Electronic Journal of Differential Equations, Vol. 2010(2010), No. 02, pp. 1–10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

OPTIMIZATION IN PROBLEMS INVOLVING THE P-LAPLACIAN

MONICA MARRAS

ABSTRACT. We minimize the energy integral $\int_{\Omega} |\nabla u|^p dx$, where g is a bounded positive function that varies in a class of rearrangements, p > 1, and u is a solution of

$$-\Delta_p u = g \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial\Omega \,.$$

Also we maximize the first eigenvalue $\lambda = \lambda_g$, where

$$-\Delta_p u = \lambda g u^{p-1} \quad \text{in } \Omega$$

For both problems, we prove existence, uniqueness, and representation of the optimizers.

1. INTRODUCTION

Let Ω be a bounded smooth domain in \mathbb{R}^N , and let g_0 be a measurable function satisfying $0 < g_0 \leq H$ in Ω for a positive constant H. Define \mathcal{G} as the family of measurable functions which are rearrangements of g_0 . In Section 2 of this article, we consider the problem

$$\begin{aligned} -\Delta_p u &= g \quad \text{in } \Omega, \\ u &= 0 \quad \text{on } \partial\Omega, \end{aligned} \tag{1.1}$$

where p > 1, $g \in \mathcal{G}$. The operator $\Delta_p : W_0^{1,p}(\Omega) \to W^{-1,p'}(\Omega), p' = p/(p-1)$, stands for the usual *p*-Laplacian defined as

$$\langle -\Delta_p u, v \rangle = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx$$

It is well known that (1.1) has a unique solution $u \in W_0^{1,p}(\Omega)$. Corresponding to g, we consider the so called energy integral

$$I(g) = \int_{\Omega} |\nabla u|^p dx.$$

It is useful to investigate the maximum or the minimum of I(g) when g varies in \mathcal{G} . Actually, the maximum of I(g) has been discussed in the paper [7]. In the present paper we investigate the minimum of I(g) for $g \in \mathcal{G}$, proving results of existence

shape optimization.

²⁰⁰⁰ Mathematics Subject Classification. 35J25, 49K20, 47A75.

Key words and phrases. p-Laplacian; energy integral; eigenvalues; rearrangements;

^{©2010} Texas State University - San Marcos.

Submitted November 2, 2009. Published January 5, 2010.

and uniqueness of the minimizer \check{g} . We also find a formula of representation for \check{g} in terms of the corresponding solution $u_{\check{q}}$.

In Section 3, we consider the eigenvalue problem

$$-\Delta_p u = \lambda g u^{p-1}, \quad u(x) > 0 \quad \text{in } \Omega, u = 0 \quad \text{on } \partial\Omega,$$
(1.2)

where λ is the first eigenvalue. It is well known that problem (1.2) has a first positive eigenvalue $\lambda = \lambda_g$ and a corresponding positive eigenfunction $u = u_g$. It is interesting to investigate the maximum and the minimum of λ_g for $g \in \mathcal{G}$. Actually, the minimum of λ_g has been discussed in the paper [8]. In the present paper we investigate the maximum of λ_g for $g \in \mathcal{G}$, proving results of existence and uniqueness. We also find a formula of representation for the maximizer \hat{g} in terms of the corresponding eigenfunction $u_{\hat{g}}$. We emphasize that the methods developed here are different from those used in the papers [7] and [8].

Since we use the notion of rearrangements, let us recall the definition. Denote with |E| the Lebesgue measure of the (measurable) set E. Given a function $g_0(x)$ defined in Ω and satisfying $0 < g_0(x) \leq H$ for a constant H. We say that g(x)belongs to the class of rearrangements $\mathcal{G} = \mathcal{G}(g_0)$ if

$$|\{g(x) \ge \beta\}| = |\{g_0(x) \ge \beta\}| \quad \forall \beta \in (0, H).$$

Here we write $\{g(x) \ge \beta\}$ instead of $\{x \in \Omega : g(x) \ge \beta\}$. In what follows, we shall use the following results

Lemma 1.1. Let $g \in L^r(\Omega)$, r > 1, and let $u \in L^s(\Omega)$, s = r/(r-1). Suppose that every level set of u has measure zero. Then there exists an increasing function ϕ such that $\phi(u)$ is a rearrangement of g. Furthermore, there exists a decreasing function ψ such that $\psi(u)$ is a rearrangement of g.

Proof. The first assertion follows from [4, Lemma 2.9]. The second assertion follows applying the first one to -u.

