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SLOW AND FAST SYSTEMS WITH HAMILTONIAN REDUCED
PROBLEMS

MAAMAR BENBACHIR, KARIM YADI, RACHID BEBBOUCHI

Abstract. Slow and fast systems are characterized by having some of the

derivatives multiplied by a small parameter ε. We study systems of reduced
problems which are Hamiltonian equations, with or without a slowly varying

parameter. Tikhonov’s theorem gives approximate solutions for times of order

1. Using the stroboscopic method, we give approximations for time of order
1/ε. More precisely, the variation of the total energy of the problem, and the

eventual slow parameter, are approximated by a certain averaged differential

equation. The results are illustrated by some numerical simulations. The
results are formulated in classical mathematics and proved within internal set

theory which is an axiomatic approach to nonstandard analysis.

1. Introduction

A slow and fast system (or two-time scale system) is a perturbed system of the
form

dx

dt
= F (x, z, ε), x(0) = αε,

ε
dz

dt
= G(x, z, ε), z(0) = βε,

(1.1)

where x ∈ Rn and z ∈ Rm are the slow and fast components and ε is a positive real
number small enough. The functions F and G are continuous and defined on an
open subset of Rn+m. The initial conditions depend continuously on ε. The system
(1.1) is more exactly a family of problems depending on the parameter ε varying
in a small interval ]0, ε0]. The fact that ε multiplies the derivative makes non valid
the theory of continuous dependence of the solutions with respect to parameters.
We are in presence of a singularly perturbed problem. The purpose of Singular
Perturbation Theory is to investigate the behavior of solutions of (1.1) as ε → 0 on
a bounded, or eventually, unbounded time interval. A recommended reference is
the tenth chapter of the book of Wasow [21]. The change of the time scale s = t/ε
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transforms (1.1) into

dx

ds
= εF (x, z, ε), x(0) = αε,

dz

ds
= G(x, z, ε), z(0) = βε,

which is a one parameter deformation of the unperturbed system

dx

ds
= 0, x(0) = α0,

dz

ds
= G(x, z, 0), z(0) = β0.

(1.2)

The following system, where x is considered as a parameter, is called the fast
equation

dz

ds
= G(x, z, 0). (1.3)

Hence, the z-component of the solution of (1.1) varies very quickly according to
the so-called boundary layer equation

dz

ds
= G(α0, z, 0), z(0) = β0, (1.4)

where x has been frozen at its initial value. The set of the zeros of the right
member of (1.3) is called the slow manifold of the problem (1.1). It is formed by
the equilibrium points of the fast dynamics described by (1.3). A solution of (1.3)
may be unbounded when s → ∞, or may tend to an equilibrium point or may
approach a more complex attractor and this asymptotic behavior depends on the
initial condition. Assume for instance that the solutions of the fast equation (1.3)
tend toward an equilibrium point ξ(x) on the slow manifold. The equation z = ξ(x)
defines a component L of the slow manifold. A fast transition brings a solution of
(1.1) close to the slow manifold. Then a slow motion takes place near the slow
manifold and is approximated by the reduced problem

dx

dt
= F (x, ξ(x), 0), x(0) = α0. (1.5)

When the solution of (1.1) is unique, the results of Tikhonov’s Theorem [20] (see
[7]), under suitable conditions (among the others, the asymptotic stability of the
equilibrium ξ(x) uniformly with respect to x in a compact domain), are mainly as
follows:

