

v(r) < φ(r − ρ) + Cφ′(r − ρ)

∫ 1

v
(F (t))1/2dt

F (v)
(r − ρ), ρ < r < r, (2.8)

where φ is defined as in (1.4), ρ < r ≤ r̃ < R and C is a suitable positive constant.

Proof. If Ω = A(ρ,R), the corresponding solution u(x) to problem (1.1) is radial.
With v(r) = u(x) for r = |x| we have

v′′ +
N − 1
r

v′ + f(v) = 0, v(ρ) = v(R) = 0. (2.9)

It is easy to show that there is r0 such that v(r) is increasing for ρ < r < r0 and
decreasing for r0 < r < R, with v′(r0) = 0. Multiplying (2.9) by v′ and integrating
over (r0, r) we find

(v′)2

2
+ (N − 1)

∫ r

r0

(v′)2

s
ds = F (v)− F (v0), v0 = v(r0). (2.10)

By (2.6), F (t) → ∞ as t → 0. Therefore, F (v(r)) → ∞ as r → R, and (2.10)
implies that

|v′| < 2(F (v))1/2, r ∈ (r1, R). (2.11)

As a consequence we have∫ r

r0

(v′)2

s
ds ≤ 2

r0

∫ r

r0

(F (v))1/2(−v′)ds =
2
r0

∫ v0

v

(F (t))1/2dt. (2.12)

Since ∫ v0

v

(F (t))1/2dt ≤ (F (v))1/2v0, (2.13)

using (2.12) we find

lim
r→R

∫ r

r0

(v′)2

s ds

F (v)
= lim

r→R

∫ v0

v
(F (t))1/2dt

F (v)
= 0.

On the other hand, by (2.10) we find

(v′)2

2F (v)
= 1−

(N − 1)
∫ r

r0

(v′)2

s ds+ F (v0)

F (v)
.

The above equation yields

−v′

(2F (v))1/2
= 1− Γ(r), (2.14)

where

Γ(r) = 1−
[
1−

(N − 1)
∫ r

r0

(v′)2

s ds+ F (v0)

F (v)

]1/2

.

Let us write equation (2.9) as

(rN−1v′)′(rN−1v′) + r2N−2f(v)v′ = 0.

Integration over (r0, r) yields

(rN−1v′)2

2
≥ r2N−2

0 [F (v)− F (v0)],
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from which we find that |v′| > c(F (v))1/2 for some positive constant c. Hence,∫ r

r0

(v′)2

s
ds >

c

r0

∫ r

r0

(F (v))1/2(−v′)ds =
c

r0

∫ v0

v

(F (t))1/2dt.

By using the estimate (2.6) for F (t), the latter inequality implies that
∫ r

r0

(v′)2

s ds→
∞ as r → R. As a consequence, we have

(N − 1)
∫ r

r0

(v′)2

s
ds+ F (v0) > 0

for r close to R. Since for 0 < ε < 1, we have 1 − [1 − ε]1/2 < ε. Using (2.12) we
find a constant M such that

0 ≤ Γ(r) ≤
2(N−1)

r0

∫ v0

v
(F (t))1/2dt+ F (v0)
F (v)

≤M

∫ v0

v
(F (t))1/2dt

F (v)
. (2.15)

The inverse function of φ is

ψ(s) =
∫ s

0

1
(2F (t))1/2

dt.

Integration of (2.14) over (r,R) yields

ψ(v) = R− r −
∫ R

r

Γ(s)ds,

from which we find

v(r) = φ
(
R− r −

∫ R

r

Γ(s)ds
)
. (2.16)

By (2.16) we have

v(r) = φ(R− r)− φ′(ω)
∫ R

r

Γ(s)ds, (2.17)

with

R− r > ω > R− r −
∫ R

r

Γ(s)ds.

