Electronic Journal of Differential Equations, Vol. 2009(2009), No. 93, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

A BIHARMONIC ELLIPTIC PROBLEM WITH DEPENDENCE ON THE GRADIENT AND THE LAPLACIAN

PAULO C. CARRIÃO, LUIZ F. O. FARIA, OLÍMPIO H. MIYAGAKI

Abstract

We study the existence of solutions for nonlinear biharmonic equations that depend on the gradient and the Laplacian, under Navier boundary condition. Our main tools are an iterative scheme of the mountain pass "aproximated" solutions, and the truncation method developed by de Figueiredo, Girardi and Matzeu.

1. Introduction

We prove the existence of nontrivial solutions for the equation

$$
\begin{gather*}
\Delta^{2} u+q \Delta u+\alpha(x) u=f(x, u, \nabla u, \Delta u) \quad \text { in } \Omega \\
u(x)=0, \quad \Delta u(x)=0 \quad \text { on } \partial \Omega \tag{1.1}\\
\end{gather*}
$$

where Δ^{2} is the biharmonic operator and $\Omega \subset \mathbb{R}^{N}, N \geq 1$, is a bounded domain with smooth boundary $\partial \Omega$.

The above fourth-order semilinear elliptic problem, when f does not depend on derivatives of u, has been studied by many authors; see [4, 5, 20, 22] and references therein. In this case variational techniques are widely applied to obtain existence of solutions.

When $\Omega=\mathbb{R}$ and $q>0$ the problem (1.1) is is called the Swift-Hohenberg equation, and for $q>0$ it is called the extended Fisher-Kolmogorov equation. For this class of problems the existence of homoclinic, heteroclinic and periodic solutions have been obtained by several researchers mainly when f does not depend on derivatives; see e. g. [6, 1, 15, 21, 24, 26. The reader is refereed to [1, 10, 11, 17, 18 for the case $\Omega=(0,1)$ and f depending on the second order derivative but not on the first derivative of u. Recently, the authors in 8 studied a situation where f depends on the first and second order derivatives. For studies with nonlinearities of the form $f(x, u, \Delta u)$ the reader is referred to [13, 19, 23, 25] and references there in.

In our case, due to the presence of the gradient and the Laplacian of u in f, the problem is not variational whihc creates additional difficulties. For instance the critical point theory can not be applied directly. We recall that, to overcome this difficult, Xavier [27] and Yan [28] handled some semilinear elliptic problems of

[^0]the second order involving the gradient by using monotone iterative methods. We apply a technique developed by De Figueiredo, Girard and Matzeu 12 (see also Girard and Matzeu [14]) which "freezes" the gradient variable and use truncation on the nonlinearity f. Thus the new problem becomes variational. The idea of this approach is to consider a class of problems through an iterative scheme where the approximated problem has a nontrivial solution via mountain pass Theorem. Then one obtains estimates in $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$-norm and C^{2}-norm. Passing to the limit in a sequence of the approximated solutions we gets a solution of the original problem. In general, a semilinear Navier fourth-order problem is equivalent to the semilinear Dirichlet problem for a system of two coupled second order equations but it is not clear that the truncation method works for the system.

To state our results, let us assume the following conditions:
(A1) α is a Hölder-continuous function.
(A2) There are positive constants a, b verifying $0<a \leq \alpha(x)<b, \forall x \in \mathbb{R}$.
(A3) $q \in(-\infty, 2 \sqrt{a})$.
(F0) $f: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz continuous.
(F1) $\lim _{t \rightarrow 0} f\left(x, t, \xi_{1}, \xi_{2}\right) / t=0$ uniformly with respect to $x \in \Omega, \xi_{1} \in \mathbb{R}^{N}$ and $\xi_{2} \in \mathbb{R}$.
(F2) There exist $a_{1}>0, p \in\left(1, \frac{N+4}{N-4}\right),(N \geq 5), r_{1}$ and r_{2}, such that $r:=$ $r_{1}+r_{2}<1$ and

$$
\left|f\left(x, t, \xi_{1}, \xi_{2}\right)\right| \leq a_{1}\left(1+|t|^{p}\right)\left(1+\left|\xi_{1}\right|^{r_{1}}\right)\left(1+\left|\xi_{2}\right|^{r_{2}}\right)
$$

for all $\left(x, t, \xi_{1}, \xi_{2}\right) \in \Omega \times \mathbb{R}^{N+2}$.
(F3) There exist $\theta>2$ and $t_{0}>0$ such that
$0<\theta F\left(x, t, \xi_{1}, \xi_{2}\right) \leq t f\left(x, t, \xi_{1}, \xi_{2}\right), \quad \forall x \in \Omega,|t| \geq t_{0},\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{N+1}$,
where $F\left(x, t, \xi_{1}, \xi_{2}\right)=\int_{0}^{t} f\left(x, s, \xi_{1}, \xi_{2}\right) d s$.
(F4) There exists $a_{2}, a_{3}>0$ such that

$$
F\left(x, t, \xi_{1}, \xi_{2}\right) \geq a_{2}|t|^{\theta}-a_{3}, \quad \forall x \in \Omega,\left(t, \xi_{1}, \xi_{2}\right) \in \mathbb{R}^{N+2}
$$

Denote by $y^{i, j},(i=1,2,3)$ the vectors

$$
y^{1, j}=\left(y_{1}^{j}, y_{2}, y_{3}\right), \quad y^{2, j}=\left(y_{1}, y_{2}^{j}, y_{3}\right), \quad y^{3, j}=\left(y_{1}, y_{2}, y_{3}^{j}\right)
$$

