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EXISTENCE OF POSITIVE AND SIGN-CHANGING SOLUTIONS
FOR p-LAPLACE EQUATIONS WITH POTENTIALS IN RN

MINGZHU WU, ZUODONG YANG

Abstract. We study the perturbed equation

−εp div(|∇u|p−2∇u) + V (x)|u|p−2u = h(x, u) + K(x)|u|p
∗−2u, x ∈ RN

u(x)→ 0 as |x| → ∞ .

where 2 ≤ p < N , p∗ = pN
N−p

, p < q < p∗. Under proper conditions on V (x)

and h(x, u), we obtain the existence and multiplicity of solutions. We also
study the existence of solutions which change sign.

1. Introduction

In this article, we study the equation

−εp div(|∇u|p−2∇u) + V (x)|u|p−2u = h(x, u) + K(x)|u|p
∗−2u, x ∈ RN

u(x) → 0 as |x| → ∞
(1.1)

where 2 ≤ p < N , p∗ = pN
N−p , p < q < p∗, K(x) is a bounded positive functions,

and h(x, u) is a superlinear but subcritical function.
When p = 2 and ε = 1, this problem is a Schrodinger equation which has

been extensively studied; see for example [1, 2, 3, 4, 6, 7, 10, 13, 15]. Authors
have used different methods to study this equation. In [18], the authors established
many embedding results of weighted Sobolev spaces of radially symmetric functions
which be used to obtain ground state solutions. In [6], the authors studied the
dependence upon the local behavior of V near its global minimum. In [3], the
authors used spectral properties of the Schrodinger operator to study nonlinear
Schrodinger equations with steep potential well. In [13], Ding and Szulkin used
Rabinowitz’s linking theorem to study the equation. In [15], Ding and Szulkin used
index theory obtain many solutions of the equation. In [10], the author imposed
on functions k and K conditions ensuring that this problem can be written in a
variational form. We know that W 1,p(RN ) is not a Hilbert space for 1 < p < N ,
except for p = 2. The space W 1,p(RN ) with p 6= 2 does not satisfy the Lieb lemma
(see for example [19]). Using RN results in the loss of compactness. So there are
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many difficulties to overcome when we study (1.1) of p 6= 2 by the usual methods.
There seems to be very little work on the case p 6= 2, to the best of our knowledge.
In this article, we overcome these difficulties and study (1.1) of p ≥ 2.

When V (x) is a constant and ε = 1, (1.1) becomes the quasilinear elliptic equa-
tion

−div(|∇u|p−2∇u) + λ|u|p−2u = f(x, u), in Ω

u ∈ W 1,p
0 (Ω), u 6= 0

(1.2)

where 1 < p < N , N ≥ 3, λ is a parameter, Ω is an unbounded domain in RN .
There are many results about it we can see [5, 8, 9, 11, 12, 24]. Because of the
unboundedness of the domain, the Sobolev compact embedding does not hold.
There are many methods to overcome this difficulty. In [24], the author used that
the projection u 7→ f(x, u) is weak continuous in W 1,p

0 (Ω) to consider the problem.
In [8, 9], the authors studied the problem in symmetric Sobolev spaces which possess
Sobolev compact embedding. By the result and a min-max procedure formulated
by Bahri and Li [5], they considered the existence of positive solutions of

−div(|∇u|p−2∇u) + up−1 = q(x)uα in RN ,

where q(x) satisfies many conditions. We can see if V (x) is not constant, then
it can not be easily proved by the above methods. In [23], the authors used the
concentration-compactness principle posed by Lions and the mountain pass lemma
to solve problem with this situation.

Tarantello [21] studied the equation

−∆u = |u|2
∗−2 + f(x, u), in Ω

u = 0, on ∂Ω
(1.3)

where Ω ⊂ RN is open bounded set. She showed that for f satisfying a suitable
condition and f 6= 0, the equation (1.3) admits two solutions u0 and u1 in H1

0 (Ω).
She used suitable minimization and minimax principles of mountain pass type. The
author got the results when f satisfies the following condition∫

Ω

fu ≤ CN (‖∇u‖2)(N+2)/2

where CN = 4
N−2 (N−2

N+2 )(N+2)/4.
Radulescu and Smets [18] proved existence results for the non autonomous per-

turbations of critical singular elliptic boundary value problem

−div(|x|α∇u) = |u|2
∗−2 + f(x, u), in Ω

u = 0, on ∂Ω
(1.4)

where f satisfies suitable conditions. They proved a corresponding multiplicity
result for the degenerate problem (1.4). In their case, Ω can be unbounded.

Silva and Xavier [20] used the symmetric Mountain Pass Theorem and the
concentration-compactness principle to prove the multiplicity of solutions for the
following equation under the presence of symmetry

−div(|∇u|p−2∇u) = µ|u|p
∗−2u + f(x, u), in Ω

u = 0, on ∂Ω
(1.5)
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where f(x, s) is odd and also subcritical in s, and Ω is a bounded smooth domain in
RN . They used the concentration-compactness principle to prove that the Palais-
Smale condition is satisfied below a certain level.