Let z̃(s) and x̄(t) be the solutions, supposed to be unique, of the
boundary layer equation (1.4) and the reduced problem (1.5). Sup-
pose that x̄(t) is defined on [0, T ]. Then for ε sufficiently small, the
solution (x(t, ε), z(t, ε)) of the perturbed problem (1.1) is defined at
least on [0, T ] and satisfies

lim
ε→0+

x(t, ε) = x̄(t) for all t ∈ [0, T ],

lim
ε→0+

z(t, ε) = ξ(x̄(t)) for all t ∈]0, T ],

lim
ε→0+

z(εs, ε) = z̃(s for all s ≥ 0 .
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Another tool, namely the stroboscopic method, is needed in this work to give
approximations of the solutions for larger time of order 1/ε. It is a method of the
nonstandard perturbation theory of differential equations proposed by Callot and
Reeb and improved by Lutz and Sari (see [2, 8, 15, 16, 18]). The principle is as
follows (one should at this stage admit the intuitive meaning of the symbol “'”;
i.e., “infinitely close to”): Let φ(t) be a function. Suppose we are able to define a
sequence (tn, φn = φ(tn)) such that tn+1 ' tn, φ(t) ' φn on [tn, tn+1] and

φn+1 − φn

tn+1 − tn
' F (tn, φn),

where F is a continuous function. We can conclude that the function φ(t) is infin-
itely close to a solution of the differential equation dφ

dt = F (t, φ). Actually, we use
in this paper an improved version established by T. Sari.

After the generalizations of the famous results of Tikhonov and Pontryagin-
Rodygin for slow and fast systems obtained in [7, 19], it was quite natural to think
about the case where the trajectories approach an oscillating motion on the slow
manifold. As far as we know, this case has been described in [12]. Unfortunately,
this reference has not been diffused. The author considered among others the scalar
slow-fast system

dx

dt
= f(x, y, z),

dy

dt
= g(x, y, z), ε

dz

dt
= h(x, y)− z,

the slow equation of which presents periodic orbits and admits a first integral. With
the use of the first return map of Poincaré, he showed that, after a fast transition,
the considered trajectory fills the region of oscillations lying on the slow manifold.
Note that this study was entirely qualitative. The starting point of the present
work was the study of the singular perturbation of the harmonic oscillator [1]

ε
d3x

dt3
+

d2x

dt2
+ x = 0,

or more exactly of the associated system

dx

dt
= y,

dy

dt
= z, ε

dz

dt
= −x− z.

By the change of variable εz1 = x + z, one has

dx

dt
= y,

dy

dt
= −x + εz1, ε

dz1

dt
= y − z1.

This system is a particular case of the general slow-fast problem

dx

dt
=

∂H

∂y
(x, y) + εf(x, y, z, ε),

dy

dt
= −∂H

∂x
(x, y) + εg(x, y, z, ε),

ε
dz

dt
= h(x, y, z, ε),

(1.6)

the slow equation of which is a Hamiltonian system. We also consider the more
general case where the Hamiltonian depends on a slowly varying parameter, more
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exactly
dx

dt
=

∂H

∂y
(x, y, λ) + εf(x, y, z, λ, ε),

dy

dt
= −∂H

∂x
(x, y, λ) + εg(x, y, z, λ, ε),

ε
dz

dt
= h(x, y, z, λ, ε),

dλ

dt
= εα(x, y, z, λ, ε).

(1.7)

We define an averaged system

E′ = M1(E, λ), λ′ = M2(E, λ), (1.8)

where the prime denotes the derivative with respect to τ = εt and the functions
M1 and M2 are the averages of the functions

Ω(x, y, λ) = ω(x, y, ξ(x, y, λ), λ), A(x, y, λ) = α(x, y, ξ(x, y, λ), λ, 0),

on the closed orbits of the Hamiltonian system

dx

dt
=

∂H

∂y
(x, y, λ),

dy

dt
= −∂H

∂x
(x, y, λ), (1.9)

where λ is considered as a constant parameter. The function ω is given by

ω(x, y, z, λ) =
∂H

∂x
(x, y, λ)f(x, y, z, λ, 0) +

∂H

∂y
(x, y, λ)g(x, y, z, λ, 0)