For $i, k=1,2,3$ and $j=1,2$, we define the numbers:

$$
L_{\rho_{i}}=\sup \left\{\frac{\left|f\left(x, y^{i, 1}\right)-f\left(x, y^{i, 2}\right)\right|}{\left|y_{i}^{1}-y_{i}^{2}\right|}:\left(x, y^{i, j}\right) \in A_{i}\right\}
$$

where

$$
A_{i}=\left\{\left(x, y^{i, j}\right) \in \Omega \times \mathbb{R}^{N+2},\left|y_{i}^{j}\right| \leq \rho_{i},\left|y_{k}\right| \leq \rho_{k}(i \neq k)\right\}
$$

for some constants $\rho_{i}>0$.
(F5) There exist positive numbers $\rho_{i}(i=1,2,3)$ depending on q, θ, a_{1}, a_{2} and a_{3}, in an explicit way, such that the above positive numbers $L_{\rho_{i}}(i=1,2,3)$ satisfy the relation

$$
\left(\tau_{1} L_{\rho_{1}}+\tau_{2} L_{\rho_{2}}+\tau_{3} L_{\rho_{3}}\right) \tau_{1}<\gamma
$$

where γ is as in Lemma 2.2 and $\tau_{i}(i=1,2,3)$ are the optimal constants (that is, the smaller constants) of the inequalities

$$
\left(\int_{\Omega}|u|^{2} d x\right)^{1 / 2} \leq \tau_{1}\|u\|, \quad\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{1 / 2} \leq \tau_{2}\|u\|, \quad\left(\int_{\Omega}|\Delta u|^{2} d x\right)^{1 / 2} \leq \tau_{3}\|u\|
$$

where $\|u\|^{2}=(u, u)$ and $(u, v)=\int_{\Omega}(\Delta u \Delta v+\nabla u \nabla v+u v) d x$.
Under such hypotheses, we prove the following result.
Theorem 1.1. If (A1)-(A3), (F0)-(F5) hold, then there exists at least one classical solution of 1.1.

Example: Suppose β and δ positive and continuous functions. If $f\left(x, t, \xi_{1}, \xi_{2}\right)=$ $\beta(x)|t| t\left(1+\left|\xi_{1}\right|\right)^{1 / 4}\left(1+\left|\xi_{2}\right|\right)^{1 / 4}+\delta(x) t^{3}$, then it satisfies all the conditions (F0)-(F5).
Remark 1.2. If $\Omega=\delta \Omega^{\prime}$, with $\delta>0$ and Ω^{\prime} is a bounded domain containing the origin, all functions verifying the growth conditions (F1)-(F4) satisfy the condition (F5) for δ small sufficient. It occurs because the constants $\tau_{i}(i=2,3)$ and $L_{\rho_{i}}$ ($i=1,2,3$) do not increase as δ approaches zero, and, by Poincaré inequality, we can choose $\tau_{1}=\left(\frac{\delta\left(\text { diameter of } \Omega^{\prime}\right)}{w_{N}}\right)^{1 / N}$ with w_{N} the measure of the unity ball in \mathbb{R}^{N} 。

2. Notation and a technical Result

Let $X \equiv H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, which is a Hilbert space with inner product and norm given in the previous section. Since $\sqrt{1.1}$, in general, is not variational we use a "freezing" technique whose formulation appears initially in 12 . This technique consists of associating to the problem (1.1) a family of problems without dependence of f in the gradient and Laplacian of the solution. That is, for each $w \in X$ fixed we consider the "freezed" problem given by

$$
\begin{gather*}
\Delta^{2} u_{w}+q \Delta u_{w}+\alpha(x) u_{w}=f\left(x, u_{w}, \nabla w, \Delta w\right) \quad \text { in } \Omega \\
u_{w}(x)=0, \quad \Delta u_{w}(x)=0 \quad \text { on } \partial \Omega . \tag{2.1}
\end{gather*}
$$

The nonexistence of a priori estimates, with respect to the norms of the gradient and Laplacian of the solution, is the main difficulty for using variational techniques. Thus, we consider, for each $R>0$ fixed, the truncated "functions"

$$
f_{R}\left(x, t, \xi_{1}, \xi_{2}\right)=f\left(x, t, \xi_{1} \varphi_{R}\left(\xi_{1}\right), \xi_{2} \varphi_{R}\left(\xi_{2}\right)\right)
$$

and

$$
F_{R}\left(x, t, \xi_{1}, \xi_{2}\right)=\int_{0}^{t} f_{R}\left(x, s, \xi_{1}, \xi_{2}\right) d s
$$

where $\varphi_{R} \in C^{1}(\mathbb{R}),\left|\varphi_{R}\right| \leq 1$ and

$$
\varphi_{R}(\xi)= \begin{cases}1 & \text { if }|\xi| \leq R \\ 0 & \text { if }|\xi| \geq R+1\end{cases}
$$

This argument appears initially in [16. See also [14.
Remark 2.1. Note that $\left|\xi \varphi_{R}(\xi)\right| \leq R+1$, for all $\xi \in \mathbb{R}$.
Thus, for each $w \in X$ and $R>0$ fixed, we consider "truncated" and "freezed" problem, given by

$$
\begin{gather*}
\Delta^{2} u_{w}^{R}+q \Delta u_{w}^{R}+\alpha(x) u_{w}^{R}=f_{R}\left(x, u_{w}^{R}, \nabla w, \Delta w\right) \quad \text { in } \Omega \tag{2.2}\\
u_{w}^{R}(x)=0, \quad \Delta u_{w}^{R}(x)=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

The associated functional $I_{w}^{R}: X \rightarrow \mathbb{R}$ is

$$
\begin{equation*}
I_{w}^{R}(v)=\frac{1}{2} \int_{\Omega}\left[(\Delta v)^{2}-q(\nabla v)^{2}+\alpha(x) v^{2}\right] d x-\int_{\Omega} F_{R}(x, v, \nabla w, \Delta w) d x \tag{2.3}
\end{equation*}
$$

The following technical Lemma gives us a new and equivalent norm in X.
Lemma 2.2. Suppose α and q satisfy (A1)-(A3). Then there exist positive constants η and γ such that

$$
\gamma\|u\|^{2} \leq \int_{\Omega}\left(\Delta u^{2}-q \nabla u^{2}+\alpha(x) u^{2}\right) d x \leq \eta\|u\|^{2}, \quad \forall u \in H^{2}(\Omega)
$$

Proof. The constant η is obtained taking $\eta=\max \{-q, b, 1\}$. To obtain γ, notice that if $q<0$, it is sufficient to take $\gamma=\min \{-q, a, 1\}$. In the case where $q \geq 0$, and $\Omega \subset \mathbb{R}, \gamma$ will be taken as in [26, Lemma 8]. For $\Omega \subset \mathbb{R}^{N}, N>1$, the proof can be adapted from [26, Lemma 8].

3. Proof of main theorem

We assume $N \geq 5$; the case $N \in[1,4]$ is easier. The proof of Theorem 1.1 is achieved with several lemmas. The following result establishes the mountain pass geometry for the functional I_{w}^{R}.
Lemma 3.1. Let $w \in X$ and $R>0$ be fixed. Then
(i) there exist positive constants $\rho=\rho_{R}$ and $\alpha=\alpha_{R}$ such that $I_{w}^{R}(v) \geq \alpha$, for all $v \in X$ with $\|v\|=\rho$.
ii) fix v_{0} with $\left\|v_{0}\right\|=1$; there is a $T>0$ such that $I_{w}^{R}\left(t v_{0}\right) \leq 0$, for all $t>T$.