Denote with $\overline{\mathcal{G}}$ the closure of \mathcal{G} with respect to the weak^{*} topology in $L^{\infty}(\Omega)$.

Lemma 1.2. Let \mathcal{G} be the set of rearrangements of a fixed function $g_0 \in L^r(\Omega)$, r > 1, and let $u \in L^s(\Omega)$, s = r/(r-1). If there is an increasing function ϕ such that $\phi(u) \in \mathcal{G}$ then

$$\int_{\Omega} g u \, dx \leq \int_{\Omega} \phi(u) u \, dx \quad \forall g \in \overline{\mathcal{G}},$$

and the function $\phi(u)$ is the unique maximizer relative to $\overline{\mathcal{G}}$. Furthermore, if there is a decreasing function ψ such that $\psi(u) \in \mathcal{G}$ then

$$\int_{\Omega} g u \, dx \ge \int_{\Omega} \psi(u) u \, dx \quad \forall g \in \overline{\mathcal{G}},$$

and the function $\psi(u)$ is the unique minimizer relative to $\overline{\mathcal{G}}$.

Proof. The first assertion follows from [4, Lemma 2.4]. To prove the second assertion we put $\phi(t) = \psi(-t)$. Since ϕ is increasing, applying the previous result we have

$$\int_{\Omega} g\left(-u\right) dx \leq \int_{\Omega} \phi(-u)\left(-u\right) dx \quad \forall g \in \overline{\mathcal{G}},$$

and $\phi(-u) = \psi(u)$ is the unique function satisfying the inequality. Equivalently, we have

$$\int_{\Omega} gu \, dx \ge \int_{\Omega} \psi(u) u \, dx \quad \forall g \in \overline{\mathcal{G}}.$$

The proof is complete.

2. Energy integral

Let $\Omega \subset \mathbb{R}^N$ be a bounded smooth domain and let p > 1, H > 0 be two real numbers. Let \mathcal{G} be the family of all rearrangements of a given function g_0 with $0 < g_0(x) \leq H$. It is convenient to introduce $\overline{\mathcal{G}}$, the closure of \mathcal{G} with respect to the weak* topology in $L^{\infty}(\Omega)$. By [3] or [4], we know that $\overline{\mathcal{G}}$ is weakly compact and convex. Moreover, each $g \in \overline{\mathcal{G}}$ satisfies $0 < g(x) \leq H$ a.e. in Ω .

For $g \in \overline{\mathcal{G}}$, we consider problem (1.1). It is a classical result that such a problem has a unique positive solution $u \in W_0^{1,p}(\Omega)$ which satisfies

$$\sup_{v \in W_0^{1,p}(\Omega)} \int_{\Omega} (pgv - |\nabla v|^p) dx = \int_{\Omega} (pgu - |\nabla u|^p) dx = (p-1) \int_{\Omega} |\nabla u|^p dx.$$
(2.1)

It is also known that the functional $\int_{\Omega} (pgv - |\nabla v|^p) dx$ has a unique maximizer u in $W_0^{1,p}(\Omega)$, and this maximizer is a solution to problem (1.1). By regularity results (see for example [17]), the solution u belongs to $W^{2,1}(\Omega)$, and equation (1.1) holds a.e. in Ω .

Lemma 2.1. For $g \in \overline{\mathcal{G}}$, let $I(g) = \int_{\Omega} |\nabla u|^p dx$, where u is the solution to (1.1).

- (a) The functional $g \mapsto I(g)$ is continuous with respect to the weak* topology in $L^{\infty}(\Omega)$.
- (b) The functional $g \mapsto I(g)$ is strictly convex in $\overline{\mathcal{G}}$.
- (c) The functional $g \mapsto I(g)$ is Gâteaux differentiable with derivative $\frac{p}{p-1}u_g$.

Proof. Part (a). Let $g_n \rightharpoonup g$, and let u_g, u_{g_n} be the corresponding solutions to (1.1) with g, g_n respectively. Using (2.1) we have

$$(p-1)I(g) + \int_{\Omega} p(g_n - g)u_g \, dx = \int_{\Omega} (pg_n u_g - |\nabla u_g|^p) \, dx \le (p-1)I(g_n)$$

= $\int_{\Omega} (pgu_{g_n} - |\nabla u_{g_n}|^p) \, dx + \int_{\Omega} p(g_n - g)u_{g_n} dx$
 $\le (p-1)I(g) + \int_{\Omega} p(g_n - g)u_{g_n} dx.$
(2.2)

By assumption, we have

$$\lim_{n \to \infty} \int_{\Omega} (g_n - g) u_g \, dx = 0.$$
(2.3)

