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DISTRIBUTION-VALUED WEAK SOLUTIONS TO A
PARABOLIC PROBLEM ARISING IN FINANCIAL

MATHEMATICS

MICHAEL EYDENBERG, MARIA CRISTINA MARIANI

Abstract. We study distribution-valued solutions to a parabolic problem

that arises from a model of the Black-Scholes equation in option pricing. We
give a minor generalization of known existence and uniqueness results for solu-

tions in bounded domains Ω ⊂ Rn+1 to give existence of solutions for certain

classes of distributions f ∈ D′(Ω). We also study growth conditions for smooth
solutions of certain parabolic equations on Rn × (0, T ) that have initial values

in the space of distributions.

1. Introduction and Motivation

Recently, there has been an increased interest in the study of parabolic differen-
tial equations that arise in financial mathematics. A particular instance of this is
the Black-Scholes model of option pricing via a reversed-time parabolic differential
equation [5]. In 1973 Black and Scholes developed a theory of market dynamic
assumptions, now known as the Black-Scholes model, to which the Itô calculus can
be applied. Merton [18] further added to this theory completing a system for mea-
suring, pricing and hedging basic options. The pricing formula for basic options is
known as the Black-Scholes formula, and is numerically found by solving a parabolic
partial differential equation using Itô’s formula. In this frame, general parabolic
equations in multidimensional domains arise in problems for barrier options for
several assets [21].

Much of the current research in mathematical finance deals with removing the
simplifying assumptions of the Black-Scholes model. In this model, an important
quantity is the volatility that is a measure of the fluctuation (i.e. risk) in the asset
prices; it corresponds to the diffusion coefficient in the Black-Scholes equation.
While in the standard Black-Scholes model the volatility is assumed constant, recent
variations of this model allow for the volatility to take the form of a stochastic
variable [10]. In this approach the underlying security S follows, as in the classical
Black-Scholes model, a stochastic process

dSt = µStdt+ σtStdZt
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where Z is a standard Brownian motion. Unlike the classical model, however, the
variance v(t) = (σ(t))2 also follows a stochastic process given by

dvt = κ(θ − v(t))dt+ γ
√
vtdWt

where W is another standard Brownian motion. The correlation coefficient between
W and Z is denoted by ρ:

E(dZt, dWt) = ρdt.

This leads to the generalized Black-Scholes equation

1
2
vS2(DSSU) + ργvS(DvDsU) +

1
2
vγ2(DvvU) + rSDSU

+ [κ(θ − v)− λv]DvU − rU +Dtu = 0.

Introducing the change of variables given by y = lnS, x = v
γ , τ = T − t, we see

that u(x, y) = U(S, v) satisfies

Dτu =
1
2
γx[∆u+ 2ρDxyu] +

1
γ

[κ(θ − γx)− λγx]Dxu+ (r − γx

2
)Dyu− ru

in the cylindrical domain Ω×(0, T ) with Ω ⊂ R2. Using the Feynman-Kac relation,
more general models with stochastic volatility have been considered (see [4]) leading
to systems such as

Dτu =
1
2

trace(M(x, τ)D2u) + q(x, τ) ·Du

u(x, 0) = u0(x)

for some diffusion matrix M and payoff function u0.
These considerations motivate the study of the general parabolic equation

Lv = f(v, x, t) in Ω

v(x, t) = v0(x, t) on PΩ
(1.1)

where Ω ⊂ Rn+1 is a smooth domain, f : Rn+2 7→ R is continuous and continuously
differentiable with respect to v, v0 ∈ C(PΩ), and PΩ is the parabolic boundary of
Ω. Here, L is a second order elliptic operator of the form

Lv =
n∑

i,j=1

aij(x, t)Dijv +
n∑

i=1

bi(x, t)Div + c(x, t)v − ηDtv (1.2)

where η ∈ (0, 1) and aij , bi, c satisfy the following 4 conditions:

aij , bi, c ∈ C(Ω) (1.3)

λ‖ξ‖2 ≤
∑
ij

aij(x, t)ξiξj ≤ Λ‖ξ‖2, (0 < λ ≤ Λ) (1.4)

‖aij‖∞, ‖bi‖∞, ‖c‖∞ <∞ (1.5)

c ≤ 0. (1.6)

Existence and uniqueness results for (1.1) when Ω is a bounded domain and the
coefficients belong to the Hölder space Cδ,δ/2(Ω) have been well-established (c.f.
[15] and [13]). Extensions of these results to domains of the form Ω× (0, T ) where
Ω ⊂ Rn is in general an unbounded domain are also given, as in [2] and [3].
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Our concern in this work, however, is in the interpretation and solution of (1.1)
in the sense of distributions. This is inspired primarily by the study in [15], Chapter
3, which obtains weak solutions v of the divergence-form operator

n∑
i,j=1

Di(aijDjv)− ηDtv = f

where the matrix aij is constant and f belongs to the Sobolev space W 1,∞(Ω),
where Ω ⊂ Rn+1 is a bounded domain. The solutions v are weak in the sense
that the derivatives of v can only be defined in the context of distributions, as we
discuss in more detail below. Our goal is to generalize these results to the well-
known classical space D(Ω) of test functions and its strong-dual space, D′(Ω). In
particular, we let f ∈ D′(Ω) be of the form f = Dαg for some g ∈ C(Ω), and ask
what conditions are sufficient on f and the coefficients aij , bi, and c so that Lv = f
makes sense for some other v ∈ D′(Ω).