+
∂H

∂λ
(x, y, λ)α(x, y, z, λ, 0),

and the function ξ defines the slow manifold z = ξ(x, y, λ) of (1.7). We prove in
Theorem 4.1 that for any solution (x(τ, ε), y(τ, ε), z(τ, ε), λ(τ, ε)) of (1.7), written in
the time scale τ , the functions

E(τ) = H(x(τ, ε), y(τ, ε))

and λ(τ, ε) are approximated by a solution of the averaged system (1.8). We must
attract the attention that this result could be deduced from a result published by
T. Sari in [17]. Actually, this author considers the non Hamiltonian perturbation
of a Hamiltonian system with slowly varying parameters

dx

dt
=

∂H

∂y
(x, y, λ) + εf1(x, y, λ, ε),

dy

dt
= −∂H

∂x
(x, y, λ) + εg1(x, y, λ, ε),

dλ

dt
= εα1(x, y, λ, ε),

(1.10)

to show how to use the stroboscopic method to obtain adiabatic invariants. He
proves (see Theorem 2 in [17] and references therein for classical results) that its
solutions are approximated by the solutions of the averaged system(1.8) where the
functions M1 and M2 are the averages of the functions

Ω1(x, y, λ) = ω1(x, y, λ), A1(x, y, λ) = α1(x, y, λ, 0),
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on the closed orbits of the Hamiltonian system (1.9). Here, the function ω1 is given
by

ω1(x, y, λ) =
∂H

∂x
(x, y, λ)f1(x, y, λ, 0) +

∂H

∂y
(x, y, λ)g1(x, y, λ, 0)

+
∂H

∂λ
(x, y, λ)α1(x, y, λ, 0).

To show how the last result in [17] can be used to prove our result despite the
fact that the slow-fast system we consider contains also the fast variable z, we need
to say something about the Geometric Singular Perturbation Theory, namely the
Fenichel invariant manifold Theorem (for details and definitions one can see [5]).
This last statement concerns systems of the form

y′ = εu(y, z, ε), z′ = v(y, z, ε), (1.11)

where u and v are C∞ in an open subset U × I of Rm+n+1, 0 ∈ I. Suppose
that the set N0 = {(y, z), v(y, z, 0) = 0} is a normally hyperbolic manifold given
by the graph of a C∞ function z = ξ(y) defined on a compact subset Y . Under
these assumptions, Fenichel’s Theorem ensures that “N0 persists for small values
of ε”, more precisely, for any positive integer r and for any ε > 0 small enough,
there exists a Cr function z = Z(y, ε) defined for y in Y such that the manifold
Nε = {(y, z), z = Z(y, ε)} is locally invariant under (1.11). Moreover Nε → N0

when ε → 0. Hence, on the invariant Fenichel slow manifold Nε, the system (1.11)
is reduced to

y′ = u(y,Z(y, ε), ε).

Let us start by saying that the assumptions we make in our work do not require
strong conditions of differentiability of functions appearing in the problem. Hence
the slow manifold is not supposed to be differentiable nor normally hyperbolic, that
is for what Fenichel’s theory is not completely satisfactory in this case. However,
if we suppose that the problem (1.7) admits an invariant manifold given by z =
Z(x, y, λ, ε), it becomes simply

dx

dt
=

∂H

∂y
(x, y, λ) + εf(x, y,Z(x, y, λ, ε), λ, ε),

dy

dt
= −∂H

∂x
(x, y, λ) + εg(x, y,Z(x, y, λ, ε), λ, ε),

dλ

dt
= εα(x, y,Z(x, y, λ, ε), λ, ε),

which is a perturbed Hamiltonian system with slowly varying parameters of the
form (1.10) where

f1(x, y, λ, ε) = f(x, y,Z(x, y, λ, ε), λ, ε),

g1(x, y, λ, ε) = g(x, y,Z(x, y, λ, ε), λ, ε),

α1(x, y, λ, ε) = α(x, y,Z(x, y, λ, ε), λ, ε).

