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A BIHARMONIC ELLIPTIC PROBLEM WITH DEPENDENCE
ON THE GRADIENT AND THE LAPLACIAN

PAULO C. CARRIÃO, LUIZ F. O. FARIA, OLÍMPIO H. MIYAGAKI

Abstract. We study the existence of solutions for nonlinear biharmonic equa-
tions that depend on the gradient and the Laplacian, under Navier boundary

condition. Our main tools are an iterative scheme of the mountain pass “aprox-

imated” solutions, and the truncation method developed by de Figueiredo,
Girardi and Matzeu.

1. Introduction

We prove the existence of nontrivial solutions for the equation

∆2u + q∆u + α(x)u = f(x, u,∇u, ∆u) in Ω

u(x) = 0, ∆u(x) = 0 on ∂Ω,
(1.1)

where ∆2 is the biharmonic operator and Ω ⊂ RN , N ≥ 1, is a bounded domain
with smooth boundary ∂Ω.

The above fourth-order semilinear elliptic problem, when f does not depend on
derivatives of u, has been studied by many authors; see [4, 5, 20, 22] and references
therein. In this case variational techniques are widely applied to obtain existence
of solutions.

When Ω = R and q > 0 the problem (1.1) is is called the Swift-Hohenberg
equation, and for q > 0 it is called the extended Fisher-Kolmogorov equation.
For this class of problems the existence of homoclinic, heteroclinic and periodic
solutions have been obtained by several researchers mainly when f does not depend
on derivatives; see e. g. [6, 9, 15, 21, 24, 26]. The reader is refereed to [1, 10, 11, 17,
18] for the case Ω = (0, 1) and f depending on the second order derivative but not
on the first derivative of u. Recently, the authors in [8] studied a situation where f
depends on the first and second order derivatives. For studies with nonlinearities
of the form f(x, u, ∆u) the reader is referred to [13, 19, 23, 25] and references there
in.

In our case, due to the presence of the gradient and the Laplacian of u in f ,
the problem is not variational whihc creates additional difficulties. For instance
the critical point theory can not be applied directly. We recall that, to overcome
this difficult, Xavier [27] and Yan [28] handled some semilinear elliptic problems of
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the second order involving the gradient by using monotone iterative methods. We
apply a technique developed by De Figueiredo, Girard and Matzeu [12] (see also
Girard and Matzeu [14]) which “freezes” the gradient variable and use truncation
on the nonlinearity f . Thus the new problem becomes variational. The idea of
this approach is to consider a class of problems through an iterative scheme where
the approximated problem has a nontrivial solution via mountain pass Theorem.
Then one obtains estimates in H2(Ω) ∩H1

0 (Ω)-norm and C2-norm. Passing to the
limit in a sequence of the approximated solutions we gets a solution of the original
problem. In general, a semilinear Navier fourth-order problem is equivalent to the
semilinear Dirichlet problem for a system of two coupled second order equations
but it is not clear that the truncation method works for the system.

To state our results, let us assume the following conditions:
(A1) α is a Hölder-continuous function.
(A2) There are positive constants a, b verifying 0 < a ≤ α(x) < b, ∀x ∈ R.
(A3) q ∈ (−∞, 2

√
a).

(F0) f : Ω× R× RN × R → R is locally Lipschitz continuous.
(F1) limt→0 f(x, t, ξ1, ξ2)/t = 0 uniformly with respect to x ∈ Ω, ξ1 ∈ RN and

ξ2 ∈ R.
(F2) There exist a1 > 0, p ∈ (1, N+4

N−4 ), (N ≥ 5), r1 and r2 , such that r :=
r1 + r2 < 1 and

|f(x, t, ξ1, ξ2)| ≤ a1(1 + |t|p)(1 + |ξ1|r1)(1 + |ξ2|r2),

for all (x, t, ξ1, ξ2) ∈ Ω× RN+2.
(F3) There exist θ > 2 and t0 > 0 such that

0 < θF (x, t, ξ1, ξ2) ≤ tf(x, t, ξ1, ξ2), ∀x ∈ Ω, |t| ≥ t0, (ξ1, ξ2) ∈ RN+1,

where F (x, t, ξ1, ξ2) =
∫ t

0
f(x, s, ξ1, ξ2)ds.