Another facet of this question, however, is to consider characterizations of clas-
sical solutions to parabolic differential equations that define distributions at their
boundary. This problem has been extensively studied in the case that L is associ-
ated with an operator semigroup, beginning with the work of [11] and [16] to realize
various spaces of distributions as initial values to solutions of the heat equation.
The problem is to consider the action of a solution v(x, t) to the heat equation on
Rn × (0, T ) on a test function φ in the following sense:

(v, φ) = lim
t→0+

∫
Rn

v(x, t)φ(x)dx. (1.7)

The authors in [17] and [9] characterize those solutions v for which (1.7) defines a
hyperfunction in terms of a suitable growth condition on the solution v(x, t), while
[6] extends these results to describe solutions with initial values in the spaces of
Fourier hyperfunctions and infra-exponentially tempered distributions. [7] gives a
characterization of the growth of smooth solutions to the Hermite heat equation
L = 4−|x|2−Dt with initial values in the space of tempered distributions. In all of
these cases, the ability to express a solution v of the equation Lv = 0 as integration
against an operator kernel (the heat kernel for the Heat semigroup and the Mehler
kernel [20] for the Hermite heat semigroup) plays an important role in establishing
sufficient and necessary growth conditions. While this is not possible for a general
parabolic operator of the form (1.2), in this paper we propose a sufficient growth
condition for a solution of Lv = 0 on Rn × (0, T ) to define a particular type of
distribution, and we show the necessity of this condition in a few special cases.

The terminology we use in this paper is standard. We will denote X = (x, t) as
an element of Rn+1 where x ∈ Rn. Derivatives will be denoted by Di with 1 ≤ i ≤ n
or Dt for single derivatives, and by Dα with α ∈ Nn for higher-order derivatives. If
α ∈ Nn then |α| denotes the sum

|α| = α1 + · · ·+ αn.

Constants will generally be denoted by C, K, M , etc. with indices representing
their dependence on certain parameters of the equation.

We give also a brief introduction to the theory of weak solutions and distributions
as they pertain to our results. For n ≥ 1, take Ω ⊂ Rn+1 to be open. Let
u, v ∈ L1

loc(Ω) and α ∈ Nn. We say that v is the weak partial derivative of u of
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order |α|, denoted simply by Dαu = v, provided that∫
Ω

u(Dαφ)dx = (−1)|α|
∫

Ω

vφdx

for all test functions φ ∈ C∞0 (Ω). Observe that v is unique only up to a set of zero
measure. This leads to the following definition of the Sobolev space W k,p(Ω):

Let p ∈ [1,∞), k ∈ N, and Ω ⊂ Rn+1 be open. We define the Sobolev space
W k,p(Ω) as those u ∈ L1

loc(Ω) for which the weak derivatives Dαu are defined and
belong to Lp(Ω) for each 0 ≤ |α| ≤ k. Observe that W k,p(Ω) is a Banach space
with the norm

‖u‖k,p =
∑

0≤|α|≤k

‖Dαu‖Lp(Ω).

Furthermore, we denote by W k,p
0 (Ω) the closure of the test-function space C∞0 (Ω)

under the Sobolev norm ‖ · ‖k,p.
The classical space D(Ω) of test functions with support in the domain Ω ⊂ Rn+1

originates from the constructions of [19]. To begin, let K ⊂ Ω be a regular, compact
set. We denote by Dk(K) the space of functions φ ∈ C∞0 (K) for which

‖φ‖k,K = ‖(1 + |x|)kφ̂(x)‖∞ <∞.

In fact, the norm ‖ · ‖k,K makes Dk(K) into a Banach space of smooth functions
with support contained in K. Observe that the sequence Dk(K) for k ∈ N is a
sequence of Banach spaces with the property that

Dk+1(K) ⊂ Dk(K)

for each k, where the inclusion is continuous. It follows that we may take the
projective limit of these spaces to define the space

D(K) = proj
k→∞

Dk(K)

of test functions φ which satisfy ‖φ‖k,K <∞ for every k ∈ N.
Now, let Ki be an increasing sequence of compact subsets of Ω whose union is

all of Ω. We refer to such a sequence as a compact exhaustion of Ω. Then we have
the continuous inclusions

D(Ki) ⊂ D(Ki+1)

for each i. Thus, we may take an inductive limit to define

D(Ω) = ind
i→∞

D(Ki).

This is a space of continuous functions φ for which there exists a compact set K ⊂ Ω
with ‖φ||k,K < ∞ for all k ∈ N. The topology on this space can equivalently be
described as follows: a sequence φi in D(Ω) converges to 0 if and only if there is a
compact set K ⊂ Ω such that {φi}∞i=1 ⊂ D(K) and ‖φi‖k,K → 0 for each k.

We consolidate these statements in the following definition:

Definition 1.1. Let Ω ⊂ Rn+1 be an open set with a countable, compact exhaus-
tion Ki. We define D(Ω) as the locally convex topological vector space

D(Ω) = ind
i→∞

proj
k→∞

Dk(Ki).



EJDE-2009/91 DISTRIBUTION-VALUED WEAK SOLUTIONS 5

The space D(Ω) is separable, complete, and bornologic. We recall that a locally
convex topological vector space X is bornologic if and only if the continuous linear
operators from X to another locally convex topological vector space Y are exactly
the bounded linear operators from X to Y . We denote by D′(Ω) the topological
dual of this space with the strong-operator topology, also referred to as a space
of distributions. The space D′(Ω) includes such objects as u =

∑
αDαg, where

g ∈ C(Ω). In particular, the action of u on a test function φ is interpreted in the
weak sense:

u(φ) =
∑
α

(−1)|α|
∫

Ω

gDα(φ)dx.

The layout of this paper is as follows: In Section 2 we give existence and unique-
ness results to certain divergence-form parabolic differential equations in sufficiently
small domains Ω ⊂ Rn+1. In Section 3 we extend these results to general bounded
domains in the constant-coefficient case. We employ the Perron process [15, 8]
to obtain solutions to (1.1) when f ∈ W 1,∞(Ω) and v0 = 0, and then show how
these can be used to obtain solutions for certain types of distributions. Section 4
discusses growth conditions on solutions to (1.1) when Ω = Rn × (0, T ) that define
distributions in the sense of (1.7). We make use of a technique of [6] to write the
integral appearing in (1.7) as the difference of two other functionals, both of which
have a limit as t → 0+. Using this, we obtain a sufficient growth criterion and
explore its necessity in a few settings.