In this paper, we inspired by [14, 18, 20, 21, 22] use critical point theory to study
the equation (1.2). We extend the equation in [18, 20, 21] where function V (x) 6= 0,
ε 6= 1 , K(x) 6= 1 and p ≥ 2. We will obtain the similar multiplicity results with
[18, 20, 21]. However, our method has essential differences with the methods used
in [18, 20, 21]. Also we obtain the existence of sign-changing solutions. Let us point
out that although the idea was used before for other problems, the adaptation to
the procedure to our problem is not trivial at all. Since we have to overcome two
main difficulties; one is that RN results in the loss of compactness; the other is that
W 1,p(RN ) is not a Hilbert space for 1 < p < N and it does not satisfy the Lieb
lemma, except for p = 2. So we need more delicate estimates and careful analysis.
We obtain the existence and the multiplicity of solutions in Theorems 2.1 and 2.2.
By the Theorem 2.3 we can obtain the existence of sign-changing solutions.

This paper is organized as follows. In Section 2, we state some condition and
main results. Section 3 we obtain many lemmas which will be used in the next
section. Section 4 we give the proof of the main result of the paper.

2. Main Results

We make the following assumptions

(V0) V ∈ C(RN ); minV = 0; and there is b > 0 such that the set υb =
{x ∈ RN : V (x) < b} has finite Lebesgue measure.

(K0) K ∈ C(RN ), 0 < inf K ≤ supK < ∞.
(H0) – h ∈ C(RN × R) and h(x, u) = o(|u|p−1) uniformly in x as u → 0;

– there are C0 > 0 and q < p∗ such that |h(x, u)| ≤ C0(1 + |u|q−1) for
all (x, u);

– there are a0 > 0, s > p and µ > p such that H(x, u) ≥ a0|u|s and
µH(x, u) ≤ h(x, u)u, where H(x, u) =

∫ u

0
h(x, s)ds.

(S) V,K and h are Holder continuous, and there is an orthogonal involution
τ such that V (τx) = V (x), K(τx) = K(x) and H(τx, .) = H(x, .) for all
x ∈ RN .

An example satisfying (H0) is the function h(x, u) = P (x)|u|s−2u with p < s < p∗

and P (x) being positive and bounded. Let λ = ε−p. (1.1) reads then as

−div(|∇u|p−2∇u) + λV (x)|u|p−2u = λh(x, u) + λK(x)|u|p
∗−2u, x ∈ RN

u(x) → 0 as |x| → ∞
(2.1)

We introduce the space

E = {u ∈ W 1,p(RN ) :
∫

RN

V (x)|u|pdx < ∞}.

It follows from (V0) and Poincare inequality that E continuously in W 1,p(RN ). It
is thus clear that, for each s ∈ [p, p∗], there is υs > 0 independent of λ such that if
λ ≥ 1,

|u|s ≤ υs‖u‖ ≤ υs‖u‖λ for all u ∈ E (2.2)
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Set
g(x, u) = K(x)|u|p

∗−2u + h(x, u),

G(x, u) =
∫ u

0

g(x, s)ds =
1
p∗

K(x)|u|p
∗

+ H(x, u)
(2.3)

Consider the functional

Φλ(u) =
1
p

∫
RN

(|∇u|p + λV (x)|u|p)− λ

∫
RN

G(x, u) =
1
p
‖u‖p

λ − λ

∫
RN

G(x, u).

Under the assumptions, Φλ ∈ C1(E,R) and its critical points are solutions of
(NS)λ. Set g+(x, u) = g(x, u+), G+(x, u) = G(x, u+) and define, on E,

Ψλ(u) =
1
p
‖u‖p

λ − λ

∫
RN

G+(x, u)

where as usual u± = max {±u, 0}. Then Ψλ ∈ C1(E,R) and critical points of Ψλ

are positive solutions of (NS)λ.
Let {un} denote a (PS)c-sequence. Let η : [0,∞) → [0, 1] be a smooth function

satisfying η(t) = 1 if t ≤ 1, η(t) = 0 if t ≥ 2. Define ũj(x) = η(2|x|/j)u(x). Then

‖u− ũj‖ → 0 as j →∞ (2.4)

Set
u1

n = un − ũn

Then un−u = u1
n + (ũn−u) and by (2.4), un → u if and only if u1

n → 0. If we can
shows that limn→∞Φλ(u1

n) ≤ c− Φλ(u) and Φ′λ(u1
n) → 0. Note that

Φλ(u1
n)− 1

p
Φ′λ(u1

n)u1
n ≥

λ

N

∫
RN

K(x)|u1
n|p

∗
≥ λKmin

N

∫
RN

|u1
n|p

∗

where Kmin = infx∈RN K(x) > 0, hence

|u1
n|

p∗

p∗ ≤
N(c− Φλ(u))

λKmin
+ o(1) (2.5)

Let
Vb(x) = max {V (x), b} (2.6)

where b is the positive constant from the assumption (V0).
Since the set υb has finite measure and u1

n → 0 in Lp
loc, we see that∫

RN

V (x)|u1
n|p =

∫
RN

Vb(x)|u1
n|p + o(1).