Moreover, since Z(x, y, λ, 0) = ξ(x, y, λ), one has

Ω1(x, y, λ) = Ω(x, y, λ), A1(x, y, λ) = A(x, y, λ).

According to [17, Theorem 2], the solutions of (1.7) are approximated by the so-
lutions of the averaged system (1.8), provided that the conditions of Fenichel’s



6 M. BENBACHIR, K. YADI , R. BEBBOUCHI EJDE-2010/06

Theorem are fulfilled. It is worth noting that our contribution consists of a direct
proof based on both Tikhonov’s theory and the stroboscopic method.

For convenience, we prefer to detail our approach for the analysis of the particular
case of system (1.6). In Section 2, we state two theorems, the first being just an
application of Tikhonov’s Theorem giving the behavior of the solutions of (1.6) over
time 1. Theorem 2.2 provides an approximation of the total energy of (1.6) over
time 1/ε. Section 3 is devoted to the “non standard version” of the first results
and the proof is given in Section 5. Internal Set Theory is an extension of ordinary
mathematics due to E. Nelson [11]. It axiomatizes Robinson’s nonstandard analysis
(NSA) [13]. For a short tutorial in NSA, one can consult for instance [7] or [19].
Historically, the nonstandard perturbation theory of differential equations, which is
today a well-established tool in asymptotic theory, has its roots in the seventies,
when the Reebian school (see [4, 9, 10, 14]) introduced the use of nonstandard
analysis into the field of perturbed differential equations. For more information on
the subject, the interested reader is referred to texts such as [3] and to papers such
as [6, 7, 15, 19] among many others. In Section 4, we consider the system (1.7)
where the Hamiltonian system depends on a slowly varying vectorial parameter.
We choose to present this last result (Theorem 4.1) only in a non standard form.
In the last section, we give some examples of application of Theorems 2.2 and 4.1.

2. Averaging on the slow manifold

Consider the Hamiltonian system

dq

dt
=

∂H

∂p
(p, q),

dp

dt
= −∂H

∂q
(p, q).

(2.1)

The level curves H(p, q) = E, where E is constant (energy), are integral curves of
(2.1). We call region of oscillations of the Hamiltonian function H(p, q) an interval
I of R such that, for all E in I, H(p, q) = E defines a non trivial closed curve
C(E) in the p, q-plane which does not contain any singular point where both ∂H

∂p

and ∂H
∂q vanish. A periodic solution of (2.1) corresponding to the closed orbit C(E)

is denoted by (q(t, E), p(t, E)) with period P (E) and is defined for all t. Consider
the system (1.6) with the initial conditions

x(0) = q0, y(0) = p0, z(0) = z0, (2.2)

where (x, y, z) ∈ R×R×Rn. First, we describe the solutions of the system (1.6) on
a finite time interval when ε → 0, by the use of the theory of singular perturbations.
We use the following assumptions:

(H1) The functions f , g, h and the partial derivatives of H are continuous with
respect to their arguments.

We assume that the fast equation

dz

ds
= h(x, y, z, 0), (2.3)

where s = t/ε, has an asymptotically stable equilibrium point z = ξ(x, y). More
exactly
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(H2) There exists a compact domain K in R2 and a continuous function ξ such
that for all (x, y) ∈ K, z = ξ(x, y) is an isolated root of h(x, y, z, 0) = 0. The
point z = ξ(x, y) is an asymptotically stable equilibrium of (2.3) uniformly
over K.

The graph of z = ξ(x, y) is an attractive component of the slow manifold
h(x, y, z, 0) = 0. The slow equation is the Hamiltonian system (2.1). We refer
to the boundary layer equation as

dz

ds
= h(x, y, z, 0), z(0) = z0, (2.4)

and to the reduced equation as
dq

dt
=

∂H

∂q
(p, q), q(0, E0) = q0,

dp

dt
= −∂H

∂p
(p, q), p(0, E0) = p0,

(2.5)

where (q, p) is in the interior intK of K and E0 is the energy level such that
H(p0, q0) = E0. We make the last assumptions:

(H3) The fast equation (2.3) and the slow equation (2.1) have the property of
uniqueness of solutions with prescribed initial conditions, (q0, p0) ∈ intK
and z0 is in the basin of attraction of ξ(q0, p0).

