Electronic Journal of Differential Equations, Vol. 2010(2010), No. 02, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

OPTIMIZATION IN PROBLEMS INVOLVING THE P-LAPLACIAN

MONICA MARRAS

$$
\begin{aligned}
& \text { AbSTRACT. We minimize the energy integral } \int_{\Omega}|\nabla u|^{p} d x \text {, where } g \text { is a bounded } \\
& \text { positive function that varies in a class of rearrangements, } p>1 \text {, and } u \text { is a } \\
& \text { solution of } \\
& \qquad \begin{array}{c}
-\Delta_{p} u=g \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega .
\end{array}
\end{aligned}
$$

Also we maximize the first eigenvalue $\lambda=\lambda_{g}$, where

$$
-\Delta_{p} u=\lambda g u^{p-1} \quad \text { in } \Omega
$$

For both problems, we prove existence, uniqueness, and representation of the optimizers.

1. Introduction

Let Ω be a bounded smooth domain in \mathbb{R}^{N}, and let g_{0} be a measurable function satisfying $0<g_{0} \leq H$ in Ω for a positive constant H. Define \mathcal{G} as the family of measurable functions which are rearrangements of g_{0}. In Section 2 of this article, we consider the problem

$$
\begin{gather*}
-\Delta_{p} u=g \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{1.1}
\end{gather*}
$$

where $p>1, g \in \mathcal{G}$. The operator $\Delta_{p}: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega), p^{\prime}=p /(p-1)$, stands for the usual p-Laplacian defined as

$$
\left\langle-\Delta_{p} u, v\right\rangle=\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla v d x
$$

It is well known that 1.1 has a unique solution $u \in W_{0}^{1, p}(\Omega)$. Corresponding to g, we consider the so called energy integral

$$
I(g)=\int_{\Omega}|\nabla u|^{p} d x
$$

It is useful to investigate the maximum or the minimum of $I(g)$ when g varies in \mathcal{G}. Actually, the maximum of $I(g)$ has been discussed in the paper [7]. In the present paper we investigate the minimum of $I(g)$ for $g \in \mathcal{G}$, proving results of existence

[^0]and uniqueness of the minimizer \check{g}. We also find a formula of representation for \check{g} in terms of the corresponding solution $u_{\check{g}}$.

In Section 3, we consider the eigenvalue problem

$$
\begin{gather*}
-\Delta_{p} u=\lambda g u^{p-1}, \quad u(x)>0 \quad \text { in } \Omega \tag{1.2}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where λ is the first eigenvalue. It is well known that problem (1.2 has a first positive eigenvalue $\lambda=\lambda_{g}$ and a corresponding positive eigenfunction $u=u_{g}$. It is interesting to investigate the maximum and the minimum of λ_{g} for $g \in \mathcal{G}$. Actually, the minimum of λ_{g} has been discussed in the paper [8]. In the present paper we investigate the maximum of λ_{g} for $g \in \mathcal{G}$, proving results of existence and uniqueness. We also find a formula of representation for the maximizer \hat{g} in terms of the corresponding eigenfunction $u_{\hat{g}}$. We emphasize that the methods developed here are different from those used in the papers [7] and [8].

Since we use the notion of rearrangements, let us recall the definition. Denote with $|E|$ the Lebesgue measure of the (measurable) set E. Given a function $g_{0}(x)$ defined in Ω and satisfying $0<g_{0}(x) \leq H$ for a constant H. We say that $g(x)$ belongs to the class of rearrangements $\mathcal{G}=\mathcal{G}\left(g_{0}\right)$ if

$$
|\{g(x) \geq \beta\}|=\left|\left\{g_{0}(x) \geq \beta\right\}\right| \quad \forall \beta \in(0, H)
$$

Here we write $\{g(x) \geq \beta\}$ instead of $\{x \in \Omega: g(x) \geq \beta\}$. In what follows, we shall use the following results

Lemma 1.1. Let $g \in L^{r}(\Omega), r>1$, and let $u \in L^{s}(\Omega)$, $s=r /(r-1)$. Suppose that every level set of u has measure zero. Then there exists an increasing function ϕ such that $\phi(u)$ is a rearrangement of g. Furthermore, there exists a decreasing function ψ such that $\psi(u)$ is a rearrangement of g.

Proof. The first assertion follows from [4, Lemma 2.9]. The second assertion follows applying the first one to $-u$.