Since
φ′(ω) = (2F (φ(ω)))1/2,

and since the function t→ F (φ(t)) is decreasing we have

φ′(ω) <
(
2F

(
φ(R− r −

∫ R

r

Γ(s)ds)
))1/2

= (2F (v))1/2,

where (2.16) has been used in the last step. Hence, by (2.17) we find

v(r) > φ(R− r)− (2F (v))1/2

∫ R

r

Γ(s)ds.

Using (2.15) we also have

v(r) > φ(R− r)− (2F (v))1/2M

∫ R

r

∫ v0

v
(F (t))1/2dt

F (v)
ds. (2.18)

We claim that the function

r →

∫ v0

v(r)
(F (t))1/2dt

F (v(r))
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is decreasing for r close to R. This is equivalent to show that the function

s→ (F (s))−1

∫ v0

s

(F (t))1/2dt

is increasing for s close to 0. We have
d

ds

[
(F (s))−1

∫ v0

s

(F (t))1/2dt
]

= (F (s))−2f(s)
∫ v0

s

(F (t))1/2dt− (F (s))−1/2

= (F (s))−1/2
[ ∫ v0

s
(F (t))1/2dt

(F (s))
3
2 (f(s))−1

− 1
]
.

By (2.5) and (2.6) it follows that
∫ v0

s
(F (t))1/2dt and (F (s))

3
2 (f(s))−1 tend to ∞

as s→ 0. Therefore, we can use de l’Hôpital rule and condition (1.2) to find

lim
s→0

∫ v0

s
(F (t))1/2dt

(F (s))
3
2 (f(s))−1

− 1 = lim
s→0

2
3 + 2(F (s))(f(s))−2f ′(s)

− 1 =
γ + 1
γ − 3

.

Hence, since γ > 3, the function (F (s))−1/2
∫ v0

s
(F (t))1/2dt is increasing for s close

to 0, and the claim follows. Using this fact, inequality (2.7) follows from (2.18).
To prove (2.8), let us write equation (2.10) as

(v′)2

2
= F (v)− F (v0) + (N − 1)

∫ r0

r

(v′)2

s
ds, (2.19)

with ρ < r < r0. Note that, since (v′(r))2 →∞ as r → ρ and v′′ > 0, we have [14,
Lemma 2.1]

lim
r→ρ

∫ r0

r
(v′)2

t dt

(v′)2
= 0.

Hence, (2.19) implies 0 < v′ < 2(F (v))1/2 for r near to ρ. As a consequence we
have ∫ r0

r

(v′)2

s
ds ≤ 2

ρ

∫ r0

r

(F (v))1/2(v′)ds =
2
ρ

∫ v0

v

(F (t))1/2dt.

Since
∫ v0

v
(F (t))1/2dt ≤ (F (v))1/2v0, the latter estimate implies that

lim
r→ρ

∫ r0

r
(v′)2

s ds

F (v)
= 0.

Using (2.10) again we find

(v′)2

2F (v)
= 1 +

(N − 1)
∫ r0

r
(v′)2

s ds− F (v0)
F (v)

.

The above equation yields
v′

(2F (v))1/2
= 1 + Γ(r), (2.20)

where

Γ(r) =
[
1 +

(N − 1)
∫ r0

r
(v′)2

s ds− F (v0)
F (v)

]1/2

− 1.

Arguing as in the previous case one proves that
∫ r0

r
(v′)2

s ds→∞ as r → ρ, and

(N − 1)
∫ r0

r

(v′)2

s
ds− F (v0) > 0
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for r close to ρ. Since for ε > 0 we have [1+ ε]1/2−1 < ε, the function Γ(r) satisfies
(2.15) (possibly with a different constant M). Integration of (2.20) over (ρ, r) yields

ψ(v) = r − ρ+
∫ r

ρ

Γ(s)ds,

from which we find

v(r) = φ(r − ρ) + φ′(ω1)
∫ r

ρ

Γ(s)ds, (2.21)

with

r − ρ < ω1 < r − ρ+
∫ r

ρ

Γ(s)ds.