The theorem below is just an application of Tikhonov’s theorem for slow and
fast systems and gives an approximation of the solutions of (1.6), (2.2) over time 1
for ε sufficiently small [20, 7]. We do not give its proof.

Theorem 2.1. Suppose that (H1), (H3) are satisfied. Let z̃(s) be the solution
of the boundary layer equation (2.4) and (q(t, E0), p(t, E0)) the solution of the
reduced equation (2.5). Let T > 0 be in the positive interval of definition of
(q(t, E0), p(t, E0)). For every η > 0, there exists ε∗ > 0 such that, for all 0 < ε < ε∗,
any solution γ(t, ε) = ((x(t, ε), y(t, ε), z(t, ε)) of (1.6), (2.2) is defined at least on
[0, T ] and there exists ω > 0 such that

εω < η,

|z(εs)− z̃(s)| < η for all 0 ≤ s ≤ ω,

|x(t, ε)− q(t, E0)| < η, |y(t, ε)− p(t, E0)| < η for all 0 ≤ t ≤ T,

|z(t, ε)− ξ(q(t, E0), p(t, E0))| < η for all εω ≤ t ≤ T.

According to what precedes, for ε small enough, a phase trajectory γ(t, ε) starting
at the point (q0, p0, z0) jumps, after a small time t0 = εω, to the neighborhood of
the slow manifold z = ξ(x, y), (x, y) ∈ intK. Then it remains close to the curve
C(E0) defined by H(x, y) = E0 over time 1. Now, the total energy E(t, ε) =
H(x(t, ε), y(t, ε)) of the system (1.6) is slowly varying since its derivative is given
by

dE

dt
= εω(x, y, z, ε), (2.6)

where
ω(x, y, z, ε) =

∂H

∂x
(x, y).f(x, y, z, ε) +

∂H

∂y
(x, y).g(x, y, z, ε). (2.7)

Over time 1, the quantity E(t, ε) remains nearly constant and the problem is to
describe what happens over time 1/ε. It is more natural to consider system (1.6)
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and equation (2.6) at the time scale τ = εt. Let ′ = d/dτ be the derivative with
respect to τ . System (1.6), and equation (2.6) becomes

x′ =
1
ε

∂H

∂y
(x, y) + f(x, y, z, ε),

y′ = −1
ε

∂H

∂x
(x, y) + g(x, y, z, ε),

z′ =
1
ε2

h(x, y, z, ε),

(2.8)

and
E′ = ω(x, y, z, ε). (2.9)

Let us denote Ω(x, y) := ω(x, y, ξ(x, y), 0), and make another assumption to avoid
boundary problems:

(H4) The region of oscillations I of (2.1) is non empty and there exists a compact
subinterval J of I such that K = ∪E∈JC(E).

Consider the averaged equation

Ē′ =
M(Ē)
P (Ē)

:=
1

P (Ē)

∫ P (Ē)

0

Ω(q(v, Ē), p(v, Ē))dv, (2.10)

defined in intJ . We recall that (q(t, E), p(t, E)) is the periodic solution of (2.1) of
energy E and period P (E).

(H5) Equation (2.10) has the property of uniqueness of solutions with prescribed
initial conditions.

Theorem 2.2. Suppose that assumptions H1 to (H5) are satisfied. Let γ(τ, ε) =
((x(τ, ε), y(τ, ε), z(τ, ε)) be a solution of (2.8) with initial condition (2.2). Suppose
that E0 = H(q0, p0) ∈ intJ . Let E(τ) = H(x(τ, ε), y(τ, ε)) be the total energy
of γ(τ, ε). Let Ē(τ) be the solution of the averaged equation (2.10) with initial
condition E0 and let L be in its positive interval of definition. Then, for every
η > 0, there exists ε∗ > 0 such that for all 0 < ε < ε∗ the function E(τ) satisfies
|E(τ)− Ē(τ)| < η for all τ in [0, L].