Denote with $\overline{\mathcal{G}}$ the closure of \mathcal{G} with respect to the weak topology in $L^{\infty}(\Omega)$.
Lemma 1.2. Let \mathcal{G} be the set of rearrangements of a fixed function $g_{0} \in L^{r}(\Omega)$, $r>1$, and let $u \in L^{s}(\Omega), s=r /(r-1)$. If there is an increasing function ϕ such that $\phi(u) \in \mathcal{G}$ then

$$
\int_{\Omega} g u d x \leq \int_{\Omega} \phi(u) u d x \quad \forall g \in \overline{\mathcal{G}}
$$

and the function $\phi(u)$ is the unique maximizer relative to $\overline{\mathcal{G}}$. Furthermore, if there is a decreasing function ψ such that $\psi(u) \in \mathcal{G}$ then

$$
\int_{\Omega} g u d x \geq \int_{\Omega} \psi(u) u d x \quad \forall g \in \overline{\mathcal{G}}
$$

and the function $\psi(u)$ is the unique minimizer relative to $\overline{\mathcal{G}}$.
Proof. The first assertion follows from [4, Lemma 2.4]. To prove the second assertion we put $\phi(t)=\psi(-t)$. Since ϕ is increasing, applying the previous result we have

$$
\int_{\Omega} g(-u) d x \leq \int_{\Omega} \phi(-u)(-u) d x \quad \forall g \in \overline{\mathcal{G}}
$$

and $\phi(-u)=\psi(u)$ is the unique function satisfying the inequality. Equivalently, we have

$$
\int_{\Omega} g u d x \geq \int_{\Omega} \psi(u) u d x \quad \forall g \in \overline{\mathcal{G}}
$$

The proof is complete.

2. Energy integral

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded smooth domain and let $p>1, H>0$ be two real numbers. Let \mathcal{G} be the family of all rearrangements of a given function g_{0} with $0<g_{0}(x) \leq H$. It is convenient to introduce $\overline{\mathcal{G}}$, the closure of \mathcal{G} with respect to the weak* topology in $L^{\infty}(\Omega)$. By [3] or [4], we know that $\overline{\mathcal{G}}$ is weakly compact and convex. Moreover, each $g \in \overline{\mathcal{G}}$ satisfies $0<g(x) \leq H$ a.e. in Ω.

For $g \in \overline{\mathcal{G}}$, we consider problem (1.1). It is a classical result that such a problem has a unique positive solution $u \in W_{0}^{1, p}(\Omega)$ which satisfies

$$
\begin{equation*}
\sup _{v \in W_{0}^{1, p}(\Omega)} \int_{\Omega}\left(p g v-|\nabla v|^{p}\right) d x=\int_{\Omega}\left(p g u-|\nabla u|^{p}\right) d x=(p-1) \int_{\Omega}|\nabla u|^{p} d x . \tag{2.1}
\end{equation*}
$$

It is also known that the functional $\int_{\Omega}\left(p g v-|\nabla v|^{p}\right) d x$ has a unique maximizer u in $W_{0}^{1, p}(\Omega)$, and this maximizer is a solution to problem (1.1). By regularity results (see for example [17]), the solution u belongs to $W^{2,1}(\Omega)$, and equation 1.1) holds a.e. in Ω.

Lemma 2.1. For $g \in \overline{\mathcal{G}}$, let $I(g)=\int_{\Omega}|\nabla u|^{p} d x$, where u is the solution to 1.1).
(a) The functional $g \mapsto I(g)$ is continuous with respect to the weak* topology in $L^{\infty}(\Omega)$.
(b) The functional $g \mapsto I(g)$ is strictly convex in $\overline{\mathcal{G}}$.
(c) The functional $g \mapsto I(g)$ is Gâteaux differentiable with derivative $\frac{p}{p-1} u_{g}$.

Proof. Part (a). Let $g_{n} \rightharpoonup g$, and let $u_{g}, u_{g_{n}}$ be the corresponding solutions to 1.1) with g, g_{n} respectively. Using 2.1 we have

$$
\begin{align*}
(p-1) I(g)+\int_{\Omega} p\left(g_{n}-g\right) u_{g} d x & =\int_{\Omega}\left(p g_{n} u_{g}-\left|\nabla u_{g}\right|^{p}\right) d x \leq(p-1) I\left(g_{n}\right) \\
& =\int_{\Omega}\left(p g u_{g_{n}}-\left|\nabla u_{g_{n}}\right|^{p}\right) d x+\int_{\Omega} p\left(g_{n}-g\right) u_{g_{n}} d x \\
& \leq(p-1) I(g)+\int_{\Omega} p\left(g_{n}-g\right) u_{g_{n}} d x \tag{2.2}
\end{align*}
$$

By assumption, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega}\left(g_{n}-g\right) u_{g} d x=0 \tag{2.3}
\end{equation*}
$$

Let us prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega}\left(g_{n}-g\right) u_{g_{n}} d x=0 \tag{2.4}
\end{equation*}
$$

Using (1.1) with $g=g_{n}$, Poincaré Theorem and Hölder inequality we have

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{g_{n}}\right|^{p} d x=\int_{\Omega} g_{n} u_{g_{n}} d x \leq H \int_{\Omega} u_{g_{n}} d x \leq C\left(\int_{\Omega}\left|\nabla u_{g_{n}}\right|^{p} d x\right)^{1 / p}|\Omega|^{(p-1) / p} \tag{2.5}
\end{equation*}
$$