Let us prove that

$$\lim_{n \to \infty} \int_{\Omega} (g_n - g) u_{g_n} \, dx = 0. \tag{2.4}$$

Using (1.1) with $g = g_n$, Poincaré Theorem and Hölder inequality we have

$$\int_{\Omega} |\nabla u_{g_n}|^p dx = \int_{\Omega} g_n \ u_{g_n} dx \le H \int_{\Omega} u_{g_n} dx \le C \left(\int_{\Omega} |\nabla u_{g_n}|^p dx \right)^{1/p} |\Omega|^{(p-1)/p}.$$
(2.5)

3

By (2.5) we infer that the norm $\|\nabla u_{g_n}\|_{L^p(\Omega)}$ is bounded by a constant independent of n. Therefore, a sub-sequence of u_{g_n} (denoted again u_{g_n}) converges weakly in $W^{1,p}(\Omega)$ and strongly in $L^p(\Omega)$ to some function $z \in W_0^{1,p}(\Omega)$. Since

$$\int_{\Omega} (g_n - g) \, u_{g_n} dx = \int_{\Omega} (g_n - g) z \, dx + \int_{\Omega} (g_n - g) (u_{g_n} - z) dx,$$

and since

$$\left| \int_{\Omega} (g_n - g)(u_{g_n} - z) dx \right| \le 2H \|u_{g_n} - z\|_{L^1(\Omega)},$$

Equality (2.4) follows. By (2.2), (2.3) and (2.4) we infer

$$\lim_{n \to \infty} I(g_n) = I(g). \tag{2.6}$$

This yields the weak^{*} continuity. We claim that the function z is actually the solution of (1.1) corresponding to our function g. Indeed, from

$$(p-1)I(g_n) = \int_{\Omega} (pg_n u_{g_n} - |\nabla u_{g_n}|^p) \, dx,$$
$$\lim_{n \to \infty} \int_{\Omega} g_n u_{g_n} \, dx = \int_{\Omega} gz \, dx,$$

and the classical result

$$\liminf_{n \to \infty} \int_{\Omega} |\nabla u_{g_n}|^p \, dx \ge \int_{\Omega} |\nabla z|^p \, dx,$$

using (2.6) and (2.1) we get

$$(p-1)I(g) \le \int_{\Omega} (pgz - |\nabla z|^p) \, dx \le (p-1)I(g).$$

By the uniqueness of the maximizer of $\int_{\Omega} (pgv - |\nabla v|^p) dx$ we must have $z = u_g$, as claimed.

Proof of (b). Let $f, g \in \overline{\mathcal{G}}$, let 0 < t < 1 and let $v \in W_0^{1,p}(\Omega)$. We have

$$\int_{\Omega} \left(p(tf + (1-t)g)v - |\nabla v|^p \right) dx$$

= $t \int_{\Omega} (pfv - |\nabla v|^p) dx + (1-t) \int_{\Omega} (pgv - |\nabla v|^p) dx$

By taking the superior of both sides relative to $v \in W_0^{1,p}(\Omega)$, we get

$$I(tf + (1 - t)g)) \le tI(f) + (1 - t)I(g),$$

that is, the convexity. Now, suppose equality holds in the above inequality for some $t \in (0, 1)$. Then, if u_t is the solution corresponding to tf + (1 - t)g we have

$$t \int_{\Omega} \left(pfu_t - |\nabla u_t|^p \right) dx + (1-t) \int_{\Omega} \left(pgu_t - |\nabla u_t|^p \right) dx$$
$$= t \int_{\Omega} \left(pfu_f - |\nabla u_f|^p \right) dx + (1-t) \int_{\Omega} \left(pgu_g - |\nabla u_g|^p \right) dx.$$

It follows that

$$\int_{\Omega} \left(pfu_t - |\nabla u_t|^p \right) dx = \int_{\Omega} \left(pfu_f - |\nabla u_f|^p \right) dx$$
$$\int_{\Omega} \left(pgu_t - |\nabla u_t|^p \right) dx = \int_{\Omega} \left(pgu_g - |\nabla u_g|^p \right) dx.$$

By the uniqueness of the maximizer, we must have $u_t = u_f = u_q$. Moreover, since

$$-\Delta_p u_f = f, \quad \text{a.e. in } \Omega,$$
$$-\Delta_p u_q = g, \quad \text{a.e. in } \Omega,$$

if $u_f = u_g$, we must have f(x) = g(x) a.e. in Ω , and the strict convexity is proved.