3. External results

Theorems 3.1 and 3.2 below are external results which respectively imply Theo-
rems 2.1 and 2.2.

Theorem 3.1. Let f , g, H, h, ξ, p0, q0, z0 and E0 be standard. Suppose that
(H1)–(H3) are satisfied. Let z̃(s) be the solution of the boundary layer equation
(2.4) and (q(t, E0), p(t, E0)) the solution of the reduced equation (2.5). Let ε > 0 be
infinitesimal and T be a standard real number in the positive interval of definition
of (q(t, E0), p(t, E0)). Then, any solution γ(t) = (x(t), y(t), z(t)) of (1.6) is defined
at least on [0, T ] and there exists ω such that εω ' 0 and

z(εs) ' z̃(s), for all 0 ≤ s ≤ ω,

x(t) ' q(t, E0), y(t) ' p(t, E0) for all 0 ≤ t ≤ T,

z(t) ' ξ(q(t, E0), p(t, E0)), for all εω ≤ t ≤ T.
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Theorem 3.2. Suppose that (H1)–(H5) are satisfied. Let f , g, H, h, ξ, p0, q0,
z0 be standard. Let ε be positive infinitesimal. Let γ(τ) = ((x(τ), y(τ), z(τ)) be a
solution of (2.8) with initial condition (2.2). Suppose that E0 = H(q0, p0) ∈ intJ .
Let E(τ) = H(x(τ), y(τ)) be the total energy of γ(τ). Let Ē(τ) be the solution of
the averaged equation (2.10) with initial condition E0 and let L standard be in its
positive interval of definition. Then, the function E(τ) satisfies E(τ) ' Ē(τ) for
all τ ∈ [0, L].

The proof is postponed to Section 5. Let us first show that Theorem 3.2 reduces
to Theorem 2.2. We will need the following frequent reduction formula due to
Nelson [11]

∀x (∀sty A ⇒ ∀stz B) ≡ ∀z ∃finy′ ∀x (∀y ∈ y′ A ⇒ B), (3.1)

where A (respectively B) is an internal formula with free variable y (respectively
z) and standard parameters. The notation ∀st means “for all standard” and ∃fin

means “there is a finite”.

Proof of Theorem 2.2. Let B be the formula occurring in Theorem 2.2: “the func-
tion E(τ) satisfies |E(τ)− Ē(τ)| < η for all τ in [0, L]”. To say that “the function
E(τ) satisfies E(τ) ' Ē(τ) for all τ in [0, L]” is the same as to say ∀stη B. To say
that “ε > 0 is infinitesimal” is the same as to say ∀stε∗ 0 < ε < ε∗. Hence, Theorem
3.2 asserts that

∀ε (∀stε∗ 0 < ε < ε∗ ⇒ ∀stη B).
In this formula, f , g, H, h, p0, q0, E0 and L are standard parameters, ε and η range
over the strictly positive real numbers. By (3.1), the last formula is equivalent to

∀η ∃finε∗
′
∀ε (∀ε∗ ∈ ε∗

′
0 < ε < ε∗ ⇒ B).

But for ε∗
′

finite set, to say ∀ε∗ ∈ ε∗
′

0 < ε < ε∗ is the same as to say 0 < ε < ε∗

for ε∗ = min ε∗
′
. Hence, the formula is equivalent to

∀η ∃ε∗ ∀ε (0 < ε < ε∗ ⇒ B).