2. Weak W 1,2-solutions in small balls

We begin with establishing some basic existence and uniqueness results for so-
lutions to divergence-form operators that are weak in a particular sense. Our
methodology is based on that of [15, Chapter 3.3], , with minor generalizations
to the hypotheses. This approach has the advantage in that it allows us to work
with the relatively simple Sobolev spaces as opposed to the Hölder spaces, and also
that it gives existence results in small balls B that can be generalized to arbitrary
bounded domains Ω. To begin, we must describe the the type of weak solutions
we are looking for: let Ω ⊂ Rn+1 be a bounded domain, and define the diameter
2R = diam(Ω) by

2R = sup
(x,t),(y,s)∈Ω

|x− y|.

For 1 ≤ i, j ≤ n, let aij , bi, and c be elements of C(Ω) that satisfy (1.3)-(1.6),
and assume in addition that the matrix aij is symmetric. Then, for any fixed
ε, η ∈ (0, 1], we define divergence-form operator Lε,η as

Lε,ηv =
∑

Di(aijDjv) +
∑

biDiv + cv +Dt(εDtv)− ηDtv.

Now consider the Sobolev space W 1,2(Ω), and let W 1,2
0 (Ω) be the closure of C∞0 (Ω)

under the Sobolev norm ‖ · ‖1,2. Choose any f ∈ L2(Ω) and v0 ∈ W 1,2(Ω). Using
the terminology of [15], we say that v is a weak W 1,2-solution of the problem

Lε,ηv = f in Ω
v = v0 on ∂Ω

(2.1)
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if v − v0 ∈W 1,2
0 (Ω) and, for all φ ∈ C2

0(Ω),∫
Ω

−
∑
ij

aij(Djv)(Diφ) +
∑

i

bi(Div)(φ) + cvφ− ε(Dtv)(Dtφ)− η(Dtv)φdx dt

=
∫

Ω

fφ dx dt.

We begin with the following proposition concerning the existence and uniqueness
of W 1,2-solutions to (2.1) in bounded domains; see also [12, Theorem 8.3] for an
alternative proof that employs the Fredholm alternative for the operator Lε,η:

Proposition 2.1. Let Ω ⊂ Rn+1 be a bounded domain and set 2R = diam(Ω).
Assume aij, bi, and c are in C(Ω) and satisfy (1.3)-(1.6) with aij symmetric. Then
there exists a constant Kn,a,b such that if R < K, then for any f ∈ L2(Ω) and
v0 ∈W 1,2(Ω) there is a unique W 1,2-solution of (2.1).

Proof. We first prove the proposition for v0 = 0. Assume, at first, that the bi, c,
and η are all 0. As a consequence of (1.4), we may define an inner product on
W 1,2

0 (Ω) by

〈φ, ψ〉 =
∫

Ω

∑
ij

aij(Djφ)(Diψ) + ε(Dtφ)(Dtψ) dx dt

and observe that W 1,2
0 is complete with respect to this inner product. Now, f ∈

L2(Ω) defines a linear functional on W 1,2
0 (Ω) via the integral

F (φ) = −
∫

Ω

fφ dx dt.

The Riesz Representation Theorem gives a unique function v ∈W 1,2
0 (Ω) such that

〈v, φ〉 = F (φ), and this is the unique solution of (2.1) for this case.
To extend this to nonzero bi, c, and η, we use the method of continuity [13, 15].

For h ∈ [0, 1], define the operator Lh : W 1,2
0 (Ω) 7→ W 1,2

0 (Ω) as follows: given
v ∈W 1,2

0 (Ω) let Lhv(φ) be the linear functional defined on W 1,2
0 (Ω) by

Lhv(φ) =
∫

Ω

−
∑
ij

aij(Djv)(Diφ) + h
∑

i

bi(Div)(φ)

+ hcvφ− ε(Dtv)(Dtφ)− hη(Dtv)φdx dt.

Then set Lh(v) = g where g ∈ W 1,2
0 (Ω) is the unique element for which 〈g, φ〉 =

Lhv(φ) under the Riesz Representation Theorem. Observe that Lh is linear and
bounded for every h and, by what we have just proved, L0 is invertible. Now,
assume Lh(v) = g. Then

〈v, v〉 = −〈g, v〉+
∫

Ω

h
∑

i

bi(Div)(v) + hcv2 − hη(Dtv)v dx dt.

Since c ≤ 0 and
∫
Ω
(Dtv)v dx dt = 1

2

∫
Ω
Dt(v2) dx dt = 0, this implies

〈v, v〉 ≤ −〈g, v〉+ h

∫
Ω

∑
i

bi(Div)(v) dx dt

≤ θ〈v, v〉+
1
θ
〈g, g〉+ |

∫
Ω

∑
i

bi(Div)(v) dx dt|
(2.2)
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for any θ > 0.
Consider now the term |

∫
Ω

∑
i bi(Div)(v) dx dt|. Let a = inf(x,t)∈Ω x1 and b =

sup(x,t)∈Ω x1, so that b − a ≤ 2R and (x, t) ∈ Ω implies x1 ∈ (a, b). Then, for
v ∈ C∞0 (Ω), we have∣∣ ∫

Ω

∑
i

bi(Div)(v) dx dt
∣∣ ≤ ∫

Ω

∑
i

|bi‖Div||v| dx dt

=
∫

Ω

∑
i

|bi||Div|
∣∣ ∫ x1

a

D1v(s, x′, t)ds
∣∣ dx dt

where we write x′ for the n − 1-tuple (x2, . . . xn). Using the Cauchy-Schwartz
inequality for the ds integral, this becomes∫

Ω

∑
i

|bi‖Div|
∫ b

a

|D1v(s, x′, t)ds| dx dt

≤ (2R)1/2

∫
Ω

∑
i

|bi||Div|
( ∫ b

a

[D1v(s, x′, t)]2ds
)1/2

dx dt.