Since φ′(s) is decreasing, φ′(ω1) < φ′(r − ρ). This estimate and (2.21) imply

v(r) < φ(r − ρ) + φ′(r − ρ)
∫ r

ρ

Γ(s)ds. (2.22)

We have shown that the function (F (s))−1/2
∫ v0

s
(F (t))1/2dt is increasing for s close

to 0. As a consequence, since v(r) is increasing for ρ < r, the function

r →

∫ v0

v(r)
(F (t))1/2dt

F (v(r))

is increasing for r close to ρ. Hence, inequality (2.8) follows from (2.22) and (2.15).
The lemma is proved. �

Corollary 2.2. Assume the same notation and assumptions of Lemma 2.1. Given
ε > 0 there are r1 and r2 such that

φ(R− r) > v(r) > (1− ε)φ(R− r), r1 < r < R, (2.23)

φ(r − ρ) < v(r) < (1 + ε)φ(r − ρ), ρ < r < r2. (2.24)

Proof. By (2.14) we have
−v′

(2F (v))1/2
< 1.

Integrating over (r,R) we find ψ(v) < R−r, from which the left hand side of (2.23)
follows. By (2.7) we have

v(r) >
[
1− C

∫ 1

v
(F (t))1/2dt

(F (v))1/2

R− r

φ(R− r)

]
φ(R− r).

Since F (t) is decreasing we have∫ 1

v
(F (t))1/2dt

(F (v))1/2
≤ 1.

Moreover, putting R− r = ψ(s) we have

lim
r→R

R− r

φ(R− r)
= lim

s→0

ψ(s)
s

≤ lim
s→0

(2F (s))−1/2 = 0.

The right hand side of (2.23) follows from these estimates. By (2.20) we have

v′

(2F (v))1/2
> 1.
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Integrating over (ρ, r) we find ψ(v) > r− ρ, from which the left hand side of (2.24)
follows. By (2.8) we have

v(r) <
[
1 + Cφ′(r − ρ)

∫ 1

v
(F (t))1/2dt

F (v)
r − ρ

φ(r − ρ)

]
φ(r − ρ).

We find

lim
r→ρ

∫ 1

v
(F (t))1/2dt

F (v)
≤ lim

r→ρ

1
(F (v))1/2

= 0.

Moreover, putting r − ρ = ψ(s) we have

(r − ρ)φ′(r − ρ)
φ(r − ρ)

=
ψ(s)(2F (s))1/2

s
≤ 1.

The right hand side of (2.24) follows from these estimates. The corollary is proved.
�

Lemma 2.3. If (1.2) holds with γ > 1 and if φ(δ) is defined as in (1.4), then

φ′(δ)
δf(φ(δ))

=
γ + 1
γ − 1

+O(1)(φ(δ))β , (2.25)

φ(δ)
δφ′(δ)

=
γ + 1

2
+O(1)(φ(δ))β , (2.26)

φ(δ)
δ2f(φ(δ))

=
(γ + 1)2

2(γ − 1)
+O(1)(φ(δ))β , (2.27)

φ(δ) = O(1)δ
2

γ+1 , (2.28)

where O(1) is a bounded quantity as δ → 0.

Proof. By the relation

−1− 2
( γ

1− γ
+O(1)tβ

)
=
γ + 1
γ − 1

+O(1)tβ ,

using (1.2) we have

−1− 2F (t)f ′(t)(f(t))−2 =
γ + 1
γ − 1

+O(1)tβ ,

where O(1) is bounded as t→ 0. Multiplying by (2F (t))−1/2 we find

−(2F (t))−1/2 − (2F (t))1/2f ′(t)(f(t))−2 =
γ + 1
γ − 1

(2F (t))−1/2 +O(1)tβ(2F (t))−1/2,

and (
(2F (t))1/2(f(t))−1

)′ = γ + 1
γ − 1

(2F (t))−1/2 +O(1)tβ(2F (t))−1/2. (2.29)

Using (2.5) and (2.6) we find that (2F (t))1/2(f(t))−1 → 0 as t → 0. Hence,
integrating (2.29) on (0, s) we obtain

(2F (s))1/2(f(s))−1 =
γ + 1
γ − 1

∫ s

0

(
2F (t)

)−1/2
dt+O(1)

∫ s

0

tβ(2F (t))−1/2dt, (2.30)

where O(1) is bounded as s→ 0. Since∫ s

0

tβ(2F (t))−1/2dt ≤ sβ

∫ s

0

(2F (t))−1/2dt,
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equation (2.30) implies

(2F (s))1/2

f(s)
=
γ + 1
γ − 1

∫ s

0

(
2F (t)

)−1/2
dt+O(1)sβ

∫ s

0

(2F (t))−1/2dt.

