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EXISTENCE OF SOLUTIONS FOR AN ABSTRACT
SECOND-ORDER DIFFERENTIAL EQUATION WITH

NONLOCAL CONDITIONS

EDUARDO HERNÁNDEZ

Abstract. We discuss the existence of mild solutions for abstract second-

order differential equation with nonlocal conditions. Also we consider some

application of our results.

1. Introduction

In this paper we study the existence of mild solutions for the abstract second
order differential system

d2

dt2
(
x(t)− g(t, x(t))

)
= Ax(t) + f(t, x(t)), t ∈ I := [0, a], (1.1)

x(0) = P (x0, x), (1.2)
d

dt
(x(t)− g(t, x(t)))

∣∣
t=0

= Q(y0, x), (1.3)

where A is the infinitesimal generator of a strongly continuous cosine family of
bounded linear operators (C(t))t∈R defined on a Banach space (X, ‖ · ‖), x0, y0 ∈ X
and f, g : I ×X → X, P,Q : X × C(I, X) → X are appropriate functions.

The study of initial-value problems with nonlocal conditions arises to deal spe-
cially with some situations in physics. For the importance of nonlocal conditions in
different fields we refer to [1, 3] and the references contained therein. There exists
a extensive literature treating the problem of the existence of solutions for first and
second order differential equations with nonlocal conditions. Concerning first order
differential systems we cite the pioneers Byszewski works [1, 3] and [4, 2] between
some contributions. In the case of second order differential equations with nonlocal,
we mention [16, 17, 18, 19] for systems described on finite dimensional spaces and
[6, 7, 8, 9, 10, 13, 14] for systems defined on abstract Banach spaces.

To the best of our knowledge, the existence of solutions for differential systems
with nonlocal conditions described in the abstract form (1.1)-(1.3) is a untreated
topic in the literature, and this fact, is the main motivation of the present paper. We
also remark that the ideas, results and the general technical framework introduced
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in this paper can be used in the study of second order abstract neutral differential
equations, which is an additional motivation.

First, we review some basic concepts, notation and properties needed to establish
our results. Throughout this paper, (X, ‖·‖) is a abstract Banach space and A is the
infinitesimal generator of a strongly continuous cosine family (C(t))t∈R of bounded
linear operators on X. We denote by (S(t))t∈R the associated sine function which
is defined by S(t)x =

∫ t

0
C(s)xds, for (t, x) ∈ R × X. In addition, N and Ñ are

positive constants such that ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ Ñ for every t ∈ I.
In this paper, [D(A)] represents the domain of A endowed with the graph norm

given by ‖x‖A = ‖x‖ + ‖Ax‖, x ∈ D(A), while E stands for the space formed by
the vectors x ∈ X for which C(·)x is of class C1 on R. We know from [12], that E
endowed with the norm

‖x‖E = ‖x‖+ sup
0≤t≤a

‖AS(t)x‖, x ∈ E,

is a Banach space. The operator valued function H(t) =
[

C(t) S(t)
AS(t) C(t)

]
is a

strongly continuous group of bounded linear operators on the space E × X gen-

erated by the operator A =
[
0 I
A 0

]
defined on D(A) × E. It follows from this

that AS(t) : E → X is a bounded linear operator and that AS(t)x → 0 as
t → 0, for each x ∈ E. Furthermore, if x : [0,∞) → X is locally integrable, then
y(t) =

∫ t

0
S(t− s)x(s)ds defines an E-valued continuous function. This assertion is

a consequence of the fact that∫ t

0

H(t− s)
[

0
x(s)

]
ds =

[∫ t

0
S(t− s)x(s) ds,

∫ t

0
C(t− s)x(s) ds

]T

defines an E × X-valued continuous function. In addition, it follows from the
definition of the norm in E that a function u : I → E is continuous if, and only if,
it is continuous with respect to the norm in X and the set of functions {AS(t)u(·) :
t ∈ [0, 1]} is an equicontinuous subset of C(I,X).