It follows from the definition (2.3) of g(x, u) and the assumptions (K0) and (H0)
that there exists a constant γb > 0 such that

g(x, u)u ≤ b|u|p + γb|u|p
∗

for all (x, u) (2.7)

Let S be the best Sobolev constant:

S|u|pp∗ ≤
∫

RN

|∇u|p for all u ∈ W 1,p(RN )

In the following we will find special finite-dimensional subspaces by which we
construct sufficiently small minimax levels. Recall that the assumption (V0) implies
that there is x0 ∈ RN such that V (x0) = minx∈RN V (x) = 0. Without loss of
generality we assume from now on that x0 = 0. Observe that, by (H0),

G(x, u) ≥ H(x, u) ≥ a0|u|s



EJDE-2010/05 EXISTENCE OF POSITIVE AND SIGN-CHANGING SOLUTIONS 5

Define the functional Jλ ∈ C1(E,R) by setting

Jλ(u) =
1
p

∫
RN

(|∇u|p + λV (x)|u|p)− a0λ

∫
RN

|u|s

Then
Φλ(u) ≤ Jλ(u) for all u ∈ E

and it suffices to construct small minimax levels for Jλ.
In W 1,p for p > 1 the Sobolev constant is never achieved on any domain Ω

different from RN . Moreover, that for u ∈ C∞
0 (RN ) the support of u lies in a fixed

compact set Ω different from RN . And combined with Lions [16, 17]. It implies
that

inf {
∫

RN

|∇ϕ|p : ϕ ∈ C∞
0 (RN ), |ϕ|s = 1} = 0.

For any δ > 0 one can choose ϕδ ∈ C∞
0 (RN ) with |ϕδ|s = 1 and suppϕδ ⊂ Brδ

(0)
so that |∇ϕδ|pp < δ. Set

eλ(x) = ϕδ(λ1/px) (2.8)

Then supp eλ ⊂ Bλ1/prδ
(0). For t ≥ 0,

Jλ(teλ) =
tp

p

∫
RN

|∇eλ|p + λV (x)|eλ|p − a0λts
∫

RN

|eλ|s

= λ1−N
p (

tp

p

∫
RN

|∇ϕδ|p + V (λ−1/px)|ϕδ|p − a0t
s

∫
RN

|ϕδ|s)

= λ1−N
p Iλ(tϕδ),

where Iλ ∈ C1(E,R) defined by

Iλ(u) =
1
p

∫
RN

|∇u|p + V (λ−1/px)|u|p − a0

∫
RN

|u|s

and

max
t≥0

Iλ(tϕδ) =
s− p

sp(sa0)p/(s−p)
(
∫

RN

|∇ϕδ|p + V (λ−1/px)|ϕδ|p)s/(s−p).

Since V (0) = 0 and suppϕδ ⊂ Brδ
(0), there is Λ̂δ > 0 such that

V (λ−1/px) ≤ δ

|ϕδ|pp
for all |x| ≤ rδ and λ ≥ Λ̂δ.

This implies that

max
t≥0

Iλ(tϕδ) ≤
s− p

sp(sa0)p/(s−p)
(2δ)s/(s−p). (2.9)

Therefore, for all λ ≥ Λ̂δ,

max
t≥0

Φλ(teλ) ≤ s− p

sp(sa0)p/(s−p)
(2δ)s/(s−p)λ1−N

p . (2.10)

In general, for any m ∈ N , one can choose m functions ϕj
δ ∈ C∞

0 (RN ) such that
supp ϕi

δ ∩ supp ϕk
δ = ∅ if i 6= k, |ϕi

δ|s = 1 and |∇ϕi
δ|pp < δ.

Let rm
δ > 0 be such that suppϕj

δ ⊂ Brm
δ

(0) for j = 1, . . . ,m. Set

ej
λ(x) = ϕj

δ(λ
1/px) for j = 1, . . . ,m
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and Hm
λδ = span{e1

λ, . . . , em
λ }. Observe that for each u = Σm

j=1Cje
j
λ ∈ Hm

λδ,∫
RN

|∇u|p = Σm
j=1|Cj |p

∫
RN

|∇ej
λ|

p,∫
RN

V (x)|u|p = Σm
j=1|Cj |p

∫
RN

V (x)|ej
λ|

p,∫
RN

G(x, u) = Σm
j=1

∫
RN

G(x,Cje
j
λ)

Hence
Φλ(u) = Σm

j=1Φλ(Cje
j
λ)

and as before
Φλ(Cje

j
λ) ≤ λ1−N

p Iλ(|Cj |ej
λ)

Set
βδ = max {|ϕj

δ|
p
p : j = 1, . . . ,m}

and choose Λ̂mδ so that

V (λ−1/px) ≤ δ

βδ
for all |x| ≤ rm

δ

and λ ≥ Λ̂mδ. As before, one obtains easily that

sup
u∈Hm

λδ

Φλ(u) ≤ s− p

sp(sa0)p/(s−p)
(2δ)s/(s−p)λ1−N

p (2.11)

for all λ ≥ Λ̂mδ.
Remark. Let h(x, u) is odd in u and τ : RN → RN be an orthogonal involution.
Then τ induces an involution on E which we denote again by τ : E → E as follows
(τu)(x) = −u(τx). If (S) is satisfied, then

∫
RN G(x, τu) =

∫
RN G(x, u). This implies

that Φλ is τ -invariant: Φλ(τu) = Φλ(u) and Φ′λ is τ -equivalent: Φ′λ(τu) = τΦ′λ(u).
In particular, if τu = u then τΦ′λ(u) = Φ′λ(u). Let Eτ = {u ∈ E : τu = u}. It
is known that critical points of the restriction of Φλ on Eτ are solutions of (2.1)
satisfying u(τx) = −u(x).