Proof. By (F1), given any $\varepsilon>0$ there exists some $\delta>0$ such that $|v|<\delta$, implies

$$
\begin{equation*}
F_{R}(x, v, \nabla w, \Delta w) \leq \varepsilon \frac{v^{2}}{2} \tag{3.1}
\end{equation*}
$$

Now, if $|v| \geq \delta$, by (F2) and by Remark 2.1, there exists some constant $k=k(\delta)$ such that

$$
\begin{equation*}
F_{R}(x, v, \nabla w, \Delta w) \leq k|v|^{p+1}(R+2)^{r} \tag{3.2}
\end{equation*}
$$

Thus, by inequalities (3.1) and 3.2 and by Lemma 2.2 we have

$$
I_{w}^{R}(v) \geq \frac{\gamma}{2}\|v\|^{2}-\frac{\varepsilon}{2} \int_{\Omega}|v|^{2} d x-k(R+2)^{r} \int_{\Omega}|v|^{p+1} d x .
$$

So, by the Sobolev embedding Theorem we have

$$
I_{w}^{R}(v) \geq \frac{1}{2}(\gamma-C \varepsilon)\|v\|^{2}-k C(R+2)^{r}\|v\|^{p+1}
$$

for some positive constant C. Then for a ε small sufficient, we can choose $\rho=\rho_{R}$ and $\alpha=\alpha_{R}$, both independent of w, such that the first part of the result holds.

Now, take an arbitrary $v_{0} \in X$ with $\left\|v_{0}\right\|=1$. By (F4) and Lemma 2.2

$$
I_{w}^{R}\left(t v_{0}\right) \leq \frac{\eta|t|^{2}}{2}\left\|v_{0}\right\|^{2}-a_{2}|t|^{\theta} \int_{\Omega}\left|v_{0}\right|^{\theta} d x+a_{3}|\Omega| .
$$

Since $\theta>2$, it is possible to choose $T>0$ such that $I_{w}^{R}\left(t v_{0}\right) \leq 0$, for all $t>T$.
Lemma 3.2. For any $w \in X, R>0$, problem 2.2. has a nontrivial weak solution.
Proof. First of all, from Lemma 2.2, (F0), (F1) and (F2), the functional I_{w}^{R} is in $C^{1}(X, \mathbb{R})$; see e.g. 3].

Claim. I_{w}^{R} satisfies the Palais-Smale condition; that is, every sequence $\left(u_{n}\right) \subset X$ such that

$$
I_{w}^{R}\left(u_{n}\right) \rightarrow c \quad \text { and } \quad I_{w}^{\prime R}\left(u_{n}\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

for some constant c, contains a convergent subsequence.
Verification of the Claim. Note that

$$
I_{w}^{R}\left(u_{n}\right)-\frac{1}{\theta}\left\langle I_{w}^{\prime R}\left(u_{n}\right), u_{n}\right\rangle \leq c+\left\|u_{n}\right\|, \quad \forall n>n_{0}
$$

since $\theta>2$, from Lemma 2.2, it is standard to prove that,

$$
\left\|u_{n}\right\|<C, \quad C>0
$$

By the Rellich-Kondrachov Theorem, up to a subsequence, there exists $u \in X$ such that

$$
u_{n} \rightarrow u \quad \text { in } L^{p+1}(\Omega) \quad \text { as } n \rightarrow \infty
$$

So, as $n \rightarrow \infty$, we have

$$
f_{R}\left(x, u_{n}, \nabla w, \Delta w\right) \rightarrow f_{R}(x, u, \nabla w, \Delta w) \quad \text { in } L^{\frac{p+1}{p}}(\Omega)
$$

Therefore,

$$
\begin{equation*}
\int_{\Omega}\left[f_{R}\left(x, u_{n}, \nabla w, \Delta w\right)-f_{R}(x, u, \nabla w, \Delta w)\right]\left(u_{n}-u\right) d x \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{3.3}
\end{equation*}
$$

Since $\left(I_{w}^{\prime R}\left(u_{n}\right)-I_{w}^{\prime R}(u)\right) \rightarrow-I_{w}^{\prime R}(u)$ and $u_{n} \rightharpoonup u$ weakly in X, we have

$$
\begin{equation*}
\left\langle I_{w}^{\prime R}\left(u_{n}\right)-I_{w}^{\prime R}(u), u_{n}-u\right\rangle \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{3.4}
\end{equation*}
$$

Notice that by Lemma 2.2

$$
\begin{aligned}
& \left\langle I_{w}^{\prime R}\left(u_{n}\right)-I_{w}^{\prime R}(u), u_{n}-u\right\rangle+\int_{\Omega}\left[f_{R}\left(x, u_{n}, \nabla w, \Delta w\right)-f_{R}(x, u, \nabla w, \Delta w)\right]\left(u_{n}-u\right) d x \\
& \geq \gamma\left\|u_{n}-u\right\|^{2}
\end{aligned}
$$

Using (3.3) and (3.4) in the above inequality, we obtain that $u_{n} \rightarrow u$ (strong) in X as $n \rightarrow \infty$. Thus, we conclude that the statement is true.

Applying the mountain pass Theorem, due to Ambrosetti-Rabinowitz [3], there exists $u_{w}^{R} \neq 0$ weak solution to problem 2.2

Lemma 3.3. Let $R>0$ be fixed. Then there exist positive constants $d_{1}:=d_{1}(R)$, $d_{2}:=d_{2}(R)$, independent of w, such that

$$
d_{2} \leq\left\|u_{w}^{R}\right\| \leq d_{1}
$$

for all solution u_{w}^{R} obtained in Lemma 3.2.
Proof. Notice that

$$
I_{w}^{R}\left(u_{w}^{R}\right) \leq \max _{t \geq 0} I_{w}^{R}\left(t v_{0}\right),
$$

with v_{0} given as in Lemma 3.1. From (F4) and Lemma 2.2 we obtain

$$
I_{w}^{R}\left(t v_{0}\right) \leq \frac{t^{2}}{2} \eta-a_{2}|t|^{\theta} \int_{\Omega}\left|v_{0}\right|^{\theta} d x+a_{3}|\Omega|
$$