By 2.5 we infer that the norm $\left\|\nabla u_{g_{n}}\right\|_{L^{p}(\Omega)}$ is bounded by a constant independent of n. Therefore, a sub-sequence of $u_{g_{n}}$ (denoted again $u_{g_{n}}$) converges weakly in $W^{1, p}(\Omega)$ and strongly in $L^{p}(\Omega)$ to some function $z \in W_{0}^{1, p}(\Omega)$. Since

$$
\int_{\Omega}\left(g_{n}-g\right) u_{g_{n}} d x=\int_{\Omega}\left(g_{n}-g\right) z d x+\int_{\Omega}\left(g_{n}-g\right)\left(u_{g_{n}}-z\right) d x
$$

and since

$$
\left|\int_{\Omega}\left(g_{n}-g\right)\left(u_{g_{n}}-z\right) d x\right| \leq 2 H\left\|u_{g_{n}}-z\right\|_{L^{1}(\Omega)}
$$

Equality (2.4) follows. By $2.2,(2.3$ and 2.4 we infer

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I\left(g_{n}\right)=I(g) \tag{2.6}
\end{equation*}
$$

This yields the weak* continuity. We claim that the function z is actually the solution of 1.1 corresponding to our function g. Indeed, from

$$
\begin{gathered}
(p-1) I\left(g_{n}\right)=\int_{\Omega}\left(p g_{n} u_{g_{n}}-\left|\nabla u_{g_{n}}\right|^{p}\right) d x \\
\lim _{n \rightarrow \infty} \int_{\Omega} g_{n} u_{g_{n}} d x=\int_{\Omega} g z d x
\end{gathered}
$$

and the classical result

$$
\liminf _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{g_{n}}\right|^{p} d x \geq \int_{\Omega}|\nabla z|^{p} d x
$$

using (2.6) and 2.1 we get

$$
(p-1) I(g) \leq \int_{\Omega}\left(p g z-|\nabla z|^{p}\right) d x \leq(p-1) I(g)
$$

By the uniqueness of the maximizer of $\int_{\Omega}\left(p g v-|\nabla v|^{p}\right) d x$ we must have $z=u_{g}$, as claimed.

Proof of (b). Let $f, g \in \overline{\mathcal{G}}$, let $0<t<1$ and let $v \in W_{0}^{1, p}(\Omega)$. We have

$$
\begin{aligned}
& \int_{\Omega}\left(p(t f+(1-t) g) v-|\nabla v|^{p}\right) d x \\
& =t \int_{\Omega}\left(p f v-|\nabla v|^{p}\right) d x+(1-t) \int_{\Omega}\left(p g v-|\nabla v|^{p}\right) d x
\end{aligned}
$$

By taking the superior of both sides relative to $v \in W_{0}^{1, p}(\Omega)$, we get

$$
I(t f+(1-t) g)) \leq t I(f)+(1-t) I(g)
$$

that is, the convexity. Now, suppose equality holds in the above inequality for some $t \in(0,1)$. Then, if u_{t} is the solution corresponding to $t f+(1-t) g$ we have

$$
\begin{aligned}
& t \int_{\Omega}\left(p f u_{t}-\left|\nabla u_{t}\right|^{p}\right) d x+(1-t) \int_{\Omega}\left(p g u_{t}-\left|\nabla u_{t}\right|^{p}\right) d x \\
& =t \int_{\Omega}\left(p f u_{f}-\left|\nabla u_{f}\right|^{p}\right) d x+(1-t) \int_{\Omega}\left(p g u_{g}-\left|\nabla u_{g}\right|^{p}\right) d x .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\int_{\Omega}\left(p f u_{t}-\left|\nabla u_{t}\right|^{p}\right) d x & =\int_{\Omega}\left(p f u_{f}-\left|\nabla u_{f}\right|^{p}\right) d x \\
\int_{\Omega}\left(p g u_{t}-\left|\nabla u_{t}\right|^{p}\right) d x & =\int_{\Omega}\left(p g u_{g}-\left|\nabla u_{g}\right|^{p}\right) d x
\end{aligned}
$$

By the uniqueness of the maximizer, we must have $u_{t}=u_{f}=u_{g}$. Moreover, since

$$
\begin{array}{ll}
-\Delta_{p} u_{f}=f, & \text { a.e. in } \Omega \\
-\Delta_{p} u_{g}=g, & \text { a.e. in } \Omega
\end{array}
$$

if $u_{f}=u_{g}$, we must have $f(x)=g(x)$ a.e. in Ω, and the strict convexity is proved.
Proof of (c). Let $t_{n}>0$ be a sequence such that $t_{n} \rightarrow 0$ as $n \rightarrow \infty$. Let $f, g \in \overline{\mathcal{R}}$, and let $g_{n}=g+t_{n}(f-g)$. Then, by 2.2 we find

$$
\begin{aligned}
I(g)+t_{n} \int_{\Omega}(f-g) \frac{p}{p-1} u_{g} d x & \leq I\left(g+t_{n}(f-g)\right) \\
& \leq I(g)+t_{n} \int_{\Omega}(f-g) \frac{p}{p-1} u_{g_{n}} d x
\end{aligned}
$$

and

$$
\int_{\Omega}(f-g) \frac{p}{p-1} u_{g} d x \leq \frac{I\left(g+t_{n}(f-g)\right)-I(g)}{t_{n}} \leq \int_{\Omega}(f-g) \frac{p}{p-1} u_{g_{n}} d x
$$