We modify the method developed in [14, 18, 20, 21, 22], and obtain the following
Theorems.

Theorem 2.1. Let (V0), (K0), (H0) be satisfied. Then for any σ > 0 there is
ωσ > 0 such that if ε ≤ ωσ, (1.1) has at least one positive solution uε of least
energy satisfying

µ− p

p

∫
RN

H(x, uε) +
1
N

∫
RN

K(x)|uε|p
∗
dx ≤ σεN , (2.12)

µ− p

pµ

∫
RN

(εp|∇uε|p + V (x)|uε|p)dx ≤ σεN (2.13)

Theorem 2.2. Let (V0), (K0), (H0) be satisfied. If moreover h(x, u) is odd in u,
then for any m ∈ N and σ > 0 there is ωmσ > 0 such that if ε ≤ ωmσ, (1.1) has at
least m pairs of solutions uε which satisfy the estimates (2.12) and (2.13).

Theorem 2.3. Let (V0), (K0), (H0), (S) be satisfied. If moreover h(x, u) is odd in
u, then for any σ > 0 there exists ωσ > 0 such that if ε ≤ ωσ, (1.1) has at least one
pair of solutions which change sign exactly once and satisfy the estimates (2.12)
and (2.13).
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3. Preliminaries

Lemma 3.1. Let Ω ⊆ RN be an open subset, {un} ⊆ W 1,p
0 (Ω) be a sequence such

that un ⇀ u in W 1,p
0 (Ω) and p ≥ 2. Then

lim
n→∞

∫
Ω

|∇un|pdx ≥ lim
n→∞

∫
Ω

|∇un −∇u|pdx + lim
n→∞

∫
Ω

|∇u|pdx

Proof. When p = 2, from Brezis-Lieb Lemma (see [11, lemma 1.32]) we have

lim
n→∞

∫
Ω

|∇un|2dx = lim
n→∞

∫
Ω

|∇un −∇u|2dx + lim
n→∞

∫
Ω

|∇u|2dx

when 3 ≥ p > 2, using the lower semi-continuity of the Lp-norm with respect to
the weak convergence and un ⇀ u in W 1,p(Ω), we deduce

〈|∇un|p−2∇un,∇un〉 ≥ 〈|∇u|p−2∇u,∇u〉+ o(1)

and

lim
n→∞

〈|∇un −∇u|p−2(∇un −∇u),∇un −∇u〉

≥ 0 = lim
n→∞

〈|∇un −∇u|p−2(∇u−∇u),∇u−∇u〉

So

lim
n→∞

〈|∇un −∇u|p−2∇un,∇un〉 ≥ lim
n→∞

〈|∇un −∇u|p−2∇un,∇u〉

= lim
n→∞

〈|∇un −∇u|p−2∇u,∇un〉

= lim
n→∞

〈|∇un −∇u|p−2∇u,∇u〉

Then

lim
n→∞

∫
Ω

(|∇un|p − |∇u|p)dx

= lim
n→∞

∫
Ω

|∇un|p−2(|∇un|2 − |∇u|2)dx + lim
n→∞

∫
Ω

(|∇un|p−2 − |∇u|p−2)|∇u|2dx

= lim
n→∞

∫
Ω

(|∇un|p−2 + |∇u|p−2)(|∇un|2 − |∇u|2)dx

+ lim
n→∞

∫
Ω

(|∇un|p−2|∇u|2 − |∇u|p−2|∇un|2)dx.

From un ⇀ u in W 1,p(Ω), it follows that

lim
n→∞

∫
Ω

(|∇un|p−2|∇u|2 − |∇u|p−2|∇un|2)dx = 0 .

So that

lim
n→∞

∫
Ω

(|∇un|p − |∇u|p)dx

= lim
n→∞

∫
Ω

(|∇un|p−2 + |∇u|p−2)(|∇un|2 − |∇u|2)dx

≥ lim
n→∞

∫
Ω

|∇un −∇u|p−2(|∇un|2 − |∇u|2).
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So we have

〈|∇un|p−2∇un,∇un〉+ 〈|∇un −∇u|p−2∇u,∇un〉+ 〈|∇un −∇u|p−2∇un,∇u〉
≥ 〈|∇un −∇u|p−2∇un,∇un〉+ 〈|∇un −∇u|p−2∇u,∇u〉

+ 〈|∇u|p−2∇u,∇u〉+ o(1).