Proof of (c). Let $t_n > 0$ be a sequence such that $t_n \to 0$ as $n \to \infty$. Let $f, g \in \overline{\mathcal{R}}$, and let $g_n = g + t_n (f - g)$. Then, by (2.2) we find

$$\begin{split} I(g) + t_n \int_{\Omega} (f-g) \frac{p}{p-1} u_g \, dx &\leq I \left(g + t_n (f-g) \right) \\ &\leq I(g) + t_n \int_{\Omega} (f-g) \frac{p}{p-1} u_{g_n} \, dx, \end{split}$$

and

$$\int_{\Omega} (f-g) \frac{p}{p-1} u_g \, dx \le \frac{I(g+t_n(f-g)) - I(g)}{t_n} \le \int_{\Omega} (f-g) \frac{p}{p-1} u_{g_n} \, dx.$$

As already observed, the sequence u_{g_n} converges to u_g in the norm of $L^p(\Omega)$. Therefore,

$$\lim_{n \to \infty} \int_{\Omega} (f - g) u_{g_n} \, dx = \int_{\Omega} (f - g) u_g \, dx.$$

Hence, since the sequence t_n is arbitrary, we have

$$\lim_{t \to 0} \frac{I(g + t(f - g)) - I(g)}{t} = \int_{\Omega} (f - g) \frac{p}{p - 1} u_g \, dx.$$

It follows that I(g) is Gâteaux differentiable with derivative $\frac{p}{p-1}u_g$. The proof is complete.

Theorem 2.2. Let $0 < g_0(x) \leq H$, and let \mathcal{G} be the class of all rearrangements of g_0 . There exists a unique $\check{g} \in \mathcal{G}$ such that

$$I(\check{g}) = \inf_{g \in \mathcal{G}} I(g).$$

Furthermore, we have $\check{g} = \psi(u_{\check{g}})$ for some decreasing function ψ .

Proof. By the compactness of $\overline{\mathcal{G}}$ and the weak continuity of I(g) (proved in Lemma 2.1), we know that a minimizer \check{g} exists in $\overline{\mathcal{G}}$. Since by Lemma 2.1, I(g) is strictly convex, the minimizer \check{g} is unique. We have to show that $\check{g} \in \mathcal{G}$.

With 0 < t < 1 and $g \in \overline{\mathcal{G}}$, let $g_t = \check{g} + t(g - \check{g})$. Since I(g) is Gâteaux differentiable at \check{g} , we have

$$I(g_t) = I(\check{g}) + t \int_{\Omega} (g - \check{g}) \frac{p}{p-1} u_{\check{g}} \, dx + o(t).$$

Since $I(g_t) \ge I(\check{g})$, we find

$$I(\check{g}) \le I(\check{g}) + t \int_{\Omega} (g - \check{g}) \frac{p}{p-1} u_{\check{g}} \, dx + o(t).$$

It follows that

$$0 \le \int_{\Omega} (g - \check{g}) \frac{p}{p-1} u_{\check{g}} \, dx + \frac{o(t)}{t}.$$

As $t \to 0$ we find that

$$0 \le \int_{\Omega} (g - \check{g}) u_{\check{g}} \, dx,$$

and

$$\int_{\Omega} g u_{\check{g}} \, dx \ge \int_{\Omega} \check{g} u_{\check{g}} \, dx, \quad \forall g \in \overline{\mathcal{G}}.$$
(2.7)

The function $u = u_{\tilde{g}}$ satisfies the equation $-\Delta_p u = \check{g} > 0$ a.e. in Ω , therefore $u_{\tilde{g}}$ cannot have flat zones in Ω (see [12, Lemma 7.7]). By Lemma 1.1 and Lemma 1.2 we can find a decreasing function ψ such that $\psi(u_{\tilde{q}})$ is a rearrangement of g_0 and

$$\int_{\Omega} g u_{\check{g}} \, dx \ge \int_{\Omega} \psi(u_{\check{g}}) u_{\check{g}} \, dx, \quad \forall g \in \overline{\mathcal{G}}.$$

Comparing the latter inequality with inequality (2.7) and using Lemma 1.2 again, we must have $\check{g} = \psi(u_{\check{g}}) \in \mathcal{G}$. The proof is complete.

We remark that Theorem 2.2 gives some information on the shape of the minimizer \check{g} . Indeed, since the associate solution $u_{\check{g}}$ is positive in Ω , vanishes on the boundary $\partial\Omega$, and $\check{g} = \psi(u_{\check{g}})$ with ψ decreasing, \check{g} has to be large where $u_{\check{g}}$ is small, that is close to $\partial\Omega$.