As already observed, the sequence $u_{g_{n}}$ converges to u_{g} in the norm of $L^{p}(\Omega)$. Therefore,

$$
\lim _{n \rightarrow \infty} \int_{\Omega}(f-g) u_{g_{n}} d x=\int_{\Omega}(f-g) u_{g} d x
$$

Hence, since the sequence t_{n} is arbitrary, we have

$$
\lim _{t \rightarrow 0} \frac{I(g+t(f-g))-I(g)}{t}=\int_{\Omega}(f-g) \frac{p}{p-1} u_{g} d x
$$

It follows that $I(g)$ is Gâteaux differentiable with derivative $\frac{p}{p-1} u_{g}$. The proof is complete.
Theorem 2.2. Let $0<g_{0}(x) \leq H$, and let \mathcal{G} be the class of all rearrangements of g_{0}. There exists a unique $\check{g} \in \mathcal{G}$ such that

$$
I(\check{g})=\inf _{g \in \mathcal{G}} I(g)
$$

Furthermore, we have $\check{g}=\psi\left(u_{\check{g}}\right)$ for some decreasing function ψ.
Proof. By the compactness of $\overline{\mathcal{G}}$ and the weak continuity of $I(g)$ (proved in Lemma 2.1), we know that a minimizer \check{g} exists in $\overline{\mathcal{G}}$. Since by Lemma 2.1. $I(g)$ is strictly convex, the minimizer \check{g} is unique. We have to show that $\check{g} \in \mathcal{G}$.

With $0<t<1$ and $g \in \overline{\mathcal{G}}$, let $g_{t}=\check{g}+t(g-\check{g})$. Since $I(g)$ is Gâteaux differentiable at \check{g}, we have

$$
I\left(g_{t}\right)=I(\check{g})+t \int_{\Omega}(g-\check{g}) \frac{p}{p-1} u_{\check{g}} d x+o(t)
$$

Since $I\left(g_{t}\right) \geq I(\check{g})$, we find

$$
I(\check{g}) \leq I(\check{g})+t \int_{\Omega}(g-\check{g}) \frac{p}{p-1} u_{\check{g}} d x+o(t)
$$

It follows that

$$
0 \leq \int_{\Omega}(g-\check{g}) \frac{p}{p-1} u_{\check{g}} d x+\frac{o(t)}{t}
$$

As $t \rightarrow 0$ we find that

$$
0 \leq \int_{\Omega}(g-\check{g}) u_{\check{g}} d x
$$

and

$$
\begin{equation*}
\int_{\Omega} g u_{\check{g}} d x \geq \int_{\Omega} \check{g} u_{\check{g}} d x, \quad \forall g \in \overline{\mathcal{G}} \tag{2.7}
\end{equation*}
$$

The function $u=u_{\check{g}}$ satisfies the equation $-\Delta_{p} u=\check{g}>0$ a.e. in Ω, therefore $u_{\check{g}}$ cannot have flat zones in Ω (see [12, Lemma 7.7]). By Lemma 1.1 and Lemma 1.2 we can find a decreasing function ψ such that $\psi\left(u_{\check{g}}\right)$ is a rearrangement of g_{0} and

$$
\int_{\Omega} g u_{\check{g}} d x \geq \int_{\Omega} \psi\left(u_{\check{g}}\right) u_{\check{g}} d x, \quad \forall g \in \overline{\mathcal{G}}
$$

Comparing the latter inequality with inequality 2.7 and using Lemma 1.2 again, we must have $\check{g}=\psi\left(u_{\check{g}}\right) \in \mathcal{G}$. The proof is complete.

We remark that Theorem 2.2 gives some information on the shape of the minimizer \check{g}. Indeed, since the associate solution $u_{\check{g}}$ is positive in Ω, vanishes on the boundary $\partial \Omega$, and $\check{g}=\psi\left(u_{\check{g}}\right)$ with ψ decreasing, \check{g} has to be large where $u_{\check{g}}$ is small, that is close to $\partial \Omega$.