Then

〈|∇un|p−2∇un,∇un〉
≥ 〈|∇un −∇u|p−2∇un −∇u,∇un −∇u〉+ 〈|∇u|p−2∇u,∇u〉+ o(1)

and
lim

n→∞

∫
Ω

|∇un|pdx ≥ lim
n→∞

∫
Ω

|∇un −∇u|pdx + lim
n→∞

∫
Ω

|∇u|pdx

when p > 3, there exist a k ∈ N that 0 < p− k ≤ 1. Then, we only need to prove
the following inequality

lim
n→∞

∫
Ω

(|∇un|p − |∇u|p)dx ≥ lim
n→∞

∫
Ω

|∇un −∇u|p−k(|∇un|k − |∇u|k).

The proof is similar to the proof above, so we omit it. The lemma is proved. �

Recall that a sequence {un} ⊂ E is a (PS) sequence at level c if Φλ(un) → c
and Φλ

′(un) → 0. Φλ is said to satisfy the (PS)c condition if any (PS)c-sequence
contains a convergent subsequence.

Lemma 3.2. Assume that (V0), (K0), (H0) be satisfied. Let {un} be a (PS)c-
sequence for Φλ. Then c ≥ 0 and {un} is bounded in E.

Proof. Let {un} be a (PS)c-sequence

Φλ(un) → c and Φλ
′(un) → 0.

By (H0) we have
d + ‖un‖λ + o(1)

≥ Φλ(un)− 1
µ

Φλ
′(un)un

= (
1
p
− 1

µ
)
∫

RN

(|∇un|p + λV (x)|un|p)

+ λ

∫
RN

(
1
µ

h(x, un)un −H(x, un)) + (
1
µ
− 1

p∗
)λ

∫
RN

K(x)|un|p
∗

≥ (
1
p
− 1

µ
)
∫

RN

(|∇un|p + λV (x)|un|p);

(3.1)

hence for n large, d + ‖un‖λ ≥ ‖un‖p
λ, where d is a positive constant. This implies

that {un} is bounded. Taking the limit in (3.1) shows that c ≥ 0. �

Let {un} denote a (PS)c-sequence. By the above lemma, it is bounded, hence,
without loss of generality, we may assume un ⇀ u in E, Ls and Lp∗ , un → u in
Lt

loc for 1 ≤ t < p∗, and un → u a.e.for x ∈ RN .

Lemma 3.3. Let s ∈ [2, p∗). There is a subsequence (unj ) such that for each ε > 0,
there exists rε > 0 with

lim sup
j→∞

∫
Bj\Br

|unj
|sdx ≤ ε
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for all r ≥ rε, where Bk = {x ∈ RN : |x| ≤ k}.

Proof. Note that for each j ∈ N ,
∫

Bj
|un|s →

∫
Bj
|u|s as n → ∞. There exists

n̂j ∈ N such that
∫

Bj
(|un|s − |u|s) < 1

j for all n = n̂j + i, i = 1, 2, 3, . . . . Without
loss of generality we can assume n̂j+1 ≥ n̂j . In particular, for nj = n̂j + j we have∫

Bj

(|unj |s − |u|s) <
1
j

Observe that there is rε satisfying∫
RN\Br

|u|s < ε (3.2)

for all r ≥ rε. Since∫
Bj\Br

|unj |s =
∫

Bj

(|unj |s − |u|s) +
∫

Bj\Br

|u|s +
∫

Br

(|u|s − |unj |s)

≤ 1
j

+
∫

RN\Br

|u|s +
∫

Br

(|u|s − |unj
|s)

the lemma follows. �

Recall that, by (H0), |h(x, u)| ≤ C1(|u| + |u|q−1) for all (x, u). Let firstly
{unj}j∈N be a subsequence of {un}n∈N such that Lemma 3.3 holds for s = 2.
Repeating the argument we can then find a subsequence {unji}i∈N of {unj}j∈N

such that Lemma 3.3 holds for s = q. Therefore, for notational convenience, we
can assume in the following that Lemma 3.3 holds for both s = 2 and s = q with
the same subsequence.

Lemma 3.4. We have

lim
j→∞

|
∫

RN

(h(x, unj
)− h(x, unj

− ũj)− h(x, ũj))ϕ| = 0

uniformly in ϕ ∈ E with ‖ϕ‖ ≤ 1.

Proof. Note that (2.4) and the local compactness of Sobolev embedding imply that,
for any r > 0.

lim
j→∞

|
∫

Br

(h(x, unj )− h(x, unj − ũj)− h(x, ũj))ϕ| = 0

uniformly in ‖ϕ‖ ≤ 1. For any ε > 0 it follows from (3.2) that

lim sup
j→∞

∫
Bj\Br

|ũj |sdx ≤ ε ≤
∫

RN\Br

|u|s < ε
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for all r ≥ rε. Using Lemma 3.3 for s = 2, q we get

lim sup
j→∞

|
∫

RN

(h(x, unj
)− h(x, unj

− ũj)− h(x, ũj))ϕ|

= lim sup
j→∞

|
∫

Bj\Br

(h(x, unj
)− h(x, unj

− ũj)− h(x, ũj))ϕ|

≤ C2 lim sup
j→∞

∫
Bj\Br

(|unj |+ |ũj |)|ϕ|+ C3 lim sup
j→∞

∫
Bj\Br

(|unj |q−1 + |ũj |q−1)|ϕ|

≤ C2 lim sup
j→∞

(|unj
|L2(Bj\Br) + |ũj |L2(Bj\Br))|ϕ|2

+ C3 lim sup
j→∞

(|unj |
q
Lq(Bj\Br) + |ũj |qLq(Bj\Br))|ϕ|q

≤ C4ε
1
2 + C5ε

(q−1)
q

the conclusion as required. �

Lemma 3.5. One has along a subsequence: (1) limn→∞Φλ(un− ũn) ≤ c−Φλ(u),
and (2) Φ′λ(un − ũn) → 0.