(F4) There exists a2, a3 > 0 such that

F (x, t, ξ1, ξ2) ≥ a2|t|θ − a3, ∀x ∈ Ω, (t, ξ1, ξ2) ∈ RN+2.

Denote by yi,j , (i = 1, 2, 3) the vectors

y1,j = (yj
1, y2, y3), y2,j = (y1, y

j
2, y3), y3,j = (y1, y2, y

j
3).

For i, k = 1, 2, 3 and j = 1, 2, we define the numbers:

Lρi = sup
{ |f(x, yi,1)− f(x, yi,2)|

|y1
i − y2

i |
: (x, yi,j) ∈ Ai

}
,

where
Ai = {(x, yi,j) ∈ Ω× RN+2, |yj

i | ≤ ρi, |yk| ≤ ρk(i 6= k)},
for some constants ρi > 0.

(F5) There exist positive numbers ρi (i = 1, 2, 3) depending on q, θ, a1, a2 and
a3, in an explicit way, such that the above positive numbers Lρi

(i = 1, 2, 3)
satisfy the relation

(τ1Lρ1 + τ2Lρ2 + τ3Lρ3)τ1 < γ,

where γ is as in Lemma 2.2 and τi (i = 1, 2, 3) are the optimal constants
(that is, the smaller constants) of the inequalities( ∫

Ω

|u|2dx
)1/2

≤ τ1‖u‖,
( ∫

Ω

|∇u|2dx
)1/2

≤ τ2‖u‖,
( ∫

Ω

|∆u|2dx
)1/2

≤ τ3‖u‖,
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where ‖u‖2 = (u, u) and (u, v) =
∫
Ω
(∆u∆v +∇u∇v + uv)dx.

Under such hypotheses, we prove the following result.

Theorem 1.1. If (A1)–(A3), (F0)–(F5) hold, then there exists at least one classical
solution of (1.1).

Example: Suppose β and δ positive and continuous functions. If f(x, t, ξ1, ξ2) =
β(x)|t|t(1+|ξ1|)1/4(1+|ξ2|)1/4+δ(x)t3, then it satisfies all the conditions (F0)–(F5).

Remark 1.2. If Ω = δΩ′, with δ > 0 and Ω′ is a bounded domain containing the
origin, all functions verifying the growth conditions (F1)–(F4) satisfy the condition
(F5) for δ small sufficient. It occurs because the constants τi (i = 2, 3) and Lρi

(i = 1, 2, 3) do not increase as δ approaches zero, and, by Poincaré inequality, we

can choose τ1 = ( δ(diameter of Ω′)
wN

)1/N with wN the measure of the unity ball in
RN .

2. Notation and a technical result

Let X ≡ H2(Ω)∩H1
0 (Ω), which is a Hilbert space with inner product and norm

given in the previous section. Since (1.1), in general, is not variational we use
a “freezing” technique whose formulation appears initially in [12]. This technique
consists of associating to the problem (1.1) a family of problems without dependence
of f in the gradient and Laplacian of the solution. That is, for each w ∈ X fixed
we consider the “freezed” problem given by

∆2uw + q∆uw + α(x)uw = f(x, uw,∇w,∆w) in Ω

uw(x) = 0, ∆uw(x) = 0 on ∂Ω.
(2.1)

The nonexistence of a priori estimates, with respect to the norms of the gradient
and Laplacian of the solution, is the main difficulty for using variational techniques.
Thus, we consider, for each R > 0 fixed, the truncated “functions”

fR(x, t, ξ1, ξ2) = f(x, t, ξ1ϕR(ξ1), ξ2ϕR(ξ2)),

and

FR(x, t, ξ1, ξ2) =
∫ t

0

fR(x, s, ξ1, ξ2)ds,

where ϕR ∈ C1(R), |ϕR| ≤ 1 and

ϕR(ξ) =

{
1 if |ξ| ≤ R,

0 if |ξ| ≥ R + 1.

This argument appears initially in [16]. See also [14].

Remark 2.1. Note that |ξϕR(ξ)| ≤ R + 1, for all ξ ∈ R.

Thus, for each w ∈ X and R > 0 fixed, we consider “truncated” and “freezed”
problem, given by

∆2uR
w + q∆uR

w + α(x)uR
w = fR(x, uR

w,∇w,∆w) in Ω

uR
w(x) = 0, ∆uR

w(x) = 0 on ∂Ω.
(2.2)

The associated functional IR
w : X → R is

IR
w (v) =

1
2

∫
Ω

[(∆v)2 − q(∇v)2 + α(x)v2]dx−
∫

Ω

FR(x, v,∇w,∆w)dx. (2.3)
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The following technical Lemma gives us a new and equivalent norm in X.