We can then separate the terms in the sum to obtain

(2R)1/2
[
θ′

∫
Ω

∑
i

|bi|2|Div|2 dx dt+
n

θ′

∫
Ω

∫ b

a

[D1v(s, x′, t)]2 ds dx′dt
]
.

for any θ′ > 0. Setting θ′ = 1 and using the Fubini-Tonelli theorem for the second
integral, we get the estimate

(2R)1/2
[
Cb

∫
Ω

∑
i

|Div|2 dx dt+ nR

∫
Ω

[D1v(s, x′, t)]2 ds dx′dt
]

≤ (2R)1/2
[
Cbλ

∫
Ω

1
λ

∑
i

|Div|2 dx dt+ nRλ

∫
Ω

1
λ

∑
i

[Div(x, t)]2 dx dt
]

≤ Cn,a,b

(
R1/2 +R3/2

)
〈v, v〉

where the constant Cn,a,b depends only on n, a (through λ), and b. Hence,∣∣ ∫
Ω

∑
i

bi(Div)(v) dx dt
∣∣ ≤ Cn,a,b(R1/2 +R3/2)〈v, v〉

for all v ∈ C∞0 (Ω), a result which extends to all v ∈W 1,2
0 (Ω) by density. Thus, we

see that there is a Kn,a,b such that R < K implies∣∣ ∫
Ω

∑
i

bi(Div)(v) dx dt
∣∣ ≤ 1

2
〈v, v〉.

Placing this into (2.2), it follows that with such R we may choose θ > 0 so that
〈v, v〉 ≤ β〈g, g〉 for some positive β that is independent of h. The method of
continuity then implies that Lh is invertible for all h ∈ [0, 1], and in particular for
h = 1. Hence, given f ∈ L2(Ω) we may use the Riesz Representation Theorem to
find a g ∈ W 1,2

0 (Ω) for which 〈g, φ〉 =
∫
Ω
fφ dx dt, and then use the invertibility of

Lh to obtain the weak W 1,2-solution to (2.1) with v0 = 0.
Finally, let v0 ∈ W 1,2(Ω) be nonzero. Observe that Lε,ηv0(φ) also defines a

linear, continuous functional on W 1,2
0 (Ω), and thus Lε,η(v0) defines an element of
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W 1,2
0 (Ω) by the Riesz Representation Theorem, and in particular an element of

L2(Ω). Let w be the unique weak W 1,2-solution to

Lε,ηw = g in Ω
w = 0 on ∂Ω

where g = f − Lε,η(v0). Then v = w + v0 is the solution to (2.1).
It is possible to extend this existence result to ε = 0 if the coefficients aij and bi

are constant in addition to satisfying the hypotheses of Proposition 2.1. The basic
strategy is to obtain a uniform estimate on the derivatives of solutions vε to ( 2.1)
with η fixed and ε ∈ (0, 1]. This will require us to also strengthen our hypotheses
on the v0, f , and Ω. The first result we need is a maximal property that holds
when v0 has a continuous extension to the boundary of Ω. �

Lemma 2.2. Let Ω be a bounded domain, and assume v0 ∈W 1,2(Ω)∩C(Ω) satisfies
the inequality v0 ≤ M on ∂Ω for some constant M ≥ 0. Assume further that
v ∈W 1,2(Ω) is such that v − v0 ∈W 1,2

0 (Ω).

(a) If u = (v −M)+, then u ∈W 1,2
0 (Ω)

(b) If R = diam(Ω) < K and Lε,ηv(φ) ≥ 0 for all nonnegative φ ∈ W 1,2
0 (Ω),

then v ≤M in Ω.

Proof. (a) From of [15, Lemma 3.7], we have that if f ∈ W 1,2(Ω), then f+ ∈
W 1,2(Ω) with

Dαf
+ = χADαf,

where |α| = 1 and A = {x : f(x) > 0}. Let vk ∈ C∞0 (Ω) be such that vk → v − v0
in W 1,2(Ω), and define w = v0 −M ∈ C(Ω) ∩W 1,2(Ω). Then for every integer
k > 0, the function (vk + w − 1

k )+ ∈W 1,2(Ω) is compactly supported in Ω, and so
belongs to W 1,2

0 (Ω) by convolution. Now (vk + w − 1
k )+ → (v −M)+ ∈ L2(Ω) as

k →∞. Furthermore, for |α| = 1 we have

‖Dα(vk + w − 1
k

)+ −Dα(v −M)+‖2 = ‖χEk
Dα(vk + v0)− χEDαv‖2

where

Ek = {x : vk(x) + w(x)− 1
k
> 0}, E = {x : v(x)−M > 0}.

From this we obtain the estimate

‖χEk
Dα(vk + v0)− χEDαv‖2

≤ ‖χEk
[Dα(vk + v0)−Dαv]‖2 + ‖(χEk

− χE)Dαv‖2
≤ ‖χEk

[Dα(vk + v0)−Dαv]‖2 + ‖χB(χEk
− χE)Dαv‖2

+ ‖χΩ\B(χEk
− χE)Dαv‖2,

where B = {x : v(x) = M}. Now, since vk +w+ 1
k → v−M in L2(Ω) it follows that

vk + w + 1
k → v −M in measure, and so there is a subsequence vkn + w + 1

kn
that

converges to v −M pointwise a.e.. Since χEkn
→ χE a.e. on χΩ\B while Dαv = 0

a.e. on χB (c.f. [15, Lemma 3.7] again), we conclude that

‖χEkn
Dα(vkn

+ v0)− χEDαv‖2 → 0

as n→∞, and thus (v −M)+ ∈W 1,2
0 (Ω).
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(b) Let u = (v −M)+ ∈W 1,2
0 (Ω). Then Lε,ηv(u) ≥ 0, that is∫

Ω

∑
aij(Djv)(Diu)−

∑
bi(Div)(u)− cvu+ ε(Dtv)(Dtu) + η(Dtv)u dx dt ≤ 0.

Observe, however, that the left hand side of this expression is equal to∫
Ω

∑
ij

aij(Dju)(Diu)−
∑

i

bi(Diu)(u)−cv(v−M)++ε(Dtu)(Dtu)+η(Dtu)u dx dt.