Since $\theta>2$ and $\left|v_{0}\right|_{\theta} \neq 0$, the map

$$
t \in \mathbb{R} \mapsto \eta \frac{t^{2}}{2}-a_{2}|t|^{\theta} \int_{\Omega}\left|v_{0}\right|^{\theta} d x+a_{3}|\Omega|
$$

attains a positive maximum, independent of w and R. So we get a constant C such that

$$
\begin{equation*}
I_{w}^{R}\left(u_{w}^{R}\right) \leq C \tag{3.5}
\end{equation*}
$$

Now, define

$$
\|\|u\|\|^{2}=\int_{\Omega}\left(\Delta u^{2}-q \nabla u^{2}+\alpha(x) u^{2}\right) d x
$$

which by Lemma 2.2 is an equivalent norm in X. By (3.5), we have

$$
\begin{equation*}
\left.\frac{1}{2} \right\rvert\,\left\|u_{w}^{R}\right\| \|^{2} \leq C+\int_{\Omega} F_{R}\left(x, u_{w}^{R}, \nabla w, \Delta w\right), \quad C>0 \tag{3.6}
\end{equation*}
$$

Let t_{0} be as in condition (F3), and define $D:=\left\{x \in \Omega ;\left|u_{w}^{R}(x)\right|>t_{0}\right\}$. Keeping in mind that u_{w}^{R} is a solution from (F2) and (F3) and by Remark 2.1, we have

$$
\begin{aligned}
\int_{\Omega} F_{R}\left(x, u_{w}^{R}, \nabla w, \Delta w\right) & =\int_{\Omega \backslash D} F_{R}\left(x, u_{w}^{R}, \nabla w, \Delta w\right)+\int_{D} F_{R}\left(x, u_{w}^{R}, \nabla w, \Delta w\right) \\
& \leq a_{1}(R+2)^{r}\left(t_{0}+\frac{\left|t_{0}\right|^{p+1}}{p+1}\right)|\Omega \backslash D|+\frac{1}{\theta}\left|\left\|u_{w}^{R} \mid\right\|^{2}\right.
\end{aligned}
$$

Returning to equation (3.6) we have

$$
\frac{1}{2}\left|\left\|u _ { w } ^ { R } \left|\left\|^{2} \leq C+a_{1}(R+2)^{r}\left(t_{0}+\frac{\left|t_{0}\right|^{p+1}}{p+1}\right)|\Omega \backslash D|+\frac{1}{\theta}\left|\left\|\left|u_{w}^{R}\right|\right\|^{2}\right.\right.\right.\right.\right.
$$

where $|\Omega \backslash D|$ denotes the Lebesgue measure in \mathbb{R}^{N} of the set $\Omega \backslash D$. Again by Lemma 2.2 , we have

$$
\gamma\left(\frac{1}{2}-\frac{1}{\theta}\right)\left\|u_{w}^{R}\right\|^{2} \leq\left(\frac{1}{2}-\frac{1}{\theta}\right)\left|\left\|\left.u_{w}^{R}\left|\|^{2} \leq C+a_{1}(R+2)^{r}\left(t_{0}+\frac{\left|t_{0}\right|^{p+1}}{p+1}\right)\right| \Omega \backslash D \right\rvert\,\right.\right.
$$

Thus, we can conclude that exists $c_{1}>0$ such that

$$
\gamma\left(\frac{1}{2}-\frac{1}{\theta}\right)\left\|u_{w}^{R}\right\|^{2}<c_{1}(R+2)^{r}
$$

that is, $\left\|u_{w}^{R}\right\| \leq d_{1}$, for some $d_{1}=d_{1}(R)>0$.
Now, we shall prove that there exists $d_{2}>0$ such that $\left\|u_{w}^{R}\right\|>d_{2}$. In fact, notice that

$$
\begin{equation*}
I_{w}^{\prime R}\left(u_{w}^{R}\right)\left(u_{w}^{R}\right)=0 \tag{3.7}
\end{equation*}
$$

and from (F1) and (F2), given $\varepsilon>0$, there exists $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
\left|f_{R}\left(x, u_{w}^{R}, \nabla w, \Delta w\right)\right| \leq \varepsilon\left|u_{w}^{R}\right|+C_{\varepsilon}\left|u_{w}^{R}\right|^{p}(R+2)^{r} \tag{3.8}
\end{equation*}
$$

Inserting (3.8) in 3.7) and using Lemma 2.2, we have

$$
\gamma\left\|u_{w}^{R}\right\|^{2} \leq C_{1} \varepsilon\left\|u_{w}^{R}\right\|^{2}+C_{2} C_{\varepsilon}\left\|u_{w}^{R}\right\|^{p+1}(R+2)^{R}
$$

for some constants $C_{1}, C_{2} \geq 0$. Therefore, there exists $d_{2}>0$ such that $\left\|u_{w}^{R}\right\| \geq d_{2}$. This completes the proof.

Lemma 3.4. Choose $w \in C^{4, \alpha}(\bar{\Omega})$, for some $\alpha \in(0,1)$, and let $R>0$ be fixed. If $u_{w}^{R} \in X$ is a weak solution of problem (2.2), then $u_{w}^{R} \in C^{4, \beta}(\bar{\Omega})$, for some $\beta \in(0,1)$, and $\Delta\left(u_{w}^{R}\right)(x)=0$ if $x \in \partial \Omega$.

Proof. Let $u_{w}^{R} \in X$ be a weak solution of (2.2). Define $v=\Delta u_{w}^{R}$ and

$$
g(x)=f_{R}\left(x, u_{w}^{R}, \nabla w, \Delta w\right)-q \Delta u_{w}^{R}-\alpha(x) u_{w}^{R}
$$

By hypotheses (F2), and the Sobolev embedding, notice that $g(x) \in L^{2}(\Omega)$. So, v is a weak solution of

$$
\Delta v=g(x), \quad \text { in } \Omega
$$

in the following sense: For $\phi \in C_{c}^{\infty}(\Omega)$, we have

$$
\int_{\Omega} v \Delta \phi d x=\int_{\Omega} g \phi d x
$$

From Agmon [2, Theorem 7.1'], we have that $v \in H_{\mathrm{loc}}^{2}(\Omega)$. Therefore, $u_{w}^{R} \in H_{\mathrm{loc}}^{4}(\Omega)$. Fix $\phi \in C_{c}^{\infty}(\Omega)$, since $u_{w}^{R} \in X$ is a weak solution of problem 2.2), we have

$$
\begin{equation*}
\int_{\Omega} \Delta u_{w}^{R} \Delta \phi d x-q \int_{\Omega} \nabla u_{w}^{R} \nabla \phi d x+\int_{\Omega} \alpha(x) u_{w}^{R} \phi d x=\int_{\Omega} f_{R}\left(x, u_{w}^{R}, \nabla w, \Delta w\right) \phi d x \tag{3.9}
\end{equation*}
$$