3. Principal eigenvalue

We use the same assumptions and notation as in the previous section. For $g \in \overline{\mathcal{G}}$, we consider problem $\sqrt[1.2]{ }$. It is known that such a problem has a principal positive eigenvalue λ_{g} to which corresponds a unique (up to a normalization) positive eigenfunction u_{g} [1]. We have [14]

$$
\begin{equation*}
\frac{1}{\lambda_{g}}=\sup _{v \in W_{0}^{1, p}(\Omega)} \frac{\int_{\Omega} p g v^{p} d x}{\int_{\Omega}|\nabla v|^{p} d x} \tag{3.1}
\end{equation*}
$$

Following Auchmuty [2], we can prove that
$\frac{p^{2}}{4} \frac{1}{\lambda_{g}^{2}}=\sup _{v \in W_{0}^{1, p}(\Omega)}\left[\int_{\Omega} p g|v|^{p} d x-\left(\int_{\Omega}|\nabla v|^{p} d x\right)^{2}\right]=\int_{\Omega} p g|u|^{p} d x-\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{2}$.
Since we know that the principal eigenfunction is positive, we can take $v>0$ in (3.2). Therefore, for $v>0$, define

$$
A(v)=\int_{\Omega} p g v^{p} d x-\left(\int_{\Omega}|\nabla v|^{p} d x\right)^{2}
$$

With $t>0$, we have

$$
A(t v)=t^{p} \int_{\Omega} p g v^{p} d x-t^{2 p}\left(\int_{\Omega}|\nabla v|^{p} d x\right)^{2} .
$$

It is easy to see that, for v fixed, $A(t v) \leq A\left(t_{0} v\right)$ with

$$
\begin{equation*}
t_{0}^{p}=\frac{\int_{\Omega} p g v^{p} d x}{2\left(\int_{\Omega}|\nabla v|^{p} d x\right)^{2}} \tag{3.3}
\end{equation*}
$$

Therefore,

$$
A(t v) \leq \frac{p^{2}}{4}\left(\frac{\int_{\Omega} p g v^{p} d x}{\int_{\Omega}|\nabla v|^{p} d x}\right)^{2}
$$

It follows that

$$
\sup _{v \in W_{0}^{1, p}(\Omega)} A(v)=\frac{p^{2}}{4} \sup _{v \in W_{0}^{1, p}(\Omega)}\left(\frac{\int_{\Omega} p g v^{p} d x}{\int_{\Omega}|\nabla v|^{p} d x}\right)^{2} .
$$

Equation (3.2) follows from the latter equation and (3.1).
Note that if v is a maximizer in (3.1) then also νv with $\nu \neq 0$ is a maximizer. A maximizer u in (3.1) is also a maximizer in (3.2) when u is normalized so that $t_{0}=1$ in 3.3), that is

$$
\begin{equation*}
\int_{\Omega} p g u^{p} d x=2\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{2} . \tag{3.4}
\end{equation*}
$$

Therefore, the (positive) maximizer $u=u_{g}$ in 3.2 satisfies 3.4 and is unique.
Lemma 3.1. For $g \in \overline{\mathcal{G}}$, let $J(g)=\frac{p^{2}}{4} \frac{1}{\lambda_{g}^{2}}$, where λ_{g} is the principal eigenvalue of problem 1.2).
(a) The functional $g \mapsto J(g)$ is continuous with respect to the weak* topology in $L^{\infty}(\Omega)$.
(b) The functional $g \mapsto J(g)$ is strictly convex in $\overline{\mathcal{G}}$.
(c) The functional $g \mapsto J(g)$ is Gâteaux differentiable with derivative $p u_{g}^{p}$.

Proof. Parts (a) and (b) of this lemma are essentially proved in [8; however we give here a slightly different proof.

Proof of (a). Let $g_{n} \rightharpoonup g$, and let $u_{g}, u_{g_{n}}$ be the corresponding maximizers of (3.2) (eigenfunctions) with g, g_{n} respectively. Using (3.2) we have

$$
\begin{align*}
J(g)+\int_{\Omega} p\left(g_{n}-g\right) u_{g}^{p} d x & =\int_{\Omega} p g_{n} u_{g}^{p} d x-\left(\int_{\Omega}\left|\nabla u_{g}\right|^{p}\right)^{2} d x \leq J\left(g_{n}\right) \\
& =\int_{\Omega} p g u_{g_{n}}^{p} d x-\left(\left|\nabla u_{g_{n}}\right|^{p}\right)^{2} d x+\int_{\Omega} p\left(g_{n}-g\right) u_{g_{n}}^{p} d x \\
& \leq J(g)+\int_{\Omega} p\left(g_{n}-g\right) u_{g_{n}}^{p} d x \tag{3.5}
\end{align*}
$$

By assumption, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega}\left(g_{n}-g\right) u_{g}^{p} d x=0 \tag{3.6}
\end{equation*}
$$

Let us prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega}\left(g_{n}-g\right) u_{g_{n}}^{p} d x=0 \tag{3.7}
\end{equation*}
$$

Using (3.4 with $g=g_{n}$ and Poincaré Theorem we have

$$
\begin{equation*}
2\left(\int_{\Omega}\left|\nabla u_{g_{n}}\right|^{p} d x\right)^{2}=\int_{\Omega} p g_{n} u_{g_{n}}^{p} d x \leq p H \int_{\Omega} u_{g_{n}}^{p} d x \leq C \int_{\Omega}\left|\nabla u_{g_{n}}\right|^{p} d x \tag{3.8}
\end{equation*}
$$