Proof. From Lemma 3.1 we have

Φλ(un − ũn) ≤ Φλ(un)− Φλ(ũn) +
λ

p∗

∫
RN

K(x)(|un|p
∗
− |un − ũn|p

∗
− |ũn|p

∗
)

+ λ

∫
RN

(H(x, un)−H(x, un − ũn)−H(x, ũn))

Using (2.4) and the Lieb Lemma, we have∫
RN

K(x)(|un|p
∗
− |un − ũn|p

∗
− |ũn|p

∗
) → 0 ,∫

RN

(H(x, un)−H(x, un − ũn)−H(x, ũn)) → 0

This, together with the facts Φλ(un) → c and Φλ(ũn) → Φλ(u), gives (1).
To verify (2), observe that, as ũn → u and un ⇀ u in W 1,p(RN ) so un − ũn ⇀ 0

in W 1,p(RN ), then∫
RN

(|∇(un − ũn)|p−2∇(un − ũn)∇ϕ + λV (x)|un − ũn|p−2(un − ũn)ϕ) = o(1),

for any ϕ ∈ E. So for any ϕ ∈ E,

|Φ′λ(un − ũn)ϕ|
≤ |Φ′λ(un)ϕ|+ |Φ′λ(ũn)ϕ|

+ λ

∫
RN

K(x)(|un|p
∗−2un − |un − ũn|p

∗−2(un − ũn)− |ũn|p
∗−2ũn)ϕ

+ λ

∫
RN

(h(x, un)− h(x, un − ũn)− h(x, ũn))ϕ

It follows, again from a standard argument, that

lim
n→∞

∫
RN

K(x)(|un|p
∗
− |un − ũn|p

∗
− |ũn|p

∗
)ϕ = 0
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uniformly in ‖ϕ‖ ≤ 1. By Lemma 3.4 we obtain

lim
n→∞

∫
RN

(h(x, un)− h(x, un − ũn)− h(x, ũn))ϕ = 0

uniformly in ‖ϕ‖ ≤ 1, proving (2). �

Lemma 3.6. Under the assumptions of Lemma 3.2, there is a constant α0 > 0
independent of λ such that, for any (PS)c-sequence (un) for Φλ with un ⇀ u, either
un → u or

c− Φλ(u) ≥ α0λ
1−N

p

where α0 = SN/pγb
−N/pN−1Kmin.

Proof. Assume un doesn’t tend to u. Then lim infn→∞ ‖u1
n‖λ > 0 and c−Φλ(u) > 0.

By the Sobolev inequality, (2.6) and (2.7),

S|u1
n|

p
p∗ ≤

∫
RN

|∇u1
n|p + λV (x)|u1

n|p − λ

∫
RN

V (x)|u1
n|p

= λ

∫
RN

g(x, u1
n)u1

n − λ

∫
RN

Vb(x)|u1
n|p + o(1)

≤ λ

∫
RN

g(x, u1
n)u1

n − λb

∫
RN

|u1
n|p + o(1)

≤ λγb|u1
n|

p∗

p∗ + o(1).

Thus by (2.5)

S ≤ λγb|u1
n|

p∗−p
p∗ + o(1)

≤ λγb(
N(c− Φλ(u))

λKmin
)p/N + o(1)

= λ1− p
N γb(

N

Kmin
)p/N (c− Φλ(u))p/N + o(1)

or
α0λ

1− p
N ≤ c− Φλ(u) + o(1)

where
α0 = SN/pγb

−N/pN−1Kmin

The proof is complete. �

Lemma 3.7. Under the assumptions of Lemma 3.2, Ψλ satisfies the (PS)c condi-
tion for all c < α0λ

1− p
N .

Proof. Assume (un) is a (PS)c sequence for Ψλ. Then o(1)‖u−n ‖λ ≥ Ψλ
′(un)u−n =

‖u−n ‖
p
λ which implies ‖u−n ‖λ → 0. In addition,

Ψλ(un)− 1
p
Ψλ

′(un)un ≥
λ

N

∫
RN

K(x)|u+
n |p

∗

and
o(1)‖u+

n ‖λ ≥ Ψλ
′(un)u+

n = ‖u+
n ‖

p
λ −

∫
RN

g(x, u+
n )u+

n

Using the above argument, it is not difficult to check that under the assumptions
of Lemma 3.2, Ψλ satisfies the (PS)c condition for all c < α0λ

1− p
N . �

We consider λ ≥ 1. The following two Lemmas imply that Φλ possesses the
mountain-pass structure.
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Lemma 3.8. Assume (V0), (K0), (H0) hold. There exist αλ, ρλ > 0 such that
Φλ(u) > 0 if u ∈ Bρλ

\ {0} and Φλ(u) ≥ αλ if u ∈ ∂Bρλ
, where

Bρλ
= {u ∈ E : ‖u‖λ ≤ ρλ}.