But $\operatorname{supp} \phi \subset \subset \Omega$, so

$$
\int_{\Omega}\left(\Delta^{2} u_{w}^{R}+q \Delta u_{w}^{R}+\alpha(x) u_{w}^{R}\right) \phi d x=\int_{\Omega} f_{R}\left(x, u_{w}^{R}, \nabla w, \Delta w\right) \phi d x
$$

From the denseness of $C_{c}^{\infty}(\Omega)$ in $X=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ we conclude that

$$
\begin{equation*}
\int_{\Omega}\left(\Delta^{2} u_{w}^{R}+q \Delta u_{w}^{R}+\alpha(x) u_{w}^{R}\right) \phi d x=\int_{\Omega} f_{R}\left(x, u_{w}^{R}, \nabla w, \Delta w\right) \phi d x \quad \forall \phi \in X \tag{3.10}
\end{equation*}
$$

The Green identities guarantees

$$
\begin{gather*}
\int_{\Omega}\left(\Delta u_{w}^{R} \Delta \phi-\phi \Delta^{2} u_{w}^{R}\right) d x=\int_{\partial \Omega}\left(\Delta u_{w}^{R} \frac{\partial \phi}{\partial \nu}-\phi \frac{\partial\left(\Delta u_{w}^{R}\right)}{\partial \nu}\right) d s=\int_{\partial \Omega} \Delta u_{w}^{R} \frac{\partial \phi}{\partial \nu} d s \tag{3.11}\\
q \int_{\Omega} \Delta u_{w}^{R} \phi d x=q \int_{\partial \Omega} \phi \frac{\partial u_{w}^{R}}{\partial \nu} d s-q \int_{\Omega} \nabla u_{w}^{R} \nabla \phi d x \tag{3.12}
\end{gather*}
$$

So, combining 3.9, 3.10, 3.11 and 3.12, we have

$$
\begin{equation*}
\int_{\partial \Omega} \Delta u_{w}^{R} \frac{\partial \phi}{\partial \nu} d s=0 \tag{3.13}
\end{equation*}
$$

From (3.10, we obtain that

$$
\begin{equation*}
\Delta^{2} u_{w}^{R}+q \Delta u_{w}^{R}+\alpha(x) u_{w}^{R}=f_{R}\left(x, u_{w}^{R}, \nabla w, \Delta w\right) \quad \text { a.e. in } \Omega . \tag{3.14}
\end{equation*}
$$

By Green's identity,

$$
\int_{\Omega} \Delta^{2} u_{w}^{R} \Delta u_{w}^{R} d x=-\int_{\Omega}\left(\nabla \Delta u_{w}^{R}\right)^{2} d x+\int_{\partial \Omega} \frac{\partial \Delta u_{w}^{R}}{\partial \nu} \Delta u_{w}^{R} d s
$$

By (3.13), we obtain

$$
\begin{equation*}
\int_{\Omega} \Delta^{2} u_{w}^{R} \Delta u_{w}^{R} d x=-\int_{\Omega}\left(\nabla \Delta u_{w}^{R}\right)^{2} d x . \tag{3.15}
\end{equation*}
$$

By Green's identity,

$$
\int_{\Omega} \Delta u_{w}^{R} u_{w}^{R} d x=-\int_{\Omega}\left(\nabla u_{w}^{R}\right)^{2} d x+\int_{\partial \Omega} \frac{\partial u_{w}^{R}}{\partial \nu} u_{w}^{R} d s
$$

Since $u_{w}^{R} \in H_{0}^{1}(\Omega)$, we get

$$
\begin{equation*}
\int_{\Omega} \Delta u_{w}^{R} u_{w}^{R} d x=-\int_{\Omega}\left(\nabla u_{w}^{R}\right)^{2} d x \tag{3.16}
\end{equation*}
$$

Multiplying Δu_{w}^{R} equation (3.14), and integrating by parts and using 3.15 and (3.16), we obtain

$$
\begin{align*}
& -\int_{\Omega}\left(\nabla \Delta u_{w}^{R}\right)^{2} d x+q \int_{\Omega}\left(\Delta u_{w}^{R}\right)^{2} d x-\int_{\Omega} \alpha(x)\left(\nabla u_{w}^{R}\right)^{2} d x \tag{3.17}\\
& =\int_{\Omega} f_{R}\left(x, u_{w}^{R}, \nabla w, \Delta w\right) \Delta u_{w}^{R} d x
\end{align*}
$$

By (F2) and Sobolev embbedding we can assume that

$$
\left(\int_{\Omega}\left(f_{R}\left(x, u_{w}^{R}, \nabla w, \Delta w\right)\right)^{2} d x\right)^{1 / 2}<\infty
$$

Thus, from 3.17 we have $\left\|u_{w}^{R}\right\|_{W^{3,2}(\Omega)}<\infty$.
Let be $\varphi \in C_{c}^{1}\left(\mathbb{R}^{N}\right)$. Integrating by parts, we have

$$
\int_{\Omega} \Delta u_{w}^{R} \frac{\partial \varphi}{\partial x_{i}} d x=-\int_{\Omega} \varphi \frac{\partial \Delta u_{w}^{R}}{\partial x_{i}}+\int_{\partial \Omega} \Delta u_{w}^{R} \varphi \nu^{i} d s
$$

Then,

$$
\left|\int_{\Omega} \Delta u_{w}^{R} \frac{\partial \varphi}{\partial x_{i}} d x\right| \leq\left|\int_{\Omega} \varphi \frac{\partial \Delta u_{w}^{R}}{\partial x_{i}} d x\right| \leq\left\|u_{w}^{R}\right\|_{W^{3,2}(\Omega)}|\varphi|_{L^{2}(\Omega)}
$$

Now, by [7, Prop IX.18] we obtain

$$
\begin{equation*}
\Delta u_{w}^{R} \in H_{0}^{1}(\Omega) \tag{3.18}
\end{equation*}
$$