We have that cv(v −M)+ ≤ 0 and and
∫
Ω
η(Dtu)u dx dt = 0; so this implies∫

Ω

∑
ij

aij(Dju)(Diu)−
∑

i

bi(Diu)(u) + ε(Dtu)(Dtu) dx dt ≤ 0.

However, since R < K, the proof of Lemma 2.1 gives∫
Ω

∑
ij

aij(Dju)(Diu)−
∑

i

bi(Diu)(u) + ε(Dtu)(Dtu) dx dt ≥
1
2
〈u, u〉.

Thus, 〈u, u〉 ≤ 0; i.e., u = 0. �

Using Lemma 2.2, we can obtain the desired equicontinuity in the case that the
domain Ω has the form of a small ball; i.e.,

Ω = B(R) = {(x, t) : |x|2 + t2 < R2}.

We will also require that the coefficients aij , bi of Lε,η be constant while c ∈ C1(Ω).
Furthermore, let v0 ∈ C2(Ω) and f ∈ W 1,∞(Ω) ⊂ W 1,2(Ω), so that there are
constants V , F for which

|v0|+
∑

i

|Div0|+
∑
ij

|Dijv0|+ |Dtv0|+ |Dttv0| < V,

|f |+
∑

i

|Dif |+ |ft| < F.
(2.3)

Lemma 2.3. Let Ω = B(R) and assume that Lε,η satisfies the hypotheses of Propo-
sition 2.1 in addition to the following: the coefficients aij, bi are constant and
c ∈ C1(Ω). Assume also that v0 ∈ C2(Ω), f ∈ W 1,∞(Ω), and let V , F be as in
(2.3). Then there are constants K ′

n,a,b,c,η and Cn,a,b,c,η,V,F such that if R < K ′
n,a,b,c,

then for any weak W 1,2-solution v of (2.1), we have∑
|Div|+ |Dtv| ≤ C (2.4)

where, in particular, C is independent of ε ∈ (0, 1].

Proof. Let w = R2 − |x|2 − t2 ∈W 1,2
0 (Ω). Then for any φ ∈W 1,2

0 (Ω), we have

Lε,ηw(φ) =
∫

Ω

∑
ij

aij(2xj)(Diφ) +
∑

i

bi(−2xi)φ+ c(R2 − |x|2 − t2)φ

+ ε(2t)(Dtφ)− η(−2t)φdx dt

=
∫

Ω

∑
i

−2aiiφ−
∑

i

bi(2xi)φ+ c(R2 − |x|2 − t2)φ

− 2εφ+ 2ηtφ dx dt.
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Thus, we may write Lε,ηw = g ∈ L2(Ω), where

g = −2 trace(aij)−
∑

i

2bixi + c(R2 − |x|2 − t2)− 2ε+ 2ηt

≤ −2nλ+ nR sup
i
|bi|+ ‖c‖∞R2 + 2|η|R.

Thus, it follows that we may choose K ′
n,a,b,c,η < K so that R < K ′

n,a,b,η implies
g ≤ −nλ. Similarly, if Lε,ηv0 = h ∈ L2(Ω), then a straightforward calculation shows
that for R < K ′ we have |h(x, t)| ≤ Cn,a,b,c,η,V for some constant C independent
of ε. In particular, since Lε,ηv = f , there is a constant C ′n,a,b,c,η,V,F for which
|Lε,η(v − v0)| = |f − h| ≤ C ′. Now, for such R, if we define

u± = ±nλ
C ′

(v − v0)− w ∈W 1,2
0 (Ω),

then Lε,ηu± ≥ 0 in the sense of Lemma 2.2 and u± ≤ 0 on ∂Ω, so by Lemma 2.2
it follows that u± ≤ 0 on Ω; that is, |v − v0| ≤ C′′

nλw.
Now, let X = (x, t) ∈ Ω and Y = (y, s) ∈ ∂Ω, so that

|v(X)− v(Y )| = |v(X)− v0(Y )| ≤ |v(X)− v0(X)|+ |v0(X)− v0(Y )|

≤ C ′

nλ
w(X) + 2RV |X − Y |

where the latter estimate follows from the Mean Value Theorem. The Mean Value
Theorem also implies

w(X) = w(X)− w(Y ) ≤ (sup
Ω
|∇w|)|X − Y | ≤ C ′′n,R|X − Y |,

and so, assuming R < K ′, there is a constant Mn,a,b,c,η,V,F for which

|v(X)− v(Y )| ≤M |X − Y |.

In particular, for any Y ∈ ∂Ω and any τ ∈ Rn+1 such that Y + τ ∈ Ω, we have

|v(Y + τ)− v(Y )| ≤M |τ |.

Our goal is to extend this Lipschitz condition to all X ∈ Ω. Choose τ so that
Ωτ = {X ∈ Ω : X + τ ∈ Ω} is nonempty, and let N be a constant to be determined
later. We define ρ± ∈W 1,2(Ωτ ) by

ρ±(X) = ±[v(X + τ)− v(X)]−M |τ | −N |τ |w(X).

By a direct calculation, we find that for any φ ≥ 0 in W 1,2
0 (Ωτ ) that

Lρ±(φ) =
∫

Ωτ

[±(f(X + τ)− f(X))− cM |τ | −N |τ |g(X)]φ(X)dX

−
∫

Ωτ

[c(X + τ)− c(X)]v(X + τ)φ(X)dX.