3. Principal eigenvalue

We use the same assumptions and notation as in the previous section. For $g \in \overline{\mathcal{G}}$, we consider problem (1.2). It is known that such a problem has a principal positive eigenvalue λ_g to which corresponds a unique (up to a normalization) positive eigenfunction u_g [1]. We have [14]

$$\frac{1}{\lambda_g} = \sup_{v \in W_0^{1,p}(\Omega)} \frac{\int_{\Omega} pgv^p \, dx}{\int_{\Omega} |\nabla v|^p \, dx}.$$
(3.1)

Following Auchmuty [2], we can prove that

$$\frac{p^2}{4}\frac{1}{\lambda_g^2} = \sup_{v \in W_0^{1,p}(\Omega)} \left[\int_{\Omega} pg|v|^p \, dx - \left(\int_{\Omega} |\nabla v|^p \, dx \right)^2 \right] = \int_{\Omega} pg|u|^p \, dx - \left(\int_{\Omega} |\nabla u|^p \, dx \right)^2.$$

$$(3.2)$$

Since we know that the principal eigenfunction is positive, we can take v > 0 in (3.2). Therefore, for v > 0, define

$$A(v) = \int_{\Omega} pgv^{p} dx - \left(\int_{\Omega} |\nabla v|^{p} dx\right)^{2}.$$

With t > 0, we have

$$A(tv) = t^p \int_{\Omega} pgv^p \, dx - t^{2p} \left(\int_{\Omega} |\nabla v|^p dx \right)^2.$$

It is easy to see that, for v fixed, $A(tv) \leq A(t_0v)$ with

$$t_0^p = \frac{\int_\Omega pgv^p \, dx}{2\left(\int_\Omega |\nabla v|^p \, dx\right)^2} \tag{3.3}$$

Therefore,

$$A(tv) \leq \frac{p^2}{4} \Big(\frac{\int_\Omega pgv^p \, dx}{\int_\Omega |\nabla v|^p \, dx} \Big)^2.$$

It follows that

$$\sup_{v \in W_0^{1,p}(\Omega)} A(v) = \frac{p^2}{4} \sup_{v \in W_0^{1,p}(\Omega)} \left(\frac{\int_\Omega pgv^p \, dx}{\int_\Omega |\nabla v|^p \, dx} \right)^2.$$

Equation (3.2) follows from the latter equation and (3.1).

Note that if v is a maximizer in (3.1) then also νv with $\nu \neq 0$ is a maximizer. A maximizer u in (3.1) is also a maximizer in (3.2) when u is normalized so that $t_0 = 1$ in (3.3), that is

$$\int_{\Omega} pgu^p \, dx = 2 \left(\int_{\Omega} |\nabla u|^p \, dx \right)^2. \tag{3.4}$$

Therefore, the (positive) maximizer $u = u_g$ in (3.2) satisfies (3.4) and is unique.

Lemma 3.1. For $g \in \overline{\mathcal{G}}$, let $J(g) = \frac{p^2}{4} \frac{1}{\lambda_g^2}$, where λ_g is the principal eigenvalue of problem (1.2).

- (a) The functional $g \mapsto J(g)$ is continuous with respect to the weak^{*} topology in $L^{\infty}(\Omega)$.
- (b) The functional $g \mapsto J(g)$ is strictly convex in $\overline{\mathcal{G}}$.
- (c) The functional $g \mapsto J(g)$ is Gâteaux differentiable with derivative pu_a^p .

Proof. Parts (a) and (b) of this lemma are essentially proved in [8]; however we give here a slightly different proof.

Proof of (a). Let $g_n \rightharpoonup g$, and let u_g , u_{g_n} be the corresponding maximizers of (3.2) (eigenfunctions) with g, g_n respectively. Using (3.2) we have

$$J(g) + \int_{\Omega} p(g_n - g) u_g^p dx = \int_{\Omega} pg_n u_g^p dx - \left(\int_{\Omega} |\nabla u_g|^p\right)^2 dx \le J(g_n)$$

$$= \int_{\Omega} pg u_{g_n}^p dx - \left(|\nabla u_{g_n}|^p\right)^2 dx + \int_{\Omega} p(g_n - g) u_{g_n}^p dx$$

$$\le J(g) + \int_{\Omega} p(g_n - g) u_{g_n}^p dx.$$

(3.5)