By 3.8 we infer that the norm $\left\|\nabla u_{g_{n}}\right\|_{L^{p}(\Omega)}$ is bounded by a constant independent of n. Therefore, a sub-sequence of $u_{g_{n}}$ (denoted again $u_{g_{n}}$) converges weakly in $W^{1, p}(\Omega)$ and strongly in $L^{p}(\Omega)$ to some function $z \in W_{0}^{1, p}(\Omega)$. Since

$$
\int_{\Omega}\left(g_{n}-g\right) u_{g_{n}}^{p} d x=\int_{\Omega}\left(g_{n}-g\right) z^{p} d x+\int_{\Omega}\left(g_{n}-g\right)\left(u_{g_{n}}^{p}-z^{p}\right) d x
$$

and since

$$
\begin{aligned}
\left|\int_{\Omega}\left(g_{n}-g\right)\left(u_{g_{n}}^{p}-z^{p}\right) d x\right| & \leq 2 H C_{p} \int_{\Omega}\left|u_{g_{n}}-z\right|\left(u_{g_{n}}+z\right)^{p-1} d x \\
& \leq 2 H C_{p}\left\|u_{g_{n}}-z\right\|_{L^{p}(\Omega)}\left(\int_{\Omega}\left(u_{g_{n}}+z\right)^{p} d x\right)^{(p-1) / p}
\end{aligned}
$$

Equality (3.7) follows. By (3.5, (3.6) and (3.7) we infer

$$
\begin{equation*}
\lim _{n \rightarrow \infty} J\left(g_{n}\right)=J(g) \tag{3.9}
\end{equation*}
$$

This yields the weak* continuity. We claim that the function z is actually the eigenfunction corresponding to g. Indeed, from

$$
\begin{gathered}
\left.J\left(g_{n}\right)=\int_{\Omega} p g_{n} u_{g_{n}}^{p} d x-\left(\int_{\Omega}\left|\nabla u_{g_{n}}\right|^{p} d x\right)\right)^{2} \\
\lim _{n \rightarrow \infty} \int_{\Omega} g_{n} u_{g_{n}}^{p} d x=\int_{\Omega} g z^{p} d x \\
\liminf _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{g_{n}}\right|^{p} d x \geq \int_{\Omega}|\nabla z|^{p} d x
\end{gathered}
$$

using 3.9 and 3.2 , we obtain

$$
J(g) \leq \int_{\Omega} p g z^{p} d x-\left(\int_{\Omega}|\nabla z|^{p} d x\right)^{2} \leq J(g) .
$$

By the uniqueness of the maximizer of $\int_{\Omega} p g v^{p} d x-\left(\int_{\Omega}|\nabla v|^{p} d x\right)^{2}$ we must have $z=u_{g}$, as claimed.

Proof of (b). Let $f, g \in \overline{\mathcal{G}}$, let $0<t<1$ and let $v \in W_{0}^{1, p}(\Omega)$. We have

$$
\begin{aligned}
& \int_{\Omega} p(t f+(1-t) g) v^{p} d x-\left(\int_{\Omega}|\nabla v|^{p} d x\right)^{2} \\
& =t \int_{\Omega} p f v^{p} d x-\left(\int_{\Omega}|\nabla v|^{p} d x\right)^{2}+(1-t) \int_{\Omega} p g v^{p} d x-\left(\int_{\Omega}|\nabla v|^{p} d x\right)^{2} .
\end{aligned}
$$

By taking the superior of both sides relative to $v \in W_{0}^{1, p}(\Omega)$, we get

$$
J(t f+(1-t) g)) \leq t J(f)+(1-t) J(g)
$$

that is, the convexity. To prove strict convexity, suppose equality holds in the above inequality for some $t \in(0,1)$. Then, if u_{t} is the eigenfunction corresponding to $t f+(1-t) g$ we have

$$
\begin{aligned}
& t\left[\int_{\Omega} p f u_{t}^{p} d x-\left(\int_{\Omega}\left|\nabla u_{t}\right|^{p} d x\right)^{2}\right]+(1-t)\left[\int_{\Omega} p g u_{t}^{p} d x-\left(\int_{\Omega}\left|\nabla u_{t}\right|^{p} d x\right)^{2}\right] \\
& =t\left[\int_{\Omega} p f u_{f}^{p} d x-\left(\int_{\Omega}\left|\nabla u_{f}\right|^{p} d x\right)^{2}\right]+(1-t)\left[\int_{\Omega} p g u_{g}^{p} d x-\left(\int_{\Omega}\left|\nabla u_{g}\right|^{p} d x\right)^{2}\right] .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\int_{\Omega} p f u_{t}^{p} d x-\left(\int_{\Omega}\left|\nabla u_{t}\right|^{p} d x\right)^{2} & =\int_{\Omega} p f u_{f}^{p} d x-\left(\int_{\Omega}\left|\nabla u_{f}\right|^{p} d x\right)^{2} \\
\int_{\Omega} p f u_{t}^{p} d x-\left(\int_{\Omega}\left|\nabla u_{t}\right|^{p} d x\right)^{2} & =\int_{\Omega} p g u_{g}^{p} d x-\left(\int_{\Omega}\left|\nabla u_{g}\right|^{p} d x\right)^{2}
\end{aligned}
$$