Putting s = φ(δ) and recalling that φ′(δ) = (2F (φ(δ)))1/2, estimate (2.25) follows.
Recall that (1.2) implies (2.3). Hence, we have

tf(t)
2F (t)

=
γ − 1

2
+O(1)tβ ,

2F (t) + tf(t)
2F (t)

=
γ + 1

2
+O(1)tβ ,

(2F (t))−1/2 + tf(t)(2F (t))−3/2

(2F (t))−1/2
=
γ + 1

2
+O(1)tβ ,(

t(2F (t))−1/2
)′ = γ + 1

2
(2F (t))−1/2 +O(1)tβ(2F (t))−1/2.

By (2.6), t(2F (t))−1/2 → 0 as t→ 0. Hence, integrating over (0, s) we find

s(2F (s))−1/2 =
γ + 1

2
ψ(s) +O(1)

∫ s

0

tβ(2F (t))−1/2dt =
γ + 1

2
ψ(s) +O(1)sβψ(s),

where

ψ(s) =
∫ s

0

(2F (t))−1/2dt.

Since ψ′(s) = (2F (s))−1/2 we find

sψ′(s)
ψ(s)

=
γ + 1

2
+O(1)sβ .

Putting s = φ(δ) and noting that φ is the inverse function of ψ we get (2.26). By
(2.25) we have

φ(δ)
δ2f(φ(δ))

=
φ(δ)

(
γ+1
γ−1 +O(1)(φ(δ))β

)
δφ′(δ)

.

Using the latter estimate and (2.26) we get

φ(δ)
δ2f(φ(δ))

=
(γ + 1

2
+O(1)(φ(δ))β

)(γ + 1
γ − 1

+O(1)(φ(δ))β
)
,

from which (2.27) follows. Estimate (2.28) follows immediately from (2.6). The
lemma is proved. �

3. Main result

Lemma 3.1. Let Ω ⊂ RN , N ≥ 2 be a bounded smooth domain, and let f(t) > 0
smooth, decreasing for t > 0 and such that f(t) →∞ as t→ 0. Assume condition
(1.2) with γ > 3 and β > 0. If u(x) is a solution to problem (1.1), then

φ(δ)
(
1− Cδ

)
< u(x) < φ(δ)

(
1 + Cδ

)
, (3.1)

where φ is defined as in (1.4), δ = δ(x) denotes the distance from x to ∂Ω and C
is a suitable positive constant.
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Proof. If P ∈ ∂Ω we can consider a suitable annulus of radii ρ and R contained
in Ω and such that its external boundary is tangent to ∂Ω in P . If v(x) is the
solution of problem (1.1) in this annulus, by using the comparison principle for
elliptic equations we have u(x) ≥ v(x) for x belonging to the annulus. Choose the
origin in the center of the annulus and put v(x) = v(r) for r = |x|. By Lemma 2.1
we have

v(r) > φ(R− r)− C1

∫ 1

v
(F (t))1/2dt

(F (v))1/2
(R− r), r̃ < r < R. (3.2)

Since γ > 3, by (2.6) we find that
∫ 1

t
(F (τ))1/2dτ and t(F (t))1/2 approach infinite

as t approaches zero. Using de l’Hôpital rule and (2.3) (which follows from (1.2))
we find

lim
t→0

∫ 1

t
(F (τ))1/2dτ

t(F (t))1/2
= lim

t→0

−(F (t))1/2

(F (t))1/2 − tf(t)
2(F (t))1/2

= lim
t→0

1

−1 + tf(t)
2F (t)

=
2

γ − 3
. (3.3)

Therefore, (3.2) implies

v(r) > φ(R− r)− C2v(r)(R− r).