By assumption, we have

$$\lim_{n \to \infty} \int_{\Omega} (g_n - g) u_g^p \, dx = 0. \tag{3.6}$$

Let us prove that

$$\lim_{n \to \infty} \int_{\Omega} (g_n - g) u_{g_n}^p \, dx = 0. \tag{3.7}$$

Using (3.4) with $g = g_n$ and Poincaré Theorem we have

$$2\left(\int_{\Omega} |\nabla u_{g_n}|^p \, dx\right)^2 = \int_{\Omega} pg_n \, u_{g_n}^p \, dx \le pH \int_{\Omega} u_{g_n}^p \, dx \le C \int_{\Omega} |\nabla u_{g_n}|^p \, dx.$$
(3.8)

By (3.8) we infer that the norm $\|\nabla u_{g_n}\|_{L^p(\Omega)}$ is bounded by a constant independent of n. Therefore, a sub-sequence of u_{g_n} (denoted again u_{g_n}) converges weakly in $W^{1,p}(\Omega)$ and strongly in $L^p(\Omega)$ to some function $z \in W_0^{1,p}(\Omega)$. Since

$$\int_{\Omega} (g_n - g) \, u_{g_n}^p \, dx = \int_{\Omega} (g_n - g) \, z^p \, dx + \int_{\Omega} (g_n - g) (u_{g_n}^p - z^p) dx$$

and since

$$\left| \int_{\Omega} (g_n - g) (u_{g_n}^p - z^p) dx \right| \le 2HC_p \int_{\Omega} |u_{g_n} - z| (u_{g_n} + z)^{p-1} dx$$
$$\le 2HC_p ||u_{g_n} - z||_{L^p(\Omega)} \left(\int_{\Omega} (u_{g_n} + z)^p dx \right)^{(p-1)/p},$$

M. MARRAS

Equality (3.7) follows. By (3.5), (3.6) and (3.7) we infer

$$\lim_{n \to \infty} J(g_n) = J(g). \tag{3.9}$$

This yields the weak^{*} continuity. We claim that the function z is actually the eigenfunction corresponding to g. Indeed, from

$$J(g_n) = \int_{\Omega} pg_n u_{g_n}^p dx - \left(\int_{\Omega} |\nabla u_{g_n}|^p dx)\right)^2,$$
$$\lim_{n \to \infty} \int_{\Omega} g_n u_{g_n}^p dx = \int_{\Omega} gz^p dx,$$
$$\liminf_{n \to \infty} \int_{\Omega} |\nabla u_{g_n}|^p dx \ge \int_{\Omega} |\nabla z|^p dx,$$

using (3.9) and (3.2), we obtain

$$J(g) \leq \int_{\Omega} pgz^p dx - \left(\int_{\Omega} |\nabla z|^p dx\right)^2 \leq J(g).$$

By the uniqueness of the maximizer of $\int_{\Omega} pgv^p dx - \left(\int_{\Omega} |\nabla v|^p dx\right)^2$ we must have $z = u_q$, as claimed.

Proof of (b). Let $f, g \in \overline{\mathcal{G}}$, let 0 < t < 1 and let $v \in W_0^{1,p}(\Omega)$. We have

$$\int_{\Omega} p(tf + (1-t)g)v^p \, dx - \left(\int_{\Omega} |\nabla v|^p \, dx\right)^2$$

= $t \int_{\Omega} pfv^p \, dx - \left(\int_{\Omega} |\nabla v|^p \, dx\right)^2 + (1-t) \int_{\Omega} pgv^p \, dx - \left(\int_{\Omega} |\nabla v|^p \, dx\right)^2.$

By taking the superior of both sides relative to $v \in W_0^{1,p}(\Omega)$, we get

$$J(tf + (1 - t)g)) \le tJ(f) + (1 - t)J(g),$$

that is, the convexity. To prove strict convexity, suppose equality holds in the above inequality for some $t \in (0, 1)$. Then, if u_t is the eigenfunction corresponding to tf + (1-t)g we have

$$t\Big[\int_{\Omega} pfu_t^p dx - \left(\int_{\Omega} |\nabla u_t|^p dx\right)^2\Big] + (1-t)\Big[\int_{\Omega} pgu_t^p dx - \left(\int_{\Omega} |\nabla u_t|^p dx\right)^2\Big]$$
$$= t\Big[\int_{\Omega} pfu_f^p dx - \left(\int_{\Omega} |\nabla u_f|^p dx\right)^2\Big] + (1-t)\Big[\int_{\Omega} pgu_g^p dx - \left(\int_{\Omega} |\nabla u_g|^p dx\right)^2\Big].$$