By the uniqueness of the maximizer, we must have $u_{t}=u_{f}=u_{g}$ and $\lambda_{f}=\lambda_{g}$. Moreover, since

$$
\begin{array}{ll}
-\Delta_{p} u_{f}=\lambda_{f} f u_{f}^{p-1}, & \text { a.e. } \operatorname{in} \Omega \\
-\Delta_{p} u_{g}=\lambda_{g} g u_{g}^{p-1}, & \text { a.e. } \operatorname{in} \Omega
\end{array}
$$

if $u_{f}=u_{g}$ and $\lambda_{f}=\lambda_{g}$, we must have $f(x)=g(x)$ a.e. in Ω, and the strict convexity is proved.

Proof of (c). Let $t_{n}>0$ be a sequence such that $t_{n} \rightarrow 0$ as $n \rightarrow \infty$. Let $f, g \in \overline{\mathcal{R}}$, and let $g_{n}=g+t_{n}(f-g)$. Then, by (3.5) we find

$$
\begin{gathered}
J(g)+t_{n} \int_{\Omega}(f-g) p u_{g}^{p} d x \leq J\left(g+t_{n}(f-g)\right) \leq J(g)+t_{n} \int_{\Omega}(f-g) p u_{g_{n}}^{p} d x \\
\int_{\Omega}(f-g) p u_{g}^{p} d x \leq \frac{J\left(g+t_{n}(f-g)\right)-J(g)}{t_{n}} \leq \int_{\Omega}(f-g) p u_{g_{n}}^{p} d x
\end{gathered}
$$

As already observed, the sequence $u_{g_{n}}$ converges to u_{g} in the norm of $L^{p}(\Omega)$. Therefore,

$$
\lim _{n \rightarrow \infty} \int_{\Omega}(f-g) u_{g_{n}}^{p} d x=\int_{\Omega}(f-g) u_{g}^{p} d x
$$

Hence, since the sequence t_{n} is arbitrary, we have

$$
\lim _{t \rightarrow 0} \frac{J(g+t(f-g))-J(g)}{t}=\int_{\Omega}(f-g) p u_{g}^{p} d x
$$

It follows that $J(g)$ is Gâteaux differentiable with derivative $p u_{g}^{p}$. The proof is complete.

Theorem 3.2. Let $0<g_{0}(x) \leq H$, and let \mathcal{G} be the class of all rearrangements of g_{0}. There exists a unique $\hat{g} \in \mathcal{G}$ such that

$$
J(\hat{g})=\inf _{g \in \mathcal{G}} J(g)
$$

Furthermore, $\hat{g}=\psi\left(u_{\hat{g}}\right)$ for some decreasing function ψ.
Proof. By the compactness of $\overline{\mathcal{G}}$ and the weak continuity of $J(g)$ (proved in Lemma 3.1), we know that a minimizer \hat{g} exists in $\overline{\mathcal{G}}$. Since by Lemma 3.1 $J(g)$ is strictly convex, the minimizer \hat{g} is unique. We have to show that $\hat{g} \in \mathcal{G}$.

With $0<t<1$ and $g \in \overline{\mathcal{G}}$, let $g_{t}=\hat{g}+t(g-\hat{g})$. Since $J(g)$ is Gâteaux differentiable at \hat{g}, we have

$$
J\left(g_{t}\right)=J(\hat{g})+t \int_{\Omega}(g-\hat{g}) p u_{\hat{g}}^{p} d x+o(t)
$$

Since $J\left(g_{t}\right) \geq J(\hat{g})$, we find

$$
J(\hat{g}) \leq J(\hat{g})+t \int_{\Omega}(g-\hat{g}) p u_{\hat{g}} d x+o(t)
$$

It follows that

$$
0 \leq \int_{\Omega}(g-\hat{g}) p u_{\hat{g}} d x+\frac{o(t)}{t}
$$

As $t \rightarrow 0$ we find

$$
0 \leq \int_{\Omega}(g-\hat{g}) u_{\hat{g}} d x
$$

and

$$
\begin{equation*}
\int_{\Omega} g u_{\hat{g}}^{p} d x \geq \int_{\Omega} \hat{g} u_{\hat{g}}^{p} d x, \quad \forall g \in \overline{\mathcal{G}} . \tag{3.10}
\end{equation*}
$$

The function $u=u_{\hat{g}}$ satisfies the equation $-\Delta_{p} u=\lambda_{\hat{g}} \hat{g} u_{\hat{g}}^{p-1}>0$ a.e. in Ω; therefore, $u_{\hat{g}}^{p}$ cannot have flat zones in Ω. By Lemmas 1.1 and 1.2 we can find a decreasing function ψ such that $\psi\left(u_{\hat{g}}^{p}\right)$ is a rearrangement of g_{0} and

$$
\int_{\Omega} g u_{\hat{g}}^{p} d x \geq \int_{\Omega} \psi\left(u_{\hat{g}}\right) u_{\hat{g}} d x, \quad \forall g \in \overline{\mathcal{G}}
$$

Comparing the latter inequality with inequality (3.10) and using Lemma 1.2 again, we must have $\hat{g}=\psi\left(u_{\hat{g}}^{p}\right) \in \mathcal{G}$, and the statement of the theorem follows.