The existence of solutions for the second-order abstract Cauchy problem

x′′(t) = Ax(t) + h(t), t ∈ I, (1.4)

x(0) = w, x′(0) = z, (1.5)

where h : I → X is an integrable function, is studied in [21]. Similarly, the existence
of solutions of semi-linear second-order abstract Cauchy problems has been treated
in [20]. We mention here that the function x(·) given by

x(t) = C(t)w + S(t)z +
∫ t

0

S(t− s)h(s)ds, t ∈ I, (1.6)

is called a mild solution of (1.4)-(1.5). If w ∈ E, then the function x(·) is of class
C1 on I and

x′(t) = AS(t)w + C(t)z +
∫ t

0

C(t− s)h(s) ds, t ∈ I. (1.7)

For additional details on the cosine function theory, we cite [5, 20, 21, 22].
Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be Banach spaces. In this paper, the notation

L(Z,W ) stands for the Banach space of bounded linear operators from Z into
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W endowed with the uniform operator norm ‖ · ‖L(Z,W ). In addition, Br(x, Z)
represents the closed ball with center at x and radius r > 0 in Z.

This article has three sections. In the next section we discuss the existence
of mild solutions for the system (1.1)-(1.3). In Section 3, some applications are
considered.

2. Existence Results

In this section we study the existence of mild solutions for the system (1.1)-(1.3).
From the theory of cosine functions of operators, we introduce the next definition.

Definition 2.1. A function x ∈ C(I,X) is a mild solution of (1.1)-(1.3) if x(0) =
P (x0, x) and

x(t) = C(t)(P (x0, x)− g(0, P (x0, x))) + S(t)Q(y0, x) + g(t, x(t))

+
∫ t

0

AS(t− s)g(s, x(s))ds +
∫ t

0

S(t− s)f(s, x(s))ds, t ∈ I.
(2.1)

In the rest of this article, we assume the next hypotheses:
(H1) There exists a Banach space (Y, ‖ · ‖Y ) continuously included in X such

that AS(t) ∈ L(Y,X) for all t ∈ I, and AS(·)x ∈ C(I,X) for all x ∈ Y .
Let NY , Ñ1 be constants such that ‖x‖ ≤ NY ‖x‖Y for all x ∈ X, and
‖AS(t)‖L(Y,X) ≤ Ñ1 for all t ∈ I.

(H2) The cosine function (C(t))t∈R is such that the range of (C(t)− I) is closed
and dim ker(C(t)− I) < ∞ for all 0 < t ≤ a.

We now introduce some assumptions for the functions f, g, P and Q.
(H3) The function f(·, y) is strongly measurable for every y ∈ X, f(t, ·) is contin-

uous a.e for t ∈ I and g ∈ C(I ×X, Y ). There are positive constants c1, c2,
an integrable function mf : I → [0,∞) and a continuous nondecreasing
function Wf : [0,∞) → (0,∞) such that ‖f(t, y)‖ ≤ mf (t)Wf (‖y‖) and
max{‖g(t, y)‖Y , ‖g(t, y)‖} ≤ c1‖y‖+ c2 for all (t, y) ∈ I ×X.

(H4) The function f(·, y) : I → X strongly measurable for every y ∈ X, g ∈
C(I ×X, Y ) and there are positive numbers Lf , Lg such that

‖g(t, y1)− g(t, y2)‖Y ≤ Lg‖y1 − y2‖, y1, y2 ∈ X,

‖f(t, y1)− f(t, y2)‖ ≤ Lf‖y1 − y2‖, y1, y2 ∈ X.

(H5) The functions P (x0, ·), Q(y0, ·) : C(I,X) → X are continuous and there are
positive constants LP , LQ such that

‖P (x0, u)− P (x0, v)‖ ≤ LP ‖u− v‖, u, v ∈ C(I,X),

‖Q(y0, u)−Q(y0, v)‖ ≤ LQ‖u− v‖, u, v ∈ C(I,X).

(H6) The functions P (x0, ·), Q(y0, ·) : C(I,X) → X are continuous, locally
bounded and P is completely continuous. Let Nr

Q = sup{‖Q(y0, u)‖ :
u ∈ Br(0, C(I,X)} and Nr

P = sup{‖P (x0, u)‖ : u ∈ Br(0, C(I,X)}.
We consider important to make some observations about the above conditions.

Remark 2.2. The assumption (H1) and the properties of g in condition (H3), are
linked to the integrability of the function s → AS(t−s)g(s, x(s)). We observe that,
except for trivial cases, the operator function s → AS(s) is not integrable over [0, b]
for b > 0. In fact, if we assume that AS(·) ∈ L1([0, b]), then from the relation
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C(t)x−C(s)x = A
∫ t

s
S(τ)xdτ , which is valid for s ≤ t ≤ b and x ∈ X (see [20]), it

follows that

C(t)x− x = A

∫ t

0

S(τ)x dτ =
∫ t

0

AS(s)x ds, (2.2)

which implies that the C(·) is uniformly continuous on [0, b] and, as consequence,
that A is a bounded linear operator, see [21] for details.