Lemma 2.2. Suppose α and q satisfy (A1)–(A3). Then there exist positive con-
stants η and γ such that

γ‖u‖2 ≤
∫

Ω

(∆u2 − q∇u2 + α(x)u2)dx ≤ η‖u‖2, ∀u ∈ H2(Ω).

Proof. The constant η is obtained taking η = max{−q, b, 1}. To obtain γ, notice
that if q < 0, it is sufficient to take γ = min{−q, a, 1}. In the case where q ≥ 0,
and Ω ⊂ R, γ will be taken as in [26, Lemma 8]. For Ω ⊂ RN , N > 1, the proof
can be adapted from [26, Lemma 8]. �

3. Proof of main theorem

We assume N ≥ 5; the case N ∈ [1, 4] is easier. The proof of Theorem 1.1 is
achieved with several lemmas. The following result establishes the mountain pass
geometry for the functional IR

w .

Lemma 3.1. Let w ∈ X and R > 0 be fixed. Then

(i) there exist positive constants ρ = ρR and α = αR such that IR
w (v) ≥ α, for

all v ∈ X with ‖v‖ = ρ.
ii) fix v0 with ‖v0‖ = 1; there is a T > 0 such that IR

w (tv0) ≤ 0, for all t > T .

Proof. By (F1), given any ε > 0 there exists some δ > 0 such that |v| < δ, implies

FR(x, v,∇w,∆w) ≤ ε
v2

2
. (3.1)

Now, if |v| ≥ δ, by (F2) and by Remark 2.1, there exists some constant k = k(δ)
such that

FR(x, v,∇w,∆w) ≤ k|v|p+1(R + 2)r. (3.2)

Thus, by inequalities (3.1) and (3.2) and by Lemma 2.2 we have

IR
w (v) ≥ γ

2
‖v‖2 − ε

2

∫
Ω

|v|2dx− k(R + 2)r

∫
Ω

|v|p+1dx.

So, by the Sobolev embedding Theorem we have

IR
w (v) ≥ 1

2
(γ − Cε)‖v‖2 − kC(R + 2)r‖v‖p+1,

for some positive constant C. Then for a ε small sufficient, we can choose ρ = ρR

and α = αR, both independent of w, such that the first part of the result holds.
Now, take an arbitrary v0 ∈ X with ‖v0‖ = 1. By (F4) and Lemma 2.2

IR
w (tv0) ≤

η|t|2

2
‖v0‖2 − a2|t|θ

∫
Ω

|v0|θdx + a3|Ω|.

Since θ > 2, it is possible to choose T > 0 such that IR
w (tv0) ≤ 0, for all t > T . �

Lemma 3.2. For any w ∈ X, R > 0, problem (2.2) has a nontrivial weak solution.

Proof. First of all, from Lemma 2.2, (F0), (F1) and (F2), the functional IR
w is in

C1(X, R); see e.g. [3].
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Claim. IR
w satisfies the Palais-Smale condition; that is, every sequence (un) ⊂ X

such that
IR
w (un) → c and I

′R
w (un) → 0, as n →∞,

for some constant c, contains a convergent subsequence.

Verification of the Claim. Note that

IR
w (un)− 1

θ
〈I

′R
w (un), un〉 ≤ c + ‖un‖, ∀n > n0.

since θ > 2, from Lemma 2.2, it is standard to prove that,

‖un‖ < C, C > 0.

By the Rellich-Kondrachov Theorem, up to a subsequence, there exists u ∈ X such
that

un → u in Lp+1(Ω) as n →∞.

So, as n →∞, we have

fR(x, un,∇w,∆w) → fR(x, u,∇w,∆w) in L
p+1

p (Ω).

Therefore,∫
Ω

[fR(x, un,∇w,∆w)− fR(x, u,∇w,∆w)](un − u)dx → 0, as n →∞. (3.3)

Since (I
′R
w (un)− I

′R
w (u)) → −I

′R
w (u) and un ⇀ u weakly in X, we have

〈I
′R
w (un)− I

′R
w (u), un − u〉 → 0, as n →∞. (3.4)

Notice that by Lemma 2.2

〈I
′R
w (un)− I

′R
w (u), un − u〉+

∫
Ω

[fR(x, un,∇w,∆w)− fR(x, u,∇w,∆w)](un − u)dx

≥ γ‖un − u‖2.