The latter estimate and the left hand side of (2.23) yield

v(r) > φ(R− r)
(
1− C2(R− r)

)
.

For x near ∂Ω we have δ = R− r; therefore, the latter estimate and the inequality
u(x) ≥ v(x) yield the left hand side of (3.1).

Consider a new annulus of radii ρ and R containing Ω and such that its internal
boundary is tangent to ∂Ω in P . If w(x) is the solution of problem (1.1) in this
annulus, by using the comparison principle for elliptic equations we have u(x) ≤
w(x) for x belonging to Ω. Choose the origin in the center of the annulus and put
w(x) = w(r) for r = |x|. By Lemma 2.1 with w in place of v we have

w(r) < φ(r − ρ) + C1(r − ρ)φ′(r − ρ)

∫ 1

w
(F (t))1/2dt

F (w)
, ρ < r < r. (3.4)

Using (3.3) we can find a constant C2 such that∫ 1

w
(F (t))1/2dt

F (w)
≤ C2

w

(F (w))1/2
.

Since φ′ = (2F (φ))1/2, (3.4) and the previous inequality yield

w(r) < φ(r − ρ) + C3(r − ρ)
( F (φ)
F (w)

)1/2

w. (3.5)

By (2.24) with w in place of v and with ε = 1, and by (2.3) we find( F (φ)
F (w)

)1/2

w ≤
( F (φ)
F (2φ)

)1/2

2φ ≤ C4φ.

Insertion of this estimate into (3.5) yields

w(r) < φ(r − ρ)
(
1 + C5(r − ρ)

)
. (3.6)

For x near to ∂Ω we have δ = r − ρ; therefore, estimate (3.6) and the inequality
u(x) ≤ w(x) yield the right hand side of (3.1). The lemma is proved. �
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Theorem 3.2. Let Ω ⊂ RN , N ≥ 2 be a bounded smooth domain, and let f(t) > 0
smooth, decreasing for t > 0 and such that f(t) →∞ as t→ 0. Assume condition
(1.2) with γ > 3 and β > 0. If u(x) is a solution to (1.1), then

φ(δ)
[
1 +

N − 1
3− γ

Kδ − Cδ1+σ
]
< u(x) < φ(δ)

[
1 +

N − 1
3− γ

Kδ + Cδ1+σ
]
, (3.7)

where φ is defined as in (1.4), K = K(x) is the mean curvature of the surface
{x ∈ Ω : δ(x) = constant}, σ is a number such that 0 < σ < min[γ−3

γ+1 ,
2β

γ+1 ], and C
is a suitable constant.

Proof. We look for a super solution of the form

w(x) = φ(δ)
(
1 +Aδ + αδ1+σ

)
,

where

A =
H

3− γ
, H = (N − 1)K (3.8)

and α is a positive constant to be determined. We have

wxi
= φ′δxi

(
1 +Aδ + αδ1+σ

)
+ φ

(
Axi

δ +Aδxi
+ α(1 + σ)δσδxi

)
.

Recalling that
N∑

i=1

δxi
δxi

= 1,
N∑

i=1

δxixi
= −H,

we find that
∆w = φ′′

(
1 +Aδ + αδ1+σ

)
− φ′H

(
1 +Aδ + αδ1+σ

)
+ 2φ′

(
∇A · ∇δδ +A+ α(1 + σ)δσ

)
+ φ

(
∆A δ + 2∇A · ∇δ −AH + ασ(1 + σ)δσ−1 − α(1 + σ)δσH

)
.