On the another hand, if (H1) and (H3) hold, then from Bochner’s criterion for
integrable functions and the estimate

‖AS(t− s)g(s, x(s))‖ ≤ Ñ1(c1‖x(s)‖+ c2),

we infer that the function s 7→ AS(t − s)g(s, x(s)) is integrable on [0, t), for all
t ∈ I.

Remark 2.3. If assumption (H1) holds, then Y is continuously included in E. To
prove this claim, we note that for x ∈ Y

C(t)x− x = A

∫ t

0

S(τ)xdτ =
∫ t

0

AS(s)x ds,

which implies that C(·)x is of class C1 and Y ⊆ E. Moreover, since

‖x‖E = ‖x‖+ sup
0≤t≤a

‖AS(t)x‖ ≤ (NY + Ñ1)‖x‖Y

when a ≥ 1, we obtain that the inclusion ι : Y → E is continuous in this case. A
similar argument using the properties of the sine function shows that ι : Y → E is
also continuous for 0 < a < 1. To complete this remark, we note that [D(A)] and
E satisfy (H1).

Our main result is proved using a point fixed criterion for condensing operators.
The assumption (H2) will be useful to this objective.

Lemma 2.4. Let condition (H2) be holds. If B ⊆ Y is bounded in X and the set
{AS(t)x : t ∈ I, x ∈ B} is relatively compact in X, then B is relatively compact in
X.

Proof. Let x ∈ B. From (2.2) and the mean value theorem for the Bochner integral
(see [15, Lemma 2.1.3]) it follows that C(t)x− x ∈ t c({AS(s)x : s ∈ [0, t]}), where
c(·) denotes the convex hull of a set. Now, the assertion is a consequence of the fact
that c({AS(s)y : s ∈ [0, t], y ∈ B}) is compact and the properties of the operators
C(t)− I. �

We now establish our first existence result.

Theorem 2.5. Let assumptions (H1)-(H3), (H6) hold, and assume that the follow-
ing two conditions hold

(a) For every t ∈ I and all r > 0, the set

U t
r = {S(t)[f(s, y) + P (x0, u)] : s ∈ I, y ∈ Br(0, X), u ∈ Br(0, C(I,X)}
is relatively compact in X.

(b) For each r > 0 and all t ∈ I, the sets V r
1 = {AS(s)g(s, y) : s ∈ I, y ∈

Br(0, X)} and V r
2 = {S(t)Q(y0, u) : u ∈ Br(0, C(I,X))} are relatively

compact in X, and the set of functions {t 7→ g(·, u(·)) : u ∈ Br(0, C(I,X))}
is equicontinuous on I.



EJDE-2009/96 EXISTENCE OF SOLUTIONS 5

If

lim sup
r→∞

[NNr
P + ÑNr

Q + Wf (r)Ña

r

]
+c1

(
1+N +

∫ a

0

‖AS(t)‖L(Y,X)dt
)

< 1, (2.3)

then there exists a mild solution of (1.1)-(1.3).

Proof. Let Γ : C(I,X) → C(I,X) be the map defined by

Γu(t) = C(t)(P (x0, u)− g(0, u(0))) + S(t)Q(y0, u) + g(t, u(t))

+
∫ t

0

AS(t− s)g(s, u(s))ds +
∫ t

0

S(t− s)f(s, u(s))ds, t ∈ I,

and consider the decomposition Γ = Γ1 + Γ2 where

Γ1u(t) = C(t)(P (x0, u)− g(0, u(0))) + S(t)Q(y0, u) + g(t, u(t)), t ∈ I,

Γ1u(t) =
∫ t

0

AS(t− s)g(s, u(s))ds +
∫ t

0

S(t− s)f(s, u(s))ds, t ∈ I.

From Remark 2.2 and the properties of the functions f, g, P,Q, it is easy to see that
Γiu ∈ C(I,X) for i = 1, 2.