It follows that

$$\int_{\Omega} pfu_t^p dx - \left(\int_{\Omega} |\nabla u_t|^p dx\right)^2 = \int_{\Omega} pfu_f^p dx - \left(\int_{\Omega} |\nabla u_f|^p dx\right)^2,$$
$$\int_{\Omega} pfu_t^p dx - \left(\int_{\Omega} |\nabla u_t|^p dx\right)^2 = \int_{\Omega} pgu_g^p dx - \left(\int_{\Omega} |\nabla u_g|^p dx\right)^2.$$

By the uniqueness of the maximizer, we must have $u_t = u_f = u_g$ and $\lambda_f = \lambda_g$. Moreover, since

$$-\Delta_p u_f = \lambda_f f u_f^{p-1}, \quad \text{a.e. in}\Omega, -\Delta_p u_g = \lambda_g g u_g^{p-1}, \quad \text{a.e. in}\Omega,$$

if $u_f = u_g$ and $\lambda_f = \lambda_g$, we must have f(x) = g(x) a.e. in Ω , and the strict convexity is proved.

Proof of (c). Let $t_n > 0$ be a sequence such that $t_n \to 0$ as $n \to \infty$. Let $f, g \in \overline{\mathcal{R}}$, and let $g_n = g + t_n (f - g)$. Then, by (3.5) we find

$$J(g) + t_n \int_{\Omega} (f-g) p u_g^p \, dx \le J \left(g + t_n (f-g)\right) \le J(g) + t_n \int_{\Omega} (f-g) p u_{g_n}^p \, dx,$$
$$\int_{\Omega} (f-g) p u_g^p \, dx \le \frac{J(g + t_n (f-g)) - J(g)}{t_n} \le \int_{\Omega} (f-g) p u_{g_n}^p \, dx.$$

As already observed, the sequence u_{g_n} converges to u_g in the norm of $L^p(\Omega)$. Therefore,

$$\lim_{n \to \infty} \int_{\Omega} (f - g) u_{g_n}^p \, dx = \int_{\Omega} (f - g) u_g^p \, dx.$$

Hence, since the sequence t_n is arbitrary, we have

$$\lim_{t \to 0} \frac{J(g + t(f - g)) - J(g)}{t} = \int_{\Omega} (f - g) p u_g^p \, dx.$$

It follows that J(g) is Gâteaux differentiable with derivative pu_g^p . The proof is complete.

Theorem 3.2. Let $0 < g_0(x) \leq H$, and let \mathcal{G} be the class of all rearrangements of g_0 . There exists a unique $\hat{g} \in \mathcal{G}$ such that

$$J(\hat{g}) = \inf_{g \in \mathcal{G}} J(g).$$

Furthermore, $\hat{g} = \psi(u_{\hat{g}})$ for some decreasing function ψ .

Proof. By the compactness of $\overline{\mathcal{G}}$ and the weak continuity of J(g) (proved in Lemma 3.1), we know that a minimizer \hat{g} exists in $\overline{\mathcal{G}}$. Since by Lemma 3.1 J(g) is strictly convex, the minimizer \hat{g} is unique. We have to show that $\hat{g} \in \mathcal{G}$.

With 0 < t < 1 and $g \in \overline{\mathcal{G}}$, let $g_t = \hat{g} + t(g - \hat{g})$. Since J(g) is Gâteaux differentiable at \hat{g} , we have

$$J(g_t) = J(\hat{g}) + t \int_{\Omega} (g - \hat{g}) p u_{\hat{g}}^p dx + o(t).$$

Since $J(g_t) \ge J(\hat{g})$, we find

$$J(\hat{g}) \le J(\hat{g}) + t \int_{\Omega} (g - \hat{g}) p u_{\hat{g}} \, dx + o(t).$$

It follows that

$$0 \le \int_{\Omega} (g - \hat{g}) p u_{\hat{g}} \, dx + \frac{o(t)}{t}.$$

As $t \to 0$ we find

$$0 \le \int_{\Omega} (g - \hat{g}) u_{\hat{g}} \, dx,$$

and

$$\int_{\Omega} g u_{\hat{g}}^p \, dx \ge \int_{\Omega} \hat{g} u_{\hat{g}}^p \, dx, \quad \forall g \in \overline{\mathcal{G}}.$$
(3.10)

The function $u = u_{\hat{g}}$ satisfies the equation $-\Delta_p u = \lambda_{\hat{g}} \hat{g} u_{\hat{g}}^{p-1} > 0$ a.e. in Ω ; therefore, $u_{\hat{g}}^p$ cannot have flat zones in Ω . By Lemmas 1.1 and 1.2 we can find a decreasing function ψ such that $\psi(u_{\hat{g}}^p)$ is a rearrangement of g_0 and

$$\int_{\Omega} g u_{\hat{g}}^p \, dx \ge \int_{\Omega} \psi(u_{\hat{g}}) u_{\hat{g}} \, dx, \quad \forall g \in \overline{\mathcal{G}}.$$