(3.9)

By (1.4) we find φ′′ = −f(φ). Using this equation together with (2.25) and (2.27),
by (3.9) we find that

∆w = f(φ)
[
−1−Aδ − αδ1+σ −

(γ + 1
γ − 1

+O(1)φβ
)
δH

(
1 +Aδ + αδ1+σ

)
+ 2

(γ + 1
γ − 1

+O(1)φβ
)
δ
(
∇A · ∇δ δ +A+ α(1 + σ)δσ

)
+

( (γ + 1)2

2(γ − 1)
+O(1)φβ

)
δ2

(
∆A δ + 2∇A · ∇δ −AH + ασ(1 + σ)δσ−1

− α(1 + σ)δσH
)]
.

(3.10)
This means that we can find suitable constants Ci such that

∆w < f(φ)
[
−1−

(
A+

γ + 1
γ − 1

(H − 2A)
)
δ + C1φ

βδ + C2δ
2

+ αδ1+σ
(
−1 + 2(1 + σ)

γ + 1
γ − 1

+ σ(1 + σ)
(γ + 1)2

2(γ − 1)
+ C3φ

β + C4δ
)]
.

(3.11)

On the other hand, using Taylor’s expansion we have

f(w) = f(φ)
[
1 + φ

f ′(φ)
f(φ)

(Aδ + αδ1+σ) + φ2 f
′′(φ)
f(φ)

(Aδ + αδ1+σ)2
]
, (3.12)
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with φ between φ and φ(1 +Aδ+αδ1+σ). After α is fixed, we consider only points
x ∈ Ω such that

−1
2
< Aδ + αδ1+σ < 1. (3.13)

This means that 1/2 < 1 + Aδ + αδ1+σ < 2. Therefore, the term φ which appears
in (3.12) satisfies φ = θφ, with 1/2 < θ < 2. Using (1.3) and (2.4) (which follows
from (1.2)), by (3.12) we find that

f(w) = f(φ)
[
1−γAδ−αγδ1+σ+O(1)φβδ+O(1)δ2+O(1)αφβδ1+σ+O(1)(αδ1+σ)2

]
.

Using this equality, we can take suitable positive constants Ci such that

−f(w) > f(φ)
[
−1 + γAδ + αγδ1+σ − C5φ

βδ − C6δ
2 − C7αφ

βδ1+σ

− C8(αδ1+σ)2
]
.

(3.14)

Since by (3.8),

−
(
A+

γ + 1
γ − 1

(H − 2A)
)

= γA,

by (3.11) and (3.14), we have

∆w < −f(w) (3.15)

provided that

C1φ
βδ + C2δ

2 + αδ1+σ
(
−1 + 2(1 + σ)

γ + 1
γ − 1

+ σ(1 + σ)
(γ + 1)2

2(γ − 1)
+ C3φ

β + C4δ
)

< αγδ1+σ − C5φ
βδ − C6δ

2 − C7αφ
βδ1+σ − C8(αδ1+σ)2.

Rearranging terms,

(C1 + C5)φβδ−σ + (C2 + C6)δ1−σ

< α
(
γ + 1− 2(1 + σ)

γ + 1
γ − 1

− σ(1 + σ)
(γ + 1)2

2(γ − 1)
− (C3 + C7)φβ

− C4δ − C8αδ
1+σ

)
.

(3.16)

Using (2.28) we find

φβδ−σ < Cδ
2β

γ+1−σ.

Since σ < 2β
γ+1 we have φβδ−σ → 0 as δ → 0. Moreover, since σ < γ−3

γ+1 , we also
have δ1−σ → 0 as δ → 0, and

γ + 1− 2(1 + σ)
γ + 1
γ − 1

− σ(1 + σ)
(γ + 1)2

2(γ − 1)
=

(γ + 1)2

2(γ − 1)
(σ + 2)

(γ − 3
γ + 1

− σ
)
> 0.

Hence, we can take α0 large and δ0 small so that (3.13) and (3.16) hold for α ≥ α0,
δ ≤ δ0 with αδ1+σ ≤ α0δ

1+σ
0 .