Using (3.3) and (3.4) in the above inequality, we obtain that un → u(strong) in X
as n →∞. Thus, we conclude that the statement is true.

Applying the mountain pass Theorem, due to Ambrosetti-Rabinowitz [3], there
exists uR

w 6= 0 weak solution to problem (2.2) �

Lemma 3.3. Let R > 0 be fixed. Then there exist positive constants d1 := d1(R),
d2 := d2(R), independent of w, such that

d2 ≤ ‖uR
w‖ ≤ d1,

for all solution uR
w obtained in Lemma 3.2.

Proof. Notice that
IR
w (uR

w) ≤ max
t≥0

IR
w (tv0),

with v0 given as in Lemma 3.1. From (F4) and Lemma 2.2 we obtain

IR
w (tv0) ≤

t2

2
η − a2|t|θ

∫
Ω

|v0|θdx + a3|Ω|.

Since θ > 2 and |v0|θ 6= 0, the map

t ∈ R 7→ η
t2

2
− a2|t|θ

∫
Ω

|v0|θdx + a3|Ω|
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attains a positive maximum, independent of w and R. So we get a constant C such
that

IR
w (uR

w) ≤ C. (3.5)

Now, define

|||u|||2 =
∫

Ω

(∆u2 − q∇u2 + α(x)u2)dx,

which by Lemma 2.2 is an equivalent norm in X. By (3.5), we have

1
2
|||uR

w|||2 ≤ C +
∫

Ω

FR(x, uR
w,∇w,∆w), C > 0. (3.6)

Let t0 be as in condition (F3), and define D := {x ∈ Ω; |uR
w(x)| > t0}. Keeping

in mind that uR
w is a solution from (F2) and (F3) and by Remark 2.1, we have∫

Ω

FR(x, uR
w,∇w,∆w) =

∫
Ω\D

FR(x, uR
w,∇w,∆w) +

∫
D

FR(x, uR
w,∇w,∆w)

≤ a1(R + 2)r
(
t0 +

|t0|p+1

p + 1

)
|Ω\D|+ 1

θ
|||uR

w|||2.

Returning to equation (3.6) we have

1
2
|||uR

w|||2 ≤ C + a1(R + 2)r
(
t0 +

|t0|p+1

p + 1

)
|Ω\D|+ 1

θ
|||uR

w|||2,

where |Ω\D| denotes the Lebesgue measure in RN of the set Ω\D. Again by Lemma
2.2, we have

γ
(1
2
− 1

θ

)
‖uR

w‖2 ≤
(1
2
− 1

θ

)
|||uR

w|||2 ≤ C + a1(R + 2)r
(
t0 +

|t0|p+1

p + 1
)
|Ω\D|.

Thus, we can conclude that exists c1 > 0 such that

γ
(1
2
− 1

θ

)
‖uR

w‖2 < c1(R + 2)r;

that is, ‖uR
w‖ ≤ d1, for some d1 = d1(R) > 0.

Now, we shall prove that there exists d2 > 0 such that ‖uR
w‖ > d2. In fact, notice

that
I

′R
w (uR

w)(uR
w) = 0, (3.7)

and from (F1) and (F2), given ε > 0, there exists Cε > 0 such that

|fR(x, uR
w,∇w,∆w)| ≤ ε|uR

w|+ Cε|uR
w|p(R + 2)r. (3.8)

Inserting (3.8) in (3.7) and using Lemma 2.2, we have

γ‖uR
w‖2 ≤ C1ε‖uR

w‖2 + C2Cε‖uR
w‖p+1(R + 2)R,

for some constants C1, C2 ≥ 0. Therefore, there exists d2 > 0 such that ‖uR
w‖ ≥ d2.

This completes the proof. �

Lemma 3.4. Choose w ∈ C4,α(Ω), for some α ∈ (0, 1), and let R > 0 be fixed. If
uR

w ∈ X is a weak solution of problem (2.2), then uR
w ∈ C4,β(Ω), for some β ∈ (0, 1),

and ∆(uR
w)(x) = 0 if x ∈ ∂Ω.
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Proof. Let uR
w ∈ X be a weak solution of (2.2). Define v = ∆uR

w and

g(x) = fR(x, uR
w,∇w,∆w)− q∆uR

w − α(x)uR
w.