Now, let us consider the following notation

$$
\begin{gathered}
v=\Delta u_{w}^{R}+q u_{w}^{R} \\
g(x)=f_{R}\left(x, u_{w}^{R}, \nabla w, \Delta w\right)-\alpha(x) u_{w}^{R}
\end{gathered}
$$

Notice that v and u_{w}^{R} are solutions in the weak sense of the respective differential equations with Dirichlet boundary condition, namely,

$$
\begin{align*}
& \Delta v=g(x), \quad \text { in } \Omega \tag{3.19}\\
& v(x)=0, \quad \text { on } \partial \Omega,
\end{align*}
$$

and

$$
\begin{gather*}
\Delta u_{w}^{R}+q u_{w}^{R}=v(x), \quad \text { in } \Omega \\
u_{w}^{R}(x)=0, \quad \text { on } \partial \Omega \tag{3.20}
\end{gather*}
$$

By the Sobolev embedding, we have $u_{w}^{R} \in L^{q}(\Omega)$, with $q=2 N /(N-4)$. By (F2), we have that $g \in L^{s}(\Omega)$ with $s=\frac{q}{p}$, where p is given in (F2).

We want to show that $u_{w}^{R} \in W^{4, r}(\Omega)$, for some r such that $4 r>N$. If $4 s>N$, it is sufficient to take $r=s$. In fact, applying Agmon [2, Theorem 8.2], we have $u_{w}^{R} \in W^{4, r}(\Omega)$. Now, suppose that $4 s<N$. By the Sobolev embedding,

$$
u_{w}^{R} \in L^{q_{1}}(\Omega), \quad \text { where } q_{1}=\frac{N s}{N-4 s}
$$

By (F2), we have $g \in L^{s_{1}}$ with $s_{1}=q_{1} / p$.

From [2, Theorem 8.2], we have $v \in W^{2, s_{1}}(\Omega)$ and $u_{w}^{R} \in W^{4, s_{1}}(\Omega)$. Since $1<$ $p<\frac{N+4}{N-4}$, there exists a $\epsilon>0$ such that

$$
s=(1+\epsilon) \frac{2 N}{N+4}
$$

Thus,

$$
\frac{s_{1}}{s}=\frac{q_{1}}{q}=\frac{s N}{N-4 s} \frac{N-4}{2 N}=(1+\epsilon) \frac{N(N-4)}{(N+4)(N-4 s)}
$$

But notice that (it is sufficient we substitute $s=(1+\epsilon) 2 N /(N+4)$),

$$
\frac{N(N-4)}{(N+4)(N-4 s)}>1
$$

Therefore, $s_{1} / s>1+\epsilon$. This argument is known as a bootstrap.
If $4 s_{1}<N$, applying again the bootstrap argument, we obtain $u_{w}^{R} \in W^{4, s_{2}}$, where

$$
s_{2}=\frac{N s_{1}}{p\left(N-4 s_{1}\right)}
$$

Therefore,

$$
\frac{s_{2}}{s_{1}}=\frac{N s_{1}(N-4 s)}{N s\left(N-4 s_{1}\right)}>(1+\epsilon) \frac{N-4 s}{N-4 s_{1}}>(1+\epsilon)
$$

We can repeat this last argument a finite times to obtain that $u_{w}^{R} \in W^{4, r}(\Omega)$, for some r such that $4 r \geq N$.

For the case $4 r=N$, since $g \in L^{r}(\Omega)$, we have that $g \in L^{k}(\Omega)$ for some $k<r$ such that $(1+\epsilon) k>r$. Applying again the bootstrap argument, we conclude that $u_{w}^{R} \in W^{4, r}(\Omega)$, with $4 r>N$.

Therefore, we can apply the Sobolev-Morrey Theorem to show that $u_{w}^{R} \in C^{\alpha}(\bar{\Omega})$, for some $\alpha \in(0,1)$. By (F0) and (A1), we have that

$$
g(x)=f_{R}\left(x, u_{w}^{R}, \nabla w, \Delta w\right)-\alpha(x) u_{w}^{R} \in C^{\beta}(\bar{\Omega}), \quad \text { for some } \beta \in(0,1)
$$

By applying the Schauder estimates in 3.19), we obtain that $v \in C^{2, \beta}(\bar{\Omega})$. By applying the Schauder estimates again, in (3.20), we obtain

$$
\begin{equation*}
u \in C^{4, \beta}(\bar{\Omega}) \tag{3.21}
\end{equation*}
$$

To conclude, notice that by 3.18 and 3.21, we have $\Delta u_{w}^{R}(x)=0$, if $x \in \partial \Omega$.
Lemma 3.5. There exist positive constants μ_{0}, μ_{1} and μ_{2}, independent of $R>0$ and of $w \in X$, such that

$$
\begin{gathered}
\left\|u_{w}^{R}\right\|_{C^{0}} \leq \mu_{0}(R+2)^{r} \\
\left\|\nabla\left(u_{w}^{R}\right)\right\|_{C^{0}} \leq \mu_{1}(R+2)^{r} \\
\left\|\Delta\left(u_{w}^{R}\right)\right\|_{C^{0}} \leq \mu_{2}(R+2)^{r}
\end{gathered}
$$

Also, there exists $\bar{R}>0$ such that $\mu_{i}(\bar{R}+2)^{r} \leq \bar{R}$, for $i=0,1,2$.
Proof. This result follows combining Lemma 3.3 and the results of the Sobolev embedding by arguing as in the proof Lemma 3.4.

To obtain $\bar{R}>0$ such that $\mu_{i}(\bar{R}+2)^{r} \leq \bar{R}$, it is sufficient to observe that $r<1$, and therefore

$$
\frac{\mu_{i}}{\bar{R}^{1-r}}\left(\frac{\bar{R}+2}{\bar{R}}\right)^{r} \leq 1
$$

for \bar{R} sufficiently large.

Now, let us "construct" a nontrivial solution for problem (1.1). Consider the following problem: Let $u_{0} \in X \cap C^{4, \lambda}(\bar{\Omega}), \lambda \in(0,1)$, and $u_{n}(n=1,2, \ldots)$ be a weak solution of the problem $\left(P_{n}\right)$, that is, problem 2.2), with $w=u_{n-1}$, which was found by the mountain pass Theorem in Lemma 3.2 and $R=\bar{R}$ obtained in Lemma 3.5.