Comparing the latter inequality with inequality (3.10) and using Lemma 1.2 again, we must have $\hat{g} = \psi(u_{\hat{a}}^p) \in \mathcal{G}$, and the statement of the theorem follows. \Box

Remarks. Since $J(g) = \frac{p^2}{4} \frac{1}{\lambda_g^2}$, the minimization of J(g) corresponds to the maximization of λ_g . Theorem 3.2 gives some information on the shape of the maximizer of λ_g , \hat{g} . Indeed, since the associate eigenfunction $u_{\hat{g}}$ is positive in Ω , vanishes on the boundary $\partial\Omega$, and $\hat{g} = \psi(u_{\hat{g}}^p)$ with ψ decreasing, \hat{g} has to be large where $u_{\hat{g}}$ is small, that is close to $\partial\Omega$.

We underline that the maximization and the minimization of λ_g for $g \in \mathcal{G}$ in case of p = 2 are discussed in [9]. However, the (interesting) method developed in [9] for the investigation of the maximum of λ_g seems to not work in the nonlinear case $p \neq 2$. Related problems are discussed in [6, 10, 11, 13, 15, 16].

References

- A. Anane; Simplicité et isolation de la première valeur propre du p-Laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 725–728.
- [2] G. Auchmuty; Dual variational principles for eigenvalue problems, in Nonlinear Analysis and its applications (ed. F.E. Browder), *Proc. Symposia in Pure Mathematics*, Vol. 45, Part. 1, AMS 1986, 55–72.
- [3] G. R. Burton; Rearrangements of functions, maximization of convex functionals and vortex rings. Math. Ann., 276 (1987), 225–253.
- [4] G. R. Burton; Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst. Henri Poincaré, 6(4) (1989), 295–319.
- [5] G. R. Burton and J. B. McLeod; Maximisation and minimisation on classes of rearrangements. Proc. Roy. Soc. Edinburgh Sect. A, 119 (3-4) (1991), 287–300.
- [6] S. Chanillo, D. Grieser, M. Imai, K. Kurata, I. Ohnishi; Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes. *Commun. Math. Phys.*, 214 (2000), 315–337.
- [7] F. Cuccu, B. Emamizadeh, G. Porru; Nonlinear elastic membrane involving the p-Laplacian operator, *Electronic Journal of Differential Equations*. Vol 2006, no. 49 (2006), 1–10.
- [8] F. Cuccu, B. Emamizadeh, G. Porru, G.; Optimization of the first eigenvalue in problems involving the p-Laplacian, Proc. Amer. Math. Soc. 137 (2009), 1677–1687.
- S. J. Cox, J. R. McLaughlin; Extremal eigenvalue problems for composite membranes, I, II. Appl. Math. Optim., 22 (1990),153–167; 169–187.
- [10] F. Cuccu, G. Porcu; Existence of solutions in two optimization problems. Comp. Rend. de l'Acad. Bulg. des Sciences, 54(9) (2001), 33–38.
- [11] J. García-Melián, J. Sabina de Lis; Maximum and comparison principles involving the p-Laplacian. Journal Math. Anal. Appl., 218 (1998), 49–65.
- [12] D. Gilbarg, N. S. Trudinger; Elliptic Partial Differential Equations of Second Order, Second edition, Springer, Berlin, 1998.
- [13] A. Henrot; Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics, Birkhuser Verlag, Basel, 2006.
- [14] B. Kawohl, M. Lucia, S. Prashanth; Simplicity of the principal eigenvalue for indefinite quasilinear problems. Adv. Differential Equations, 12 (2007), 407–434.
- [15] J. Nycander, B. Emamizadeh; Variational problems for vortices attached to seamounts. Nonlinear Analysis, 55 (2003), 15–24.
- [16] W. Pielichowski; The optimization of eigenvalue problems involving the p-Laplacian. Univ. Iag. Acta Math., 42 (2004), 109–122.
- [17] P. Tolksdorf; Regularity for a more general class of quasilinear elliptic equations. Journal of Differential Equations, 51 (1984), 126–150.

Monica Marras

DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSITÁ DI CAGLIARI, VIA OSPEDALE 72, 09124 CAGLIARI, ITALY

E-mail address: mmarras@unica.it