By hypotheses (F2), and the Sobolev embedding, notice that g(x) ∈ L2(Ω). So, v
is a weak solution of

∆v = g(x), in Ω,

in the following sense: For φ ∈ C∞c (Ω), we have∫
Ω

v∆φdx =
∫

Ω

gφdx.

From Agmon [2, Theorem 7.1’], we have that v ∈ H2
loc(Ω). Therefore, uR

w ∈ H4
loc(Ω).

Fix φ ∈ C∞c (Ω), since uR
w ∈ X is a weak solution of problem (2.2), we have∫

Ω

∆uR
w∆φdx− q

∫
Ω

∇uR
w∇φdx +

∫
Ω

α(x)uR
wφdx =

∫
Ω

fR(x, uR
w,∇w,∆w)φdx.

(3.9)
But suppφ ⊂⊂ Ω, so∫

Ω

(∆2uR
w + q∆uR

w + α(x)uR
w)φdx =

∫
Ω

fR(x, uR
w,∇w,∆w)φdx.

From the denseness of C∞c (Ω) in X = H2(Ω) ∩H1
0 (Ω) we conclude that∫

Ω

(∆2uR
w + q∆uR

w + α(x)uR
w)φdx =

∫
Ω

fR(x, uR
w,∇w,∆w)φdx ∀φ ∈ X. (3.10)

The Green identities guarantees∫
Ω

(∆uR
w∆φ− φ∆2uR

w)dx =
∫

∂Ω

(
∆uR

w

∂φ

∂ν
− φ

∂(∆uR
w)

∂ν

)
ds =

∫
∂Ω

∆uR
w

∂φ

∂ν
ds,

(3.11)

q

∫
Ω

∆uR
wφdx = q

∫
∂Ω

φ
∂uR

w

∂ν
ds− q

∫
Ω

∇uR
w∇φdx. (3.12)

So, combining (3.9), (3.10), (3.11) and (3.12), we have∫
∂Ω

∆uR
w

∂φ

∂ν
ds = 0. (3.13)

From (3.10), we obtain that

∆2uR
w + q∆uR

w + α(x)uR
w = fR(x, uR

w,∇w,∆w) a.e. in Ω. (3.14)

By Green’s identity,∫
Ω

∆2uR
w∆uR

wdx = −
∫

Ω

(∇∆uR
w)2dx +

∫
∂Ω

∂∆uR
w

∂ν
∆uR

wds.

By (3.13), we obtain ∫
Ω

∆2uR
w∆uR

wdx = −
∫

Ω

(∇∆uR
w)2dx. (3.15)

By Green’s identity,∫
Ω

∆uR
wuR

wdx = −
∫

Ω

(∇uR
w)2dx +

∫
∂Ω

∂uR
w

∂ν
uR

wds .
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Since uR
w ∈ H1

0 (Ω), we get∫
Ω

∆uR
wuR

wdx = −
∫

Ω

(∇uR
w)2dx. (3.16)

Multiplying ∆uR
w equation (3.14), and integrating by parts and using (3.15) and

(3.16), we obtain

−
∫

Ω

(∇∆uR
w)2dx + q

∫
Ω

(∆uR
w)2dx−

∫
Ω

α(x)(∇uR
w)2dx

=
∫

Ω

fR(x, uR
w,∇w,∆w)∆uR

wdx

(3.17)

By (F2) and Sobolev embbedding we can assume that( ∫
Ω

(fR(x, uR
w,∇w,∆w))2dx

)1/2

< ∞ .

Thus, from (3.17) we have ‖uR
w‖W 3,2(Ω) < ∞.

Let be ϕ ∈ C1
c (RN ). Integrating by parts, we have∫

Ω

∆uR
w

∂ϕ

∂xi
dx = −

∫
Ω

ϕ
∂∆uR

w

∂xi
+

∫
∂Ω

∆uR
wϕνids.

Then, ∣∣ ∫
Ω

∆uR
w

∂ϕ

∂xi
dx

∣∣ ≤ ∣∣ ∫
Ω

ϕ
∂∆uR

w

∂xi
dx

∣∣ ≤ ‖uR
w‖W 3,2(Ω)|ϕ|L2(Ω).