Recall that c ∈ C1(Ω). Observe also that given any X ∈ Ω and Y ∈ ∂Ω, we have

|v(X)| ≤ |v(X)− v(Y )|+ |v(Y )|
= |v(X)− v0(Y )|+ |v0(Y )|
≤M |X − Y |+ V

≤ 2MR+ V ;
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i.e., |v| is uniformly bounded on Ω. Hence, with R < K ′, there is a constant
C ′′′n,a,b,c,η,V,F for which∣∣[c(X + τ)− c(X)]v(X + τ)φ(X)

∣∣ ≤ C ′′′|τ |φ(X),

and we may choose N sufficiently large so that Lρ±(φ) ≥ 0 for nonnegative φ ∈
W 1,2

0 (Ω). Since ρ± ≤ 0 on ∂Ωτ , Lemma 2.2 again implies that ρ± ≤ 0 on Ωt; that
is,

|v(X + τ)− v(X)| ≤M |τ |+N |τ |w(X)

for all X ∈ Ωτ . Choosing a final constant C ′′′′n,a,b,c,η,V,F so that M +Nw(X) < C ′′′′

on Ω, we find that v satisfies the Lipschitz condition

|v(X)− v(Y )| ≤ C ′′′′|X − Y |

for all X, Y ∈ Ω. By [15, Lemma 3.5], this implies the desired estimate (2.4). �

We now apply these results to find weak W 1,2-solutions of (2.1) with ε = 0
on sufficiently small balls Ω = B(R) by taking an appropriate subsequence of the
family of solutions vε:

Theorem 2.4. Let Ω, aij, bi, and c satisfy the hypotheses of Lemma 2.3. Then
for any f ∈ W 1,∞(Ω) and v0 ∈ C2(Ω), there is a unique weak W 1,2-solution v to
(2.1) with ε = 0.

Proof. For ε ∈ (0, 1], let vε be the unique weak W 1,2-solution of (2.1) given by
Proposition 2.1. Then by Lemma 2.3, the family {vε}ε∈(0,1] is uniformly bounded
and equicontinuous, and so that there exists a uniformly convergent subsequence
v = limm vεm

. The estimate (2.4) implies also that v ∈ W 1,2(Ω) and satisfies (2.4)
as well. To see that v − v0 ∈ W 1,2

0 (Ω), we note that since v − v0 is equicontinuous
and equal to 0 on ∂Ω, it follows that (v − v0 − 1

k )+ ∈ W 1,2(Ω) is compactly
supported in Ω for every integer k > 0. Hence, (v − v0 − 1

k )+ ∈ W 1,2
0 (Ω), and

since (v − v0 − 1
k )+ → (v − v0)+ in W 1,2(Ω) (c.f. Lemma 2.2, part (a), it follows

that (v − v0)+ ∈ W 1,2
0 (Ω). Furthermore, the same argument holds for v0 − v, so

(v− v0)− ∈W 1,2
0 (Ω) and hence so does v− v0. Finally, to show that L0,ηu = f , we

have for any φ ∈ C∞0 (Ω)

−
∫

Ω

fφdx =
∫

Ω

∑
ij

aij(Djvεm
)(Diφ)−

∑
i

bi(Divεm
)(φ)− cvεm

φ

+ ε(Dtv)(Dtu) + η(Dtv)φdx dt

=
∫

Ω

vεm

[ ∑
ij

−Dj(aijDiφ) +
∑

i

Di(biφ)

− cφ− εmDttφ− ηDtφ
]
dx dt.

Since the integrand is uniformly bounded we obtain from Dominated Convergence
that

−
∫

Ω

fφdx =
∫

Ω

v
[ ∑

ij

−Dj(aijDiφ) +
∑

i

Di(biφ)− cφ− ηDtφ
]
dx dt

and the theorem is proved. �
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3. Weak solutions in general bounded domains and solutions
involving derivatives

We will now use the Perron process in the same manner as [15] to extend this
result to a general bounded domain Ω. We begin with the following definitions:
given f ∈ C1(Ω) and v0 ∈ C2(Ω), we say that u ∈ C(Ω) is a subsolution of the
problem

L0,ηv = f in Ω
v = v0 on PΩ

(3.1)

if u ≤ v0 on PΩ and if for any ball B = B(R) with R < K ′, the solution u of

L0,ηu = f in B
u = u on ∂B

(3.2)

satisfies u ≥ u in B. Supersolutions are defined similarly by reversing the in-
equalities. From the discussion in [15, Chapter 3.4], we see that subsolutions and
supersolutions exhibit the following properties:

Lemma 3.1. Consider the problem (3.1):
(a) If u is a subsolution and w a supersolution, then w ≥ u in Ω.
(b) Let u be a subsolution and assume B(R) ⊂ Ω with R < K ′. Then if u

solves (3.2), the function U defined by

U =

{
u on Ω\B
u on B

is another subsolution, called the lift of u relative to B.
(c) If u and w are subsolutions, then so is max{u,w}.

Recall from Theorem 2.4 that the derivatives of the solution v to (2.1) satisfy the
estimate (2.4) of Lemma 2.3. To apply the Perron process, we need a form of this
estimate that does not make explicit use of the boundary function v0. Corollary
3.20 of [15] provides such a result in the case that the coefficients bi and c are 0.
With some minor modifications, this estimate can be shown to hold when bi and c
are constant, and so we state the result without proof:

Lemma 3.2. Let Ω = B(R) with R < K ′, and assume aij, bi, f , and F are as in
Theorem 2.4 while c ≤ 0 is constant. Let w be the function of Lemma 2.3. Then
there is a constant Cn,a,b,c,η such that if v ∈W 1,2(Ω)∩C(Ω) satisfies L0,ηv = f in
the weak sense on Ω, then

w2
∑

i

|Div|2 + w4|Dtv|2 ≤ C
(
sup |v|2 + F

)
.

Now, given a bounded domain Ω, a function f ∈ W 1,∞(Ω), and v0 ∈ C2(Ω),
let S be the set of all subsolutions u of (3.1). The Perron process gives that
v(X) = supu∈S u(X) defines an element of C(Ω) that satisfies L0,ηv = f in the
weak sense, though we cannot characterize its behavior at the boundary in the
same way that we could the weak W 1,2-solutions. A proof that v is a weak solution
follows:

Theorem 3.3. Let Ω be a bounded domain, and let aij, bi, and c satisfy the hy-
potheses of Lemma 3.2. Given any f ∈ W 1,∞(Ω) and v0 ∈ C2(Ω), let S be the set
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of all subsolutions of (3.1) and define v(X) = supu∈S u(X). Then v ∈ C(Ω) and v
satisfies L0,ηv = f in the weak sense on Ω.