Note that from Lemma 3.4 we have $u_{n} \in C^{4}(\bar{\Omega})$ and from Lemmas 3.3 and 3.5 we infer that $\left\|u_{n}\right\| \geq d_{2}$ and

$$
\left\|u_{n}\right\|_{C^{0}},\left\|\nabla u_{n}\right\|_{C^{0}},\left\|\Delta u_{n}\right\|_{C^{0}} \leq \bar{R}
$$

respectively. Thus,

$$
\begin{aligned}
f_{\bar{R}}\left(x, u_{n}, \nabla u_{n-1}, \Delta u_{n-1}\right) & =f\left(x, u_{n}, \nabla u_{n-1} \varphi_{\bar{R}}\left(\nabla u_{n-1}\right), \Delta u_{n-1} \varphi_{\bar{R}}\left(\Delta u_{n-1}\right)\right) \\
& =f\left(x, u_{n}, \nabla u_{n-1}, \Delta u_{n-1}\right) .
\end{aligned}
$$

So, u_{n} is a weak solution of problem $\left(P_{n}\right)$.
Remark 3.6. When the diameter of Ω approaches zero, by an easy calculation in the proof of Lemma 3.5, it is possible to choose $\mu_{i}(i=0,1,2)$ sufficiently small.
Lemma 3.7. In hypothesis (F5), let us take

$$
\begin{gathered}
\rho_{1}=\inf \left\{k_{1}:\left\|u_{n}\right\|_{C^{0}} \leq k_{1}, \forall n \in \mathbb{N}\right\}>0 \\
\rho_{2}=\inf \left\{k_{2}:\left\|\nabla u_{n}\right\|_{C^{0}} \leq k_{2}, \forall n \in \mathbb{N}\right\}>0 \\
\rho_{3}=\inf \left\{k_{3}:\left\|\Delta u_{n}\right\|_{C^{0}} \leq k_{3}, \forall n \in \mathbb{N}\right\}>0
\end{gathered}
$$

Then $\left\{u_{n}\right\}$ converges strongly in X.
Remark 3.8. We recall that the constant d_{1} (Lemma 3.3) is obtained using only the conditions (F1)-(F4), and the constants $\rho_{1}, \rho_{2}, \rho_{3}$ are exhibited combining the constant d_{1} with the Sobolev embedding constants. Thus, as is pointed out in 14, the condition (F5) can be read as a constraint on the growth coefficients of f with respect to dimension N.

Proof of Lemma 3.7. In this proof we will use a similar argument that used in 12 and [14]. Let u_{n} and u_{n+1} be a weak solutions of problems $\left(P_{n}\right)$ and $\left(P_{n+1}\right)$, respectively. Then, multiplying $\left(P_{n+1}\right)$ resp. $\left(P_{n}\right)$ by $\left(u_{n+1}-u_{n}\right)$ and integrating by parts, and applying Lemma 2.2 we obtain

$$
\begin{aligned}
& \gamma\left\|u_{n+1}-u_{n}\right\|^{2} \\
& \leq \int_{\Omega}\left[f\left(x, u_{n+1}, \nabla u_{n}, \Delta u_{n}\right)-f\left(x, u_{n}, \nabla u_{n}, \Delta u_{n}\right)\right]\left(u_{n+1}-u_{n}\right) d x \\
&+\int_{\Omega}\left[f\left(x, u_{n}, \nabla u_{n}, \Delta u_{n}\right)-f\left(x, u_{n}, \nabla u_{n-1}, \Delta u_{n}\right)\right]\left(u_{n+1}-u_{n}\right) d x \\
&+\int_{\Omega}\left[f\left(x, u_{n}, \nabla u_{n-1}, \Delta u_{n}\right)-f\left(x, u_{n}, \nabla u_{n-1}, \Delta u_{n-1}\right)\right]\left(u_{n+1}-u_{n}\right) d x
\end{aligned}
$$

Thus, by (F5) and the Hölder inequality we obtain

$$
\begin{aligned}
\gamma\left\|u_{n+1}-u_{n}\right\|^{2} \leq & \tau_{1}^{2} L_{\rho_{1}}\left\|u_{n+1}-u_{n}\right\|^{2}+\tau_{1} \tau_{2} L_{\rho_{2}}\left\|u_{n}-u_{n-1}\right\|\left\|u_{n+1}-u_{n}\right\| \\
& +\tau_{1} \tau_{3} L_{\rho_{3}}\left\|u_{n}-u_{n-1}\right\|\left\|u_{n+1}-u_{n}\right\|
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left\|u_{n+1}-u_{n}\right\| \leq \frac{\left(\tau_{1} \tau_{2} L_{\rho_{2}}+\tau_{1} \tau_{3} L_{\rho_{3}}\right)}{\gamma-\tau_{1}^{2} L_{\rho_{1}}}\left\|u_{n}-u_{n-1}\right\| \tag{3.22}
\end{equation*}
$$

Hence it follows that the sequence u_{n} converges strongly to function u, in X.
Proof of Theorem 1.1. First of all, as before, we obtain that $\left\|u_{n}\right\| \geq d_{2}>0$. Also, we see that,

$$
\left\|u_{n}\right\|_{C^{0}}, \quad\left\|\nabla u_{n}\right\|_{C^{0}}, \quad\left\|\Delta u_{n}\right\|_{C^{0}}
$$

are uniformly bounded. Now, from $\left(P_{n}\right)$, notice that $v_{n}=\Delta u_{n}$ verifies the equation

$$
\Delta v_{n}=h(x), \quad x \in \bar{\Omega}
$$

where

$$
h(x)=f\left(x, u_{n}, \nabla u_{n-1}, \Delta u_{n-1}\right)-q \Delta u_{n}-\alpha(x) u_{n}
$$

Since $\|h\|_{C^{\beta}} \leq C$, for some positive constant C, by the Schauder Theorem follows that there exists a constant $C>0$ such that $\left\|v_{n}\right\|_{C^{2, \beta}} \leq C$; therefore,

$$
\left\|u_{n}\right\|_{C^{4, \beta}} \leq C
$$

From Arzela-Ascoli Theorem, passing to a subsequence, if necessary, we conclude that

$$
\frac{\partial^{j}}{\partial x_{i}^{j}} u_{n} \rightarrow \frac{\partial^{j}}{\partial x_{i}^{j}} u, \quad \text { as } n \rightarrow \infty
$$

uniformly in $\bar{\Omega}$ for $j=0,1, \ldots, 4$ and $i=1, \ldots, N$. Actually, from Lemma 3.7, all the subsequences of $\frac{\partial^{j}}{\partial x_{i}^{j}} u_{n}$ have the same limit, so the whole sequence

$$
\frac{\partial^{j}}{\partial x_{i}^{j}} u_{n} \rightarrow \frac{\partial^{j}}{\partial x_{i}^{j}} u, \quad \text { as } n \rightarrow \infty, \text { for } j=0,1, \ldots, 4
$$

Therefore, passing to the limit in $\left(P_{n}\right)$, we obtain that u is a classical solution of (1.1). Hence, the proof of Theorem 1.1 is complete.