Now, we prove that Γ is completely continuous. Let (un)n∈N be a sequence in
C(I,X) and u ∈ C(I,X) such that un → u. Let (unj )j∈N be a sub-sequence of
(un)n∈N. From the condition (b) and Lemma 2.4, it is easy to see that the set
of functions {g(·, unj (·)) : j ∈ N} is relatively compact in C(I,X). Then, there
exists a sub-sequence (unjp )p∈N of (unj )j∈N such that g(s, unjp (s)) → g(s, u(s))
uniformly for s ∈ I as p → ∞, from which we obtain that Γ1u

njp → Γ1u in
C(I,X) as p →∞. Moreover, an standard application of the Lebesgue dominated
convergence Theorem permit to prove that Γ2(unjp ) → Γ2u in C(I,X) as p → ∞
which implies that Γ(unjp ) → Γu in C(I,X) as p → ∞. Since the (unj )j∈N is
an arbitrary subsequence of (un)n∈N, we can conclude that Γun → Γu in C(I,X).
Thus, Γ is continuous.

From (2.3), there exists a positive number r such that Γ(Br(0, C(I,X))) ⊂
Br(0, C(I,X)). In fact, let r > 0 be such that

1
r

[
NNr

P + ÑNr
Q +Wf (r)Ña

]
+(c1 +

c2

r
)(1+N +

∫ a

0

‖AS(t)‖L(Y,X)dt) < 1. (2.4)

Then, for t ∈ [0, a] and u ∈ Br(0, C([0, a], X)) we see that

‖Γu(t)‖ ≤ N(Nr
P + c1r + c2) + ÑNr

Q + c1r + c2

+
∫ t

0

‖AS(t− s)‖L(Y,X)‖g(s, u(s))‖ds + Ñ

∫ t

0

mf (s)W (‖u(s)‖)ds

≤
[
NNr

P + ÑNr
Q + Wf (r)Ñ

∫ a

0

mf (s)ds
]

+ (c1r + c2)(1 + N +
∫ a

0

‖AS(t)‖L(Y,X)dt),

which from (2.4) implies that Γu ∈ Br(0, C(I,X)). Thus, Γ(Br(0, C(I,X))) ⊂
Br(0, C(I,X)).

From Lemma 2.4, the assumptions (H6) and (b), it is easy to see that Γ1 is
completely continuous. Moreover, from [11, Lemma 3.1] we infer that Γ2 is also
completely continuous, which complete the proof that Γ is completely continuous.
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Now, from the Schauder’s point fixed Theorem we obtain a mild solution for (1.1)-
(1.3). �

Proposition 2.6. Assume that the assumptions in Theorem 2.5 be hold. If x(·)
is a mild solution of (1.1)-(1.3), P (x0, x) ∈ Y and d

dtC(t)g(0, x(0))
∣∣
t=0

= 0, then
d
dt (x(t)− g(t, x(t)))

∣∣
t=0

= Q(y0, x).

Proof. At first, we note that from the inequality

‖1
t

∫ t

0

S(t− s)f(s, x(s)) ds‖ ≤ N

∫ t

0

‖f(s, x(s))‖ ds

it follows that 1
t

∫ t

0
S(t − s)f(s, x(s))ds → 0 as t → 0. In addition, for δ > 0, we

can write∫ t

0

AS(t− s)g(s, x(s))ds = (I − 1
δ
S(δ))

∫ t

0

AS(t− s)g(s, x(s)) ds

+
1
δ

∫ t

0

S(t− s)AS(δ)g(s, x(s)) ds.

(2.5)

Let r > 0 be such that ‖x(s)‖ ≤ r for every s ∈ I. Since AS(t− s)g(s, x(s)) ∈ V r
1 ,

it follows from the mean value theorem for the Bochner integral [15, Lemma 2.1.3]
that

∫ t

0
AS(t− s)g(s, x(s))ds ∈ tc(V r

1 ), so that

(I − 1
δ
S(δ))

1
t

∫ t

0

AS(t− s)g(s, x(s)) ds ∈ (I − 1
δ
S(δ))c(V r

1 ).

In view of the fact that (I − 1
δ S(δ))x → 0, as δ → 0, for each x ∈ X and c(V r

1 ) is a
compact, we can affirm that (I − 1

δ S(δ))x → 0, as δ → 0, uniformly for x ∈ c(V r
1 ),

which implies that the first term of the right hand side of (2.5) converge to zero as
δ → 0. Moreover, if cδ > 0 is such that ‖AS(δ)g(s, x(s))‖ ≤ cδ for all s ∈ I, then∥∥1

δ

∫ t

0

S(t− s)AS(δ)g(s, x(s)) ds
∥∥ ≤ N

δ

∫ t

0

(t− s)cδ ds ≤ Ncδ

2δ
t2.