Now, by [7, Prop IX.18] we obtain

∆uR
w ∈ H1

0 (Ω). (3.18)

Now, let us consider the following notation

v = ∆uR
w + quR

w,

g(x) = fR(x, uR
w,∇w,∆w)− α(x)uR

w.

Notice that v and uR
w are solutions in the weak sense of the respective differential

equations with Dirichlet boundary condition, namely,

∆v = g(x), in Ω

v(x) = 0, on ∂Ω,
(3.19)

and
∆uR

w + quR
w = v(x), in Ω

uR
w(x) = 0, on ∂Ω.

(3.20)

By the Sobolev embedding, we have uR
w ∈ Lq(Ω), with q = 2N/(N − 4). By (F2),

we have that g ∈ Ls(Ω) with s = q
p , where p is given in (F2).

We want to show that uR
w ∈ W 4,r(Ω), for some r such that 4r > N . If 4s > N ,

it is sufficient to take r = s. In fact, applying Agmon [2, Theorem 8.2], we have
uR

w ∈ W 4,r(Ω). Now, suppose that 4s < N . By the Sobolev embedding,

uR
w ∈ Lq1(Ω), where q1 =

Ns

N − 4s
.

By (F2), we have g ∈ Ls1 with s1 = q1/p.
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From [2, Theorem 8.2], we have v ∈ W 2,s1(Ω) and uR
w ∈ W 4,s1(Ω). Since 1 <

p < N+4
N−4 , there exists a ε > 0 such that

s = (1 + ε)
2N

N + 4
.

Thus,
s1

s
=

q1

q
=

sN

N − 4s

N − 4
2N

= (1 + ε)
N(N − 4)

(N + 4)(N − 4s)
.

But notice that (it is sufficient we substitute s = (1 + ε)2N/(N + 4)),
N(N − 4)

(N + 4)(N − 4s)
> 1.

Therefore, s1/s > 1 + ε. This argument is known as a bootstrap.
If 4s1 < N , applying again the bootstrap argument, we obtain uR

w ∈ W 4,s2 ,
where

s2 =
Ns1

p(N − 4s1)
.

Therefore,
s2

s1
=

Ns1(N − 4s)
Ns(N − 4s1)

> (1 + ε)
N − 4s

N − 4s1
> (1 + ε).

We can repeat this last argument a finite times to obtain that uR
w ∈ W 4,r(Ω), for

some r such that 4r ≥ N .
For the case 4r = N , since g ∈ Lr(Ω), we have that g ∈ Lk(Ω) for some k < r

such that (1 + ε)k > r. Applying again the bootstrap argument, we conclude that
uR

w ∈ W 4,r(Ω), with 4r > N .
Therefore, we can apply the Sobolev-Morrey Theorem to show that uR

w ∈ Cα(Ω),
for some α ∈ (0, 1). By (F0) and (A1), we have that

g(x) = fR(x, uR
w,∇w,∆w)− α(x)uR

w ∈ Cβ(Ω), for some β ∈ (0, 1).

By applying the Schauder estimates in (3.19), we obtain that v ∈ C2,β(Ω). By
applying the Schauder estimates again, in (3.20), we obtain

u ∈ C4,β(Ω). (3.21)

To conclude, notice that by (3.18) and (3.21), we have ∆uR
w(x) = 0, if x ∈ ∂Ω. �

Lemma 3.5. There exist positive constants µ0, µ1 and µ2, independent of R > 0
and of w ∈ X, such that

‖uR
w‖C0 ≤ µ0(R + 2)r,

‖∇(uR
w)‖C0 ≤ µ1(R + 2)r,

‖∆(uR
w)‖C0 ≤ µ2(R + 2)r .

Also, there exists R > 0 such that µi(R + 2)r ≤ R, for i = 0, 1, 2.

Proof. This result follows combining Lemma 3.3 and the results of the Sobolev
embedding by arguing as in the proof Lemma 3.4.

To obtain R > 0 such that µi(R + 2)r ≤ R, it is sufficient to observe that r < 1,
and therefore

µi

R
1−r

(R + 2
R

)r

≤ 1

for R sufficiently large. �
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Now, let us “construct” a nontrivial solution for problem (1.1). Consider the
following problem: Let u0 ∈ X ∩ C4,λ(Ω), λ ∈ (0, 1), and un (n = 1, 2, . . .) be a
weak solution of the problem (Pn), that is, problem (2.2), with w = un−1, which
was found by the mountain pass Theorem in Lemma 3.2 and R = R obtained in
Lemma 3.5.