Acknowledgments. L. Faria was supported in part by FAPEMIG - Brazil. O. Miyagaki was supported in part by CNPq - Brazil, INCTmat-CNPQ- MCT/Brazil, Fapemig CEX APQ 0609-5.01/07 and CAPES Pro Equipamentos 01/2007.

References

[1] A. R. Aftabizadeh; Existence and uniqueness theorem for fourth-order boundary value problems, J. Math. Anal. Appl. 116 (1986), 416-426.
[2] S. Agmon; The L_{p} approach to the Dirichlet problem. I. Regularity theorems, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 405-448.
[3] A. Ambrosetti and P. H. Rabinowitz; Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
[4] G. Arioli and F. Gazzola, H. Ch. Grunau and E. Mitidieri; A semilinear fourth order elliptic problem with exponential nonlinearity, SIAM J. Math. Anal. 36 (2005), 1226-1258.
[5] F. Bernis, J. Garcia Azorero and I. Peral; Existence and multiplicity of nontrivial solutions in semilinear critical problem of fourth order, Adv. Diff. Eqns. 1 (1996), 219-240.
[6] D. Bonheure, L. Sanchez, M. Tarallo and S. Terracini; Heteroclinic connections between nonconsecutive equilibria of a fourth order differential equation, Calc. Var. 17 (2003), 341356.
[7] H. Brezis; Analyse fonctionnelle théorie et applications, Masson, Paris, (1983).
[8] P. C. Carrião, L. F. O. Faria and O. H. Miyagaki; Periodic solutions for extended FisherKolmogorov and Swift-Hohenberg equations by truncature techniques, Nonlinear Anal. 67 (2007), 3076-3083.
[9] J. Chaparova; Existence and numerical aproximations of periodic solutions of semilinear fourth-order differential equations, J. Math. Anal. Appl. 273 (2002), 121-136.
[10] C. De Coster, C. Fabry and F. Munyamarere; Nonresonance conditions for fourth-order nonlinear boundary value problems, Internat. J. Math. Sci. 17 (1994), 725-740.
[11] M. A. Del Pino and R. F Manasevich; Existence for a fourth-order nonlinear boundary problem under a two-parameter nonresonance contition, Proc. Amer. Math. Soc. 112 (1991), 81-86.
[12] D. De Figueiredo, M. Girardi and M. Matzeu; Semilinear elliptic equations with dependence on the gradient via mountain pass techniques, Differential and Integral Equations 17 (2004), 119-126.
[13] D. E. Edmunds, D. Fortunato and E. Jannelli; Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal. 112 (1990), no. 3, 269-289.
[14] M. Girardi and M. Matzeu; Positive and negative solutions of a quasi-linear elliptic equation by a mountain pass method and truncature techniques, Nonlinear Anal, 59 (2004), 199-210.
[15] M. R. Grossinho, L. Sanchez and S. A. Tersian; On the solvability of a boundary value problem for a fourth-order ordinary differential equation, Appl. Math. Letters 18 (2005), 439-444.
[16] Z. Jin; A truncation method for semilinear elliptic equations, Comm. P.D.E. 19 (1994), 605616.
[17] A. C. Lazer and P. J. McKenna; Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl. 181 (1994), 648-655.
[18] R.Y. Ma and H. Y. Wang; On the existence of positive solutions of fourth-order ordinary differential equation, Appl. Anal. 59 (1995), 225-231.
[19] A. M. Micheletti and A. Pistoia; Multiplicity results for a fourth-order semilinear problem, Nonlinear Anal. 31 (1998), 895-908.
[20] E.S. Noussair, C.A. Swanson and J. Yang, Critical semilinear biharmonic equations in \mathbb{R}^{N}, Proc. Royal Soc. Edinburg 121A (1992), 139-148.
[21] L. A. Peletier and V. Rottschäfer, Pattern selection of solutions of the Swift-Hohenberg equation, Physica D 194 (2004), 95-126.
[22] L. A. Peletier and R. C. A. M. van der Vorst; Existence and nonexistence of positive solutions of nonlinear elliptic systems and biharmonic equation, Differential Integral Equations 5 (1992), 747-767.
[23] A. Qian and S. Li; On the existence of nontrivial solutions for a fourth-order semilinear elliptic problem, Abstr. Appl. Anal. (2005), no. 6, 673-683.
[24] D. Smets and J.B. van den Berg; Homoclinic solutions for Swift-Hohenberg and suspension bridge type equations, J. Diff. Eqns. 184 (2002), 78-96.
[25] G. Tarantello; A note on a semilinear elliptic value problem, Differential Integral Equations, 5 (1992) 561-565.
[26] S. Tersian and J. Chaparova; Periodic and homoclinic solutions of extended FisherKolmogorov equations J. Math. Appl. Anal. 260(2001), 490-506.
[27] J. B. M. Xavier; Some existence theorems for equations of the form $-\Delta u=f(x, u, D u)$, Nonlinear Anal. 15 (1990), 59-67.
[28] Z. Yan; A note on the solvability in $W^{2, p}(\Omega)$ for the equation $-\Delta u=f(x, u, D u)$, Nonlinear Anal. 24 (1995), 1413-1416.

Paulo C. Carrião
Departamento de Matemática, Universidade Federal de Minas Gerais, 31270-010 Belo Horizonte (MG), Brazil

E-mail address: carrion@mat.ufmg.br
Luiz F. O. Faria
Departamento de Matemática, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora (MG), Brazil

E-mail address: luiz.faria@ufjf.edu.br
Olímpio H. Miyagaki
Departamento de Matemática, Universidade Federal de Viçosa, 36571-000 Viçosa (MG), Brazil

E-mail address: olimpio@ufv.br

[^0]: 2000 Mathematics Subject Classification. 31B30, 35G30, 35J40, 47H15.
 Key words and phrases. Biharmonic; Navier boundary condition; truncation techniques; iteration method.
 (C) 2009 Texas State University - San Marcos.

 Submitted March 22, 2009. Published August 6, 2009.