From the above remarks, we infer that 1
t

∫ t

0
AS(t− s)g(s, x(s))ds → 0, as t → 0+.

Finally, by using that P (x0, x) ∈ Y and d
dtC(t)g(0, x(0))

∣∣
t=0

= 0, we obtain

d

dt
(x(t)− g(t, x(t)))

∣∣
t=0

= lim
t→0+

1
t

(
C(t)P (x0, x)− P (x0, x)

)
− 1

t
[C(t)g(0, x(0))− g(0, x(0))]

+
S(t)

t
Q(y0, x) + lim

t→0+

1
t

∫ t

0

AS(t− s)g(s, x(s))ds

+ lim
t→0+

1
t

∫ t

0

S(t− s)f(s, x(s)) ds

= lim
t→0+

1
t

∫ t

0

AS(s)P (x0, x)ds +
S(t)

t
Q(y0, x) = Q(y0, x),

which completes the proof. �

The following result is a consequence of Theorem 2.5 and Proposition 2.6.
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Corollary 2.7. Let conditions (H1)-(H3), (H6) hold with mf ∈ L∞(I). Assume
S(t) is compact, for all t ≥ 0 and

(b*) For r > 0, the set V r
1 = {AS(s)g(s, y) : s ∈ I, y ∈ Br(0, X)} is relatively

compact in X, and the set of functions {g(·, u(·)) : u ∈ Br(0, C(I, X))} is
equicontinuous on I.

If (2.3) is valid, then there exists a mild solution of x(·) of (1.1)-(1.3). Moreover, if
P (x0, x) ∈ Y and d

dtC(t)g(0, x(0))
∣∣
t=0

= 0 then d
dt (x(t)−g(t, x(t)))

∣∣
t=0

= Q(y0, x).

The proof of the next result is an standard application of the contraction mapping
principle. We omit it.

Theorem 2.8. Let (H1), (H4), (H5) hold. If[
Lg(NY + aÑ1) + aLf Ñ + NLP + ÑLQ

]
< 1,

then there exists a unique mild solution x(·) of (1.1)-(1.3). Moreover, P (x0, x) ∈ Y
and d

dtC(t)g(0, x(0))
∣∣
t=0

= 0 then d
dt (x(t)− g(t, x(t)))

∣∣
t=0

= Q(y0, x).

3. Applications

In this section, we consider some applications of our abstract results. At first,
we discuss briefly the particular case in which X is finite dimensional. In this case,
the operator A is a matrix of order n×n which generates the uniformly continuous
cosine function C(t) = cosh (tA1/2) =

∑∞
n=1

t2n

(2n)!A
n, with associated sine function

S(t) = A−
1
2 sinh (tA1/2) =

∑∞
n=1

t2n+2

(2n+1)!A
n (here, the expressions cosh (tA1/2) and

sinh (tA1/2) are purely symbolic and do not assume the existence of the square roots
of A). We note that the condition (H1) is automatically satisfied with Y = X, the
operators C(t), S(t), AS(t) are compact for all t ∈ R, and ‖C(t)‖ ≤ cosh (t‖A‖1/2)
and ‖S(t)‖ ≤ ‖A‖−1/2 sinh (t‖A‖1/2) for all t ∈ R.

The next proposition is a re-formulation of Theorem 2.5. In this result, γ =
cosh (a‖A‖1/2) + ‖A‖−1/2 sinh (a‖A‖1/2) and (H3*) is the condition,

(H3*) The function f(·, y) is strongly measurable for every y ∈ X, f(t, ·) is con-
tinuous a.e. for t ∈ I and g ∈ C(I × X, X). There are positive constants
c1, c2, an integrable function mf : I → [0,∞) and a continuous nondecreas-
ing function Wf : [0,∞) → (0,∞) such that ‖g(t, y)‖ ≤ c1‖y‖ + c2 and
‖f(t, y)‖ ≤ mf (t)Wf (‖y‖) for all (t, y) ∈ I ×X.

Proposition 3.1. Assume (H3*), (H6) hold, and for all r > 0 the set of functions
{g(·, u(·)) : u ∈ Br(0, C(I, Rn))} is equicontinuous on I and

lim sup
r→∞

γ

r
[Nr

P + Nr
Q + Wf (r)a] + c1(1 + γ(1 + a‖A‖)) < 1.