Let us show now that we can choose δ1 so that u(x) ≤ w(x) for δ(x) = δ1. Using
Lemma 3.1 we have

w(x)− u(x) ≥ φ(δ)
[ (N − 1)K

3− γ
δ + αδ1+σ − Cδ

]
.
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Take α0 and δ0 so that (3.13) and (3.16) hold, and put q = α0δ
1+σ
0 . Decrease δ

and increasing α according to αδ1+σ = q until

(N − 1)K
3− γ

δ + q − Cδ > 0

for δ(x) = δ1. Then w(x) > u(x) for δ(x) = δ1. By (3.15) and the comparison
principle [11, Theorem 10.1], it follows that u(x) ≤ w(x) in {x ∈ Ω : δ(x) < δ1}.

We look for a sub solutions of the form

v(x) = φ(δ)
(
1 +Aδ − αδ1+σ

)
,

where A and σ are the same as before and α is a positive constant to be determined.
Instead of (3.10) now we have

∆v = f(φ)
[
−1−Aδ + αδ1+σ −

(γ + 1
γ − 1

+O(1)φβ
)
δH

(
1 +Aδ − αδ1+σ

)
+ 2

(γ + 1
γ − 1

+O(1)φβ
)
δ
(
∇A · ∇δδ +A− α(1 + σ)δσ

)
+

( (γ + 1)2

2(γ − 1)
+O(1)φβ

)
δ2

(
∆Aδ + 2∇A · ∇δ −AH − ασ(1 + σ)δσ−1

+ α(1 + σ)δσH
)]
.

(3.17)
This means that we can find suitable constants Ci (not necessarily the same as
before) such that

∆v > f(φ)
[
−1−

(
A+

γ + 1
γ − 1

(H − 2A)
)
δ − C1φ

βδ − C2δ
2

− αδ1+σ
(
−1 + 2(1 + σ)

γ + 1
γ − 1

+ σ(1 + σ)
(γ + 1)2

2(γ − 1)
+ C3φ

β + C4δ
)]
.

(3.18)

After α is fixed, we consider only points x ∈ Ω such that

−1
2
< Aδ − αδ1+σ < 1. (3.19)

Using Taylor’s expansion, now we find

−f(v) < f(φ)
[
−1 + γAδ − αγδ1+σ + C5φ

βδ + C6δ
2 + C7αφ

βδ1+σ + C8(αδ1+σ)2
]
.

(3.20)
Recalling that

−
(
A+

γ + 1
γ − 1

(H − 2A)
)

= γA,

by (3.18) and (3.20) we have
∆v > −f(v) (3.21)

when

− C1φ
βδ − C2δ

2

− αδ1+σ
(
−1 + 2(1 + σ)

γ + 1
γ − 1

+ σ(1 + σ)
(γ + 1)2

2(γ − 1)
+ C3φ

β + C4δ
)

> −αγδ1+σ + C5φ
βδ + C6δ

2 + C7αφ
βδ1+σ + C8(αδ1+σ)2.
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Rearranging terms,

(C1 + C5)φβδ−σ + (C2 + C6)δ1−σ

< α
(
γ + 1− 2(1 + σ)

γ + 1
γ − 1

− σ(1 + σ)
(γ + 1)2

2(γ − 1)
− (C3 + C7)φβ

− C4δ − C8αδ
1+σ

)
,

(3.22)

which is the same as (3.16) (possibly with different constants). Therefore, we can
take δ small and α large in order to satisfy this inequality. Take α0 and δ0 so that
(3.19) and (3.22) hold, and put q = α0δ

1+σ
0 . Using Lemma 3.1,

v(x)− u(x) ≤ φ(δ)
[ (N − 1)K

3− γ
δ − αδ1+σ + Cδ

]
.

Decrease δ and increasing α according to αδ1+σ = q until

(N − 1)K
3− γ

δ − q + Cδ < 0

for δ(x) = δ2. Then v(x) < u(x) for δ(x) = δ2. By (3.21) and the usual comparison
principle it follows that v(x) ≤ u(x) in {x ∈ Ω : δ(x) < δ2}. The theorem follows.

�
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