Remarks. Since $J(g)=\frac{p^{2}}{4} \frac{1}{\lambda_{q}^{2}}$, the minimization of $J(g)$ corresponds to the maximization of λ_{g}. Theorem 3.2 gives some information on the shape of the maximizer of λ_{g}, \hat{g}. Indeed, since the associate eigenfunction $u_{\hat{g}}$ is positive in Ω, vanishes on the boundary $\partial \Omega$, and $\hat{g}=\psi\left(u_{\tilde{g}}^{p}\right)$ with ψ decreasing, \hat{g} has to be large where $u_{\hat{g}}$ is small, that is close to $\partial \Omega$.

We underline that the maximization and the minimization of λ_{g} for $g \in \mathcal{G}$ in case of $p=2$ are discussed in [9. However, the (interesting) method developed in [9] for the investigation of the maximum of λ_{g} seems to not work in the nonlinear case $p \neq 2$. Related problems are discussed in [6, 10, 11, 13, 15, 16,

References

[1] A. Anane; Simplicité et isolation de la première valeur propre du p-Laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 725-728.
[2] G. Auchmuty; Dual variational principles for eigenvalue problems, in Nonlinear Analysis and its applications (ed. F.E. Browder), Proc. Symposia in Pure Mathematics, Vol. 45, Part. 1, AMS 1986, 55-72.
[3] G. R. Burton; Rearrangements of functions, maximization of convex functionals and vortex rings. Math. Ann., 276 (1987), 225-253.
[4] G. R. Burton; Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst. Henri Poincaré, 6(4) (1989), 295-319.
[5] G. R. Burton and J. B. McLeod; Maximisation and minimisation on classes of rearrangements. Proc. Roy. Soc. Edinburgh Sect. A, 119 (3-4) (1991), 287-300.
[6] S. Chanillo, D. Grieser, M. Imai, K. Kurata, I. Ohnishi; Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes. Commun. Math. Phys., 214 (2000), 315-337.
[7] F. Cuccu, B. Emamizadeh, G. Porru; Nonlinear elastic membrane involving the p-Laplacian operator, Electronic Journal of Differential Equations. Vol 2006, no. 49 (2006), 1-10.
[8] F. Cuccu, B. Emamizadeh, G. Porru, G.; Optimization of the first eigenvalue in problems involving the p-Laplacian, Proc. Amer. Math. Soc. 137 (2009), 1677-1687.
[9] S. J. Cox, J. R. McLaughlin; Extremal eigenvalue problems for composite membranes, I, II. Appl. Math. Optim., 22 (1990),153-167; 169-187.
[10] F. Cuccu, G. Porcu; Existence of solutions in two optimization problems. Comp. Rend. de l'Acad. Bulg. des Sciences, 54(9) (2001), 33-38.
[11] J. García-Melián, J. Sabina de Lis; Maximum and comparison principles involving the pLaplacian. Journal Math. Anal. Appl., 218 (1998), 49-65.
[12] D. Gilbarg, N. S. Trudinger; Elliptic Partial Differential Equations of Second Order, Second edition, Springer, Berlin, 1998.
[13] A. Henrot; Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics, Birkhuser Verlag, Basel, 2006.
[14] B. Kawohl, M. Lucia, S. Prashanth; Simplicity of the principal eigenvalue for indefinite quasilinear problems. Adv. Differential Equations, 12 (2007), 407-434.
[15] J. Nycander, B. Emamizadeh; Variational problems for vortices attached to seamounts. Nonlinear Analysis, 55 (2003), 15-24.
[16] W. Pielichowski; The optimization of eigenvalue problems involving the p-Laplacian. Univ. Iag. Acta Math., 42 (2004), 109-122.
[17] P. Tolksdorf; Regularity for a more general class of quasilinear elliptic equations. Journal of Differential Equations, 51 (1984), 126-150.

Monica Marras
Dipartimento di Matematica e Informatica, Universitá di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy

E-mail address: mmarras@unica.it

[^0]: 2000 Mathematics Subject Classification. 35J25, 49K20, 47A75.
 Key words and phrases. p-Laplacian; energy integral; eigenvalues; rearrangements; shape optimization.
 (C)2010 Texas State University - San Marcos.

 Submitted November 2, 2009. Published January 5, 2010.