Proof. By (H0), for δ ≤ (2pλυp
p)−1 there is Cδ > 0 such that G(x, u) ≤ δ|u|p +

Cδ|u|p
∗

for all (x, u), where υp is the embedding constant of (2.2). Thus

Φλ(u) ≥ 1
p
‖u‖p

λ − λδ|u|pp − λCδ|u|p
∗

p∗ ≥
1
2p
‖u‖p

λ − λCδυ
p∗

p∗‖u‖
p∗

λ .

Consequently the conclusion follows because p∗ > p. �

Lemma 3.9. Under the assumptions of Lemma 3.8, for any finite dimensional
subsequence F ⊂ E, Φλ(u) → −∞ as u ∈ F , ‖u‖λ →∞.

Proof. By (H0),

Φλ(u) ≤ 1
p
‖u‖p

λ − λ0a0|u|ss

for all u ∈ E. Since all norms in a finite-dimensional space are equivalent and s > p,
one obtains easily the desired conclusion. �

Lemma 3.10. Under the assumptions of Lemma 3.8, for any σ > 0 there exists
Λσ > 0, such that, for each λ ≥ Λσ, there is eλ ∈ E with ‖eλ‖ > σλ, Φλ(eλ) ≤ 0
and

max
t∈[0,1]

Φλ(teλ) ≤ σλ1−N
p ,

where ρλ is from Lemma 3.8.

Proof. Choose δ > 0 so small that

s− p

sp(sa0)p/(s−p)
(2δ)s/(s−p) ≤ σ

and let eλ ∈ E be the function defined by (2.8). Take Λσ = Λ̂δ. Let tλ > 0 be
such that tλ‖eλ‖λ > ρλ and Φλ(teλ) ≤ 0 for all t > tλ. Then by (2.10), eλ = tλeλ

satisfies the requirements. �

Lemma 3.11. Under the assumptions of Lemma 3.8, for any m ∈ N and σ > 0
there exist Λmσ > 0, such that, for each λ ≥ Λmσ, there exists an m-dimensional
subspace Fλm satisfying

sup
u∈Fλm

Φλ(u) ≤ σλ1−N
p .

Proof. Choose δ > 0 small so that

s− p

sp(sa0)p/(s−p)
(2δ)s/(s−p) ≤ σ

and take Fλm = Hm
λδ. Then (2.11) yields the conclusion as required. �
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4. Proof of Main Theorems

Theorem 4.1. Let (V0), (K0), (H0) be satisfied. Then for any σ > 0 there is
Λσ > 0 such that if λ ≥ Λσ, then (2.1) has at least one positive solution uλ of least
energy satisfying

µ− p

p

∫
RN

H(x, uλ) +
1
N

∫
RN

K(x)|uλ|p
∗
dx ≤ σλ−

N
p , (4.1)

µ− p

pµ

∫
RN

(εp|∇uλ|p + V (x)|uλ|p)dx ≤ σλ1−N
p (4.2)

Proof. Consider the functional Ψλ. For any 0 < σ < a0, we choose Λσ and define
for λ ≥ Λσ the minimax value

cλ = inf
γ∈Γλ

max
t∈[0,1]

Ψλ(γ(t))

where Γλ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = eλ}. By Lemma 3.8,

αλ ≤ cλ ≤ σλ1−N
p

Since by Lemma 3.7, Ψλ satisfies the (PS)cλ
-condition, the mountain-pass theorem

implies that there is uλ ∈ E such that Ψ′λ(uλ) = 0 and Ψλ(uλ) = cλ. Then uλ is
a positive solution of (2.1). Moreover, it is well known that such a Mountain-Pass
solution is a least energy solution of (2.1).

Since uλ is a critical point of Ψλ, for ν ∈ [p, p∗],

σλ1−N
p

≥ Ψλ(uλ)

= Ψλ(uλ)− 1
ν

Ψ′λ(uλ)uλ

≥ (
1
p
− 1

ν
)
∫

RN

(|∇uλ|p + λV (x)|uλ|p)

+ λ(
1
ν
− 1

p∗
)
∫

RN

K(x)|uλ|p
∗

+ λ(
µ

ν
− 1)

∫
RN

H(x, uλ),

where µ is the constant in (H0). Taking ν = p yields the estimate (4.1), and taking
ν = µ gives the estimate (4.2). The proof is complete. �

Theorem 4.2. Let (V0), (K0), (H0) be satisfied. If moreover h(x, u) is odd in u,
then for any m ∈ N and σ > 0 there is Λmσ > 0 such that if λ ≥ Λmσ, (2.1) has
at least m pairs of solutions uλ which satisfy the estimates (4.1) and (4.2).