Proof. First, note from Lemma 2.2 that u0 = − 1
η‖f‖∞t − ‖v0‖∞ is a subsolution

and −u0 is a supersolution, hence v is well-defined and bounded. To show that v
is a weak solution, let X = (x, t) ∈ Ω and R < K ′ be such that BX(R) ⊂ Ω. Fix
X1 = (x, t+R/8) and let {um} ⊂ S be a sequence for which um(X1) → v(X1). Let
wm = max{um, u0} so that the wm are increasing, and define Wm to be the lift of
wm relative to BX(R). By Lemma 3.2, there is a subsequence Wmk

such that Wmk

converges uniformly to a solution w of L0,ηw = f in BX(R
2 ). That w(X1) = v(X1)

is clear; we now claim that w = v for Y sufficiently near X.
Indeed, let X2 ∈ BX(R

8 ), and choose a sequence {u′m} ⊂ S for which u′m(X2) →
v(X2). Let w′m = max{u′m, wm} so that w′m is an increasing sequence for which
w′m(X1) → v(X1) and w′m(X2) → v(X2). Let W ′

m be the lift of w′m relative to
BX(R

4 ), and let W ′
mk

be a subsequence which converges uniformly to a solution w′

of L0,ηw = f in BX(R
8 ). Then w′ ≥ w in BX(R

8 ) and w′(X2) = v(X2). However,
w′(X1) = w(X1), so by the strong maximum principle it follows that w′ = w in
BX(R

8 ), and in particular w(X2) = w′(X2) = v(X2). Since X2 was an arbitrary
element of BX(R

8 ), it follows that w = v in BX(R
8 ). Thus, L0,ηv = f for functions

φ ∈ C∞0 with support contained in BX(R
8 ). Since X ∈ Ω was chosen arbitrarily,

we can show that L0,ηv = f in the weak sense for any φ ∈ C∞0 (Ω) by taking an
appropriate partition of unity, and the theorem is proved. �

Remark 3.4. We observe that proofs of Theorem 3.3 with more general conditions
on the coefficients of L0,η are known, c.f. [14, Theorem 9.1]. However, the scheme
given above for the constant-coefficient case is relatively straightforward and is all
we require for the present discussion.

We may apply this result to obtain solutions when f is a certain type of dis-
tribution. Let Ω be a bounded, convex domain with smooth boundary, and let
f ∈ D′(Ω) be of the form f = Dαg in the sense of distributions, where g ∈ C(Ω).
Observe that if the coefficients aij , bi, and c are constant, then L0,η makes sense as
a continuous map on the space D′(Ω). We give the following existence result as a
corollary to Theorem 3.3:

Corollary 3.5. Let Ω, f be as above and assume that aij, bi, and c satisfy the
hypotheses of Lemma 3.2. Then there is a w ∈ D′(Ω) for which L0,ηw = f .

Proof. Given φ ∈ D(Ω), we have for the action of f on φ :

(f, φ) = (−1)|α|
∫

Ω

gDαφdx dt.

Since g ∈ C(Ω) and Ω is convex with a smooth boundary, we may integrate by
parts to obtain

(f, φ) = (−1)|β|
∫

Ω

GDβφdx dt

where G ∈ C1(Ω) and βi = αi + 1. Now, let v ∈ C(Ω) be the weak solution of
L0,ηv = G on Ω from Theorem 3.3 and define w ∈ D′(Ω) by

(w, φ) = (−1)|β|
∫

Ω

vDβφdx dt.
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A straightforward calculation shows that L0,ηw = f in the sense of distributions,
and the result follows. �

4. Classical solutions defining distributions at their boundary

As mentioned in the Introduction, there has been an increasing interest in study-
ing classical solutions to various differential equations whose boundary values define
distributions in the sense of (1.7). Much of the work in this area has focused on
differential equations arising from operator semigroups, such as the heat equation
[17, 6, 9] and the Hermite heat equation ([7]). The characterizations take the form
of growth conditions on solutions u to these equations defined on Rn × (0, T ). Mo-
tivated by these results, we consider in this section sufficient growth conditions
on classical solutions to parabolic equations on Rn × (0, T ) whose boundary val-
ues define distributions of the form

∑
|α|≤M Dα(gα), where each gα ∈ C(Rn) is

bounded. Our approach is based on [6, Theorem 2.4], which characterizes the
growth of smooth solutions to the heat equation with boundary values in the space
of infra-exponentially tempered distributions.

We begin with the following: let L be an operator of the form

Lu =
∑
ij

aijDiju+
∑

i

biDiu+ cu

where aij , bi, and c belong to C∞(Rn) with bounded derivatives. Our interest lies
in the behavior of solutions u(x, t) to the problem

Lu− ut = 0 (4.1)

defined on Rn × (0, T ). Our first lemma concerns the existence of a “suitable”
function v ∈ C∞0 (R) that we will need in the proof.

Lemma 4.1. Let M ≥ 0 be an integer and T > 0. There is a function v ∈ C∞0 (R)
with supp(v) ⊂ [0, T

2 ] for which v = tM

M ! on (0, T
4 ) and v(M+1) = δ +w in the sense

of distributions, where w ∈ C∞(R) with supp(w) ⊂ [T
4 ,

T
2 ].