Then there exists a mild solution x(·) of (1.1)-(1.3). If, in addition,

d

dt
C(t)g(0, x(0))

∣∣
t=0

= 0,

then d
dt (x(t)− g(t, x(t)))

∣∣
t=0

= Q(y0, x).
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To complete this section, we apply our abstract results on an concrete second
order partial differential equation. Consider the differential system

∂2

∂t2
[
u(t, τ)−

∫ π

0

b(ω, τ)u(t, ω)dω
]

=
∂2

∂τ2
u(t, τ) + F

(
t, u(t, τ)

)
, (3.1)

u(t, 0) = u(t, π) = 0, (3.2)

u(0, τ) = x0(τ) +
∫ a

0

p(u(s, τ))ds, (3.3)

∂

∂t
u(0, τ) = y0(τ) +

∫ a

0

q(u(s, τ))ds, (3.4)

for (t, τ) ∈ I × J = [0, a]× [0, π].
To study this system we chose the space X = L2([0, π]), and we assume x0, y0 ∈

X. In addition, we consider the operator A : D(A) ⊆ X → X by Ax = x′′,
where D(A) = {x ∈ X : x′′ ∈ X, x(0) = x(π) = 0}. It is well-known that A is
the infinitesimal generator of a strongly continuous cosine family (C(t))t∈R on X.
Furthermore, A has a discrete spectrum, the eigenvalues are −n2, for n ∈ N, with
corresponding eigenvectors zn(τ) =

(
2
π

)1/2 sin(nτ), the set of functions {zn : n ∈ N}
is an orthonormal basis of X and the following properties hold.

(a) For z ∈ X, C(t)z =
∑∞

n=1 cos (nt)〈z, zn〉zn and the associated sine function
is given by S(t)z =

∑∞
n=1

sin(nt)
n 〈z, zn〉zn. It follows from the last expression

that S(t) is compact for all t ∈ R and ‖C(t)‖ = ‖S(t)‖ = 1, for all t ∈ R.
In addition, Az = −

∑∞
n=1 n2〈z, zn〉zn, for z ∈ D(A).

(b) If Φ is the group of translations on X defined by Φ(t)x(y0) = x̃(y0 + t),
where x̃· is the extension of x· with period 2π, then C(t) = 1

2 (Φ(t)+Φ(−t))
and A = B2, where B is the infinitesimal generator of Φ and E = {x ∈
H1(0, π) : x(0) = x(π) = 0} (see [5] for details). In particular, we observe
that the inclusion ι : E → X is compact.

In what the follows, we assume that x0 ∈ H1([0, π]) and the conditions.
(i) The function b(·) is of class C2 on I × J and b(ω, π) = b(ω, 0) = 0 for all

ω ∈ I.
(ii) The function F : I× [0, π] → R is continuous and there is Lf > 0 such that

|F (t, τ1)− F (t, τ2)| ≤ LF |τ1 − τ2|, t ∈ I, τi ∈ R.

(iii) The function p, q : R → R are continuous and there are positive constants
Lp, Lq such that

|p(µ1)− p(µ2)| ≤ Lp|µ1 − µ2|, µi ∈ R,

|q(µ1)− q(µ2)| ≤ Lq|µ1 − µ2|, µi ∈ R.

Let f, g : X → X and P,Q : C(I,X) → X be the functions defined by
f(t, x)(τ) = F (t, x(τ)) and

g(t, x)(τ) =
∫ π

0

b(ω, τ)x(ω)dω,

P (u)(τ) = x0(τ) +
∫ a

0

p(u(s, τ))ds,

Q(u)(τ) = y0(τ) +
∫ a

0

q(u(s, τ))ds.
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Under the above conditions, the functions f, P,Q are Lipschitz continuous functions
with Lipschitz constants LF , LP a3/4 and LQa3/4 respectively. In addition, g(·) is
continuous, g(t, ·) is a bounded linear operator for all t ∈ I, g is D(A)-valued,

sup
t∈I

‖g(t, ·)‖L(X,[D(A)]) ≤ Lg =
( ∫ π

0

∫ π

0

(
∂2

∂τ2
b(ω, τ))2dωdτ

)1/2

,

N[D(A)] ≤ 1 and Ñ1 ≤ 1.
The next result follows directly from Theorem 2.8. We remark that for z ∈ X,

d
dtC(t)g(0, z) = AS(t)g(0, z) = S(t)Ag(0, z) so that, d

dtC(t)g(0, z)
∣∣
t=0

= 0.

Proposition 3.2. If
[
Lg(1 + a) + aLf + a3/4(LP + LQ)

]
< 1, then there exists a

unique mild solution of (3.1)-(3.4). Moreover, d
dt (x(t) − g(t, x(t)))

∣∣
t=0

= Q(y0, x)
if P (x0, x) ∈ Y .
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