Proof. Consider the functional Φλ. By virtue of Lemma 3.11, for any m ∈ N and
σ ∈ (0, a0) there is Λmσ such that for each λ ≥ Λmσ, we can choose a m-dimensional
subspace Fλm with maxΦλ(Fλm) ≤ σλ1−N

p . By Lemma 3.9, there is R > 0 which
depending on λ and m such that Φλ(u) ≤ 0 for all u ∈ Fλm \BR.

Denote the set of all symmetric (in the sense that -A=A) and closed subsets of
E by Σ. For each A ∈ Σ let gen(A) be the Krasnoselski genus and

i(A) = min
h∈Γm

gen(h(A) ∩ ∂Bρλ
)
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where Γm is the set of all odd homeomorphisms h ∈ C(E,E) and ρλ is the number
from Lemma 3.8. Then (4.1) is a version of Benci’s pseudoindex. Let

cλj
= inf

i(A)≥j
sup
u∈A

Φλ(u), 1 ≤ j ≤ m

Since Φλ(u) ≥ αλ for all u ∈ ∂Bρλ
and since i(Fλm) = dim Fλm = m,

αλ ≤ cλ1 ≤ · · · ≤ cλm
≤ sup

u∈Fλm

Φλ(u) ≤ σλ1−N
p .

It follows from Lemma 3.6 that Φλ satisfies the (PS)c-condition at all levels c <

λ1−N
p α0. By the critical point theory, all eλj

are critical levels and Φλ has at least
m pairs of nontrivial critical points satisfying

αλ ≤ Φλ(uλ) ≤ σλ1−N
p

Therefore, (NS)λ has at least m pairs of solutions. Finally, as in the proof of
Theorem 4.1 one sees that these solutions satisfy the estimates (i) and (ii). �

Theorem 4.3. Let (V0), (K0), (H0), (S) be satisfied. If moreover h(x, u) is odd
in u, then for any σ > 0 there exists Λσ > 0 such that if Λ ≥ ωσ, (2.1) has at least
one pair of solutions which change sign exactly once and satisfy the estimates (4.1)
and (4.2).

Proof. We say that a function u : RN → R changes sign n times if the set
{x ∈ RN : u(x) 6= 0} has n + 1 connected components. If u is a solution of (2.1)
then it is of class C2 and τ induces a bijection between the connected components
of {x ∈ RN : u(x) > 0} and those of {x ∈ RN : u(x) < 0}. So u changes sign an odd
number of times. Define the τ -Nehari manifold

Nτ
λ = {u ∈ Eτ : u 6= 0, Φ′λ(u)u = 0}.

Then critical points of the restriction of Φλ on Nτ
λ are solutions of (2.1). Set

cτ
λ = inf {Φλ(u) : u ∈ Nτ

λ}.
Assume (S) holds. If u ∈ E then the function ũ = (u + τu)/2 satisfies τ ũ = ũ;
i.e., ũ ∈ Eτ . It is clear that if (ϕj) ⊂ C∞

0 (RN ), |ϕj |s = 1 and |∇ϕj |p → 0,
then ϕ̃j = (ϕj + τϕj)/2 ∈ Eτ and |∇ϕ̃j |p → 0. Arguing as before, we see the
conclusion: Assume (V0), (K0), (H0) and (S) be satisfied. Then for any σ > 0
there exists Λσ > 0 such that for each λ ≥ Λmσ there exists 0 6= eλ ∈ Eτ such that
Φ′λ(eλ)eλ = 0 and

Φλ(eλ) ≤ σλ1−N
p .

So for any σ ∈ (0, a0), there is Λσ > 0 such that

0 < Cτ
λ ≤ σλ1−N

p if λ ≥ Λσ.

By Lemma 3.6, Φλ satisfies the (PS)cτ
λ

condition. Thus cτ
λ is a critical value of

Φλ. Let uλ ∈ Eτ be the relative critical point which is a solution of (2.1) with
uλ(τx) = −uλ(x). It remains to show that uλ changes sign exactly once.

Observe that if u ∈ Nτ
λ is a solution of (2.1) which changes sign 2m−1 times, then

Φλ(u) ≥ mcτ
λ. Indeed, the set {x ∈ RN : u(x) > 0} has m connected components

X1, . . . , Xm. Let ui(x) = u(x) if x ∈ Xi ∪ τXi and ui(x) = 0 otherwise. Since u is
a critical point of Φλ,

Φ′λ(u)ui = ‖ui‖p
λ −

∫
RN

g(x, ui)ui = 0.
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Thus ui ∈ Nτ
λ for i = 1, . . . ,m, and

Φλ(u) = Φλ(u1) + · · ·+ Φλ(um) ≥ mcτ
λ.

Now since Φλ(uλ) = cτ
λ, one concludes that uλ changes sign only m = 1 time.

Final, as before one sees that uλ satisfies (i) and (ii). The proof is complete. �

Remark. Clearly we can see that the Theorems 2.1, 2.2 and 2.3 also be proofed.
Indeed, (1.1)∼2.1. Our methods and results can also be applicable to subcritical
nonlinear problems (1.2).
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