Proof. Define the function

f =

{
tM

M ! for t > 0
0 for t ≤ 0,

and let α ∈ C∞(R) be such that α(t) = 1 for t < 5T
16 and α(t) = 0 for t > 7T

16 . Then
v = αf is the desired function. �

Now, given a classical solution u(x, t) to (4.1), we are interested in studying the
behavior of u on test functions φ ∈ D(Ω) in the sense of (1.7). This is done by
using the function v of Lemma 4.1 in conjunction with the operator L to “split”
the integral of (1.7) into two manageable parts:

Proposition 4.2. Let u(x, t) be a smooth solution to the parabolic equation (4.1)
on Rn × (0, T ) such that |u(x, t)| ≤ Ct−M for some integer M ≥ 0. Then, for any
φ ∈ D(Rn), we have

lim
t→0+

∫
Rn

u(x, t)φ(x)dx =
∑

|α|≤2M+2

gαDαφ



EJDE-2009/91 DISTRIBUTION-VALUED WEAK SOLUTIONS 15

where each gα is continuous and bounded. In particular, the operation

g(φ) = lim
t→0+

∫
Rn

u(x, t)φ(x)dx

defines an element of D′(Rn).

Proof. We define ũ(x, t) on Rn × (0, T
2 ) by

ũ(x, t) =
∫

R
u(x, t+ s)v(s)ds.

From the bounds on u and v and their derivatives, we may take the derivative under
the integral sign to conclude that ũ satisfies (4.1) on Rn×(0, T

2 ). In particular, since
the derivative Dt commutes with L, we have that Lkũ = (Dt)kũ for all integers
k ≥ 0. Now, for φ ∈ C∞0 (Rn), consider∫

Rn

ũ(x, t)φ(x)dx =
∫

Rn

∫
R
u(x, t+ s)v(s)φ(x) ds dx.

Observe that we may reverse the order of integration and differentiate under the
integral sign to obtain∫

R

∫
Rn

[(−L)M+1u](x, t+ s)v(s)φ(x) dx ds

=
∫

Rn

∫
R
[(−Dt)M+1u](x, t+ s)v(s)φ(x) ds dx.

(4.2)

For the left hand side of (4.2), we may integrate by parts to obtain∫
R

∫
Rn

u(x, t+ s)v(s)[(L∗)M+1φ](x) dx ds

where L∗ is the operator

L∗u = −
∑
ij

(Dijaiju+DiaijDju+DiaijDiu+ aijDiju)

+
∑

i

(Dibiu+ biDiu)− cu.

As for the right hand side of (4.2), integrating by parts yields∫
Rn

∫
R
u(x, t+ s)v(M+1)(s)φ(x) ds dx

=
∫

Rn

u(x, t)φ(x)dx+
∫

Rn

∫
R
u(x, t+ s)w(s)φ(x) ds dx.

Substituting these two results into (4.2), we obtain∫
Rn

u(x, t)φ(x)dx =
∫

R

∫
Rn

u(x, t+ s)v(s)[(L∗)M+1φ](x) dx ds

−
∫

Rn

∫
R
u(x, t+ s)w(s)φ(x) ds dx.

Thus, we find in the limit as t→ 0+, that

lim
t→0+

∫
Rn

u(x, t)φ(x)dx =
∫

Rn

(
∫

R
u(x, s)v(s)ds)[(L∗)M+1φ](x)dx

−
∫

Rn

(
∫

R
u(x, s)w(s)ds)φ(x)dx.
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Since the integrals in parentheses give continuous, bounded functions of x, the
result follows. �

Remark 4.3. In the case that L is the Laplacian ∆, then the growth condition
can be shown to be necessary in some sense. Indeed, let g ∈ D′(Rn) have the form

(g, φ) =
∑

|α|≤2M+2

∫
Rn

gα(x)Dαφ(x)dx

where the gα are continuous and bounded. We define

u(x, t) = (gy, Et(x− y))

on Rn × (0,∞). It can be shown (c.f. [1]) that u(x, t) is a smooth solution to the
heat equation on Rn × (0,∞) and satisfies

lim
t→0+

∫
Rn

u(x, t)φ(x)dx = (g, φ)

for every φ ∈ D(Rn). Furthermore, each term ((gα)y, (Dα)yEt(x − y)) appearing
in (gy, Et(x− y)) is of the form

(−
√

4t)|α|
∫

Rn

gα(y)Hα(
x− y

2
√
t

)Et(x− y)dy

= Cαt
−|α|/2

∫
Rn

gα(x− 2z
√
t)Hα(z)e−|z|

2
dz

where Hα is the Hermite polynomial of order α. It follows that |u(x, t)| ≤ Ct−M−1

for some constant C depending on the gα, M , and the dimension n. We do not
know if this can be sharpened to become |u(x, t)| ≤ Ct−M .

Remark 4.4. In view of Remark 4.3, consider the case that bi and c are all 0, and
the matrix aij is constant and satisfies the condition∑

ij

aijxixj ≥ λ|x|2

where λ > 0. Based on the discussion of [13, Lemma 8.9.1], we can find a nonsin-
gular matrix Aij for which AaAT = I. From Proposition 4.2, we see that if u is
smooth, solves Lu = ut and satisfies |u(x, t)| ≤ Ct−m, then u(x, t) defines a distri-
bution of the form g =

∑
|α|≤2m+2 gαDα where each gα is continuous and bounded.

Conversely, given such gα we define the distributions

vα =
∑

det(A)(Ak1
1,1 . . . Ak1

α1
,1 . . . Akn

1 ,n . . . Akn
αn

,n)Dk1
1...k1

α1
...kn

1 ...kn
αn
gα,

where the summation is taken from k1
1, . . . k

1
α1
, . . . kn

1 , . . . k
n
αn

= 1 to n, as deter-
mined by the chain rule. Then each vα satisfies the conditions of Remark 4.3,and
so there are smooth solutions uα of the heat equation on Rn × (0,∞) for which
uα(0, t) = vα in the sense of (1.7) and |uα(x, t)| ≤ Ct−N for some nonnegative
integer N . Then, defining vα(x, t) = uα(Ax, t), we see that vα is a smooth solution
to (4.1) on Rn × (0,∞) with |v(x, t)| ≤ Ct−N , and a straightforward calculation
yields

lim
t→0+

∫
Rn

v(x, t)φ(x)dx = (gα, φ).

Hence, the conclusion of Remark 4.3 is also valid for such operators L.
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