Note that from Lemma 3.4 we have un ∈ C4(Ω) and from Lemmas 3.3 and 3.5,
we infer that ‖un‖ ≥ d2 and

‖un‖C0 , ‖∇un‖C0 , ‖∆un‖C0 ≤ R,

respectively. Thus,

fR(x, un,∇un−1,∆un−1) = f(x, un,∇un−1ϕR(∇un−1),∆un−1ϕR(∆un−1))

= f(x, un,∇un−1,∆un−1).

So, un is a weak solution of problem (Pn).

Remark 3.6. When the diameter of Ω approaches zero, by an easy calculation in
the proof of Lemma 3.5, it is possible to choose µi (i = 0, 1, 2) sufficiently small.

Lemma 3.7. In hypothesis (F5), let us take

ρ1 = inf{k1 : ‖un‖C0 ≤ k1, ∀ n ∈ N} > 0,

ρ2 = inf{k2 : ‖∇un‖C0 ≤ k2, ∀ n ∈ N} > 0,

ρ3 = inf{k3 : ‖∆un‖C0 ≤ k3, ∀ n ∈ N} > 0.

Then {un} converges strongly in X.

Remark 3.8. We recall that the constant d1 (Lemma 3.3) is obtained using only
the conditions (F1)–(F4), and the constants ρ1, ρ2, ρ3 are exhibited combining the
constant d1 with the Sobolev embedding constants. Thus, as is pointed out in [14],
the condition (F5) can be read as a constraint on the growth coefficients of f with
respect to dimension N .

Proof of Lemma 3.7. In this proof we will use a similar argument that used in [12]
and [14]. Let un and un+1 be a weak solutions of problems (Pn) and (Pn+1),
respectively. Then, multiplying (Pn+1) resp. (Pn) by (un+1 − un) and integrating
by parts, and applying Lemma 2.2 we obtain

γ‖un+1 − un‖2

≤
∫

Ω

[f(x, un+1,∇un,∆un)− f(x, un,∇un,∆un)](un+1 − un)dx

+
∫

Ω

[f(x, un,∇un,∆un)− f(x, un,∇un−1,∆un)](un+1 − un)dx

+
∫

Ω

[f(x, un,∇un−1,∆un)− f(x, un,∇un−1,∆un−1)](un+1 − un)dx.

Thus, by (F5) and the Hölder inequality we obtain

γ‖un+1 − un‖2 ≤ τ2
1 Lρ1‖un+1 − un‖2 + τ1τ2Lρ2‖un − un−1‖‖un+1 − un‖

+ τ1τ3Lρ3‖un − un−1‖‖un+1 − un‖.
Therefore,

‖un+1 − un‖ ≤
(τ1τ2Lρ2 + τ1τ3Lρ3)

γ − τ2
1 Lρ1

‖un − un−1‖. (3.22)
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Hence it follows that the sequence un converges strongly to function u, in X. �

Proof of Theorem 1.1. First of all, as before, we obtain that ‖un‖ ≥ d2 > 0.
Also, we see that,

‖un‖C0 , ‖∇un‖C0 , ‖∆un‖C0

are uniformly bounded. Now, from (Pn), notice that vn = ∆un verifies the equation

∆vn = h(x), x ∈ Ω,

where
h(x) = f(x, un,∇un−1,∆un−1)− q∆un − α(x)un.

Since ‖h‖Cβ ≤ C, for some positive constant C, by the Schauder Theorem follows
that there exists a constant C > 0 such that ‖vn‖C2,β ≤ C; therefore,

‖un‖C4,β ≤ C.

From Arzela-Ascoli Theorem, passing to a subsequence, if necessary, we conclude
that

∂j

∂xj
i

un →
∂j

∂xj
i

u, as n →∞,

uniformly in Ω for j = 0, 1, . . . , 4 and i = 1, . . . , N . Actually, from Lemma 3.7, all
the subsequences of ∂j

∂xj
i

un have the same limit, so the whole sequence

∂j

∂xj
i

un →
∂j

∂xj
i

u, as n →∞, for j = 0, 1, . . . , 4.

Therefore, passing to the limit in (Pn), we obtain that u is a classical solution of
(1.1). Hence, the proof of Theorem 1.1 is complete.
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