This means that for any standard f , g, H, h, p0, q0, E0 and L, the statement of
Theorem 2.2 holds, thus by transfer, it holds for all f , g, H, h, p0, q0, E0 and
L > 0. �

4. Case of a slowly varying parameter

As explained in the introduction, we present the case where the slow motion is
described by a Hamiltonian system depending on a slowly varying parameter λ ∈ D
where D is a compact of Rk such that intD 6= ∅. More exactly, at the time scale
τ = εt , we examine the problem1

x′ =
1
ε

∂H

∂y
(x, y, λ) + f(x, y, z, λ),

y′ = −1
ε

∂H

∂x
(x, y, λ) + g(x, y, z, λ),

z′ =
1
ε2

h(x, y, z, λ),

λ′ = α(x, y, z, λ),

(4.1)

1 Contrarily to system (1.7) given in the introduction, we dropped the parameter ε in the
expressions of the functions without lost of generality.
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with initial condition

x(0) = q0, y(0) = p0, z(0) = z0, λ(0) = λ0. (4.2)

We still denote by J a compact region of oscillations of the Hamiltonian function
H(p, q, λ). The total energy of a solution γ(τ) = ((x(τ), y(τ), z(τ), λ(τ)) verifies

E′ = ω(x, y, z, λ), (4.3)

where

ω(x, y, z, λ) =
∂H

∂x
.f +

∂H

∂y
.g +

∂H

∂λ
α. (4.4)

Under Tikhonov’s Theorem conditions, the trajectory is supposed to jump to the
neighborhood of the slow attractive manifold {z = ξ(x, y, λ), λ = λ0} and is first
approximated by the solution of the reduced equation

dq

dt
=

∂H

∂p
(p, q, λ0), q(0, E0, λ0) = q0,

dp

dt
= −∂H

∂q
(p, q, λ0), p(0, E0, λ0) = p0.

We want to give an approximation of the very slow drift of E and λ. Let us denote
by

Ω(x, y, λ) := ω(x, y, ξ(x, y, λ), λ),

A(x, y, λ) := α(x, y, ξ(x, y, λ), λ),
(4.5)

and define the equations

Ē′ =
M(Ē, λ̄)
P (Ē, λ̄)

:=
1

P (Ē, λ̄)

∫ P (Ē,λ̄)

0

Ω(q(ν, Ē, λ̄), p(ν, Ē, λ̄), λ̄)dν, (4.6)

and

λ̄′ =
N(Ē, λ̄)
P (Ē, λ̄)

:=
1

P (Ē, λ̄)

∫ P (Ē,λ̄)

0

A(q(ν, Ē, λ̄), p(ν, Ē, λ̄), λ̄)dν, (4.7)

where (q(t, E, λ), p(t, E, λ)) is the periodic solution of

dq

dt
=

∂H

∂p
(p, q, λ),

dp

dt
= −∂H

∂q
(p, q, λ),

of energy E and period P (E, λ). We claim what follows.

Theorem 4.1. Let f , g, H, h, α, ξ, p0, q0, z0, λ0 be standard. Suppose that
Tikhonov’s conditions are satisfied and that (4.6) and (4.7) have the property of
uniqueness. Let ε > 0 be infinitesimal. Let γ(τ) = ((x(τ), y(τ), z(τ), λ(τ)) be a
solution of (4.1) with initial condition (4.2). Suppose that E0 = H(q0, p0, λ0) ∈
intJ and λ0 ∈ intD. Let E(τ) = H(x(τ), y(τ), λ(τ)) be the total energy of γ(τ).
Let Ē(τ) and λ̄(τ) be the solutions of the equations (4.6) and (4.7) with initial
conditions E0 and λ0 and let L standard be in their positive interval of definition.
Then, the functions E(τ) and λ(τ) satisfy E(τ) ' Ē(τ) and λ(τ) ' λ̄(τ) for all
τ ∈ [0, L].

The proof is given in the next Section.
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5. Proof of the main results

The key for proving the main results is the so called Stroboscopy Lemma (see
[16, 18]) which is an extension and an improvement of the stroboscopic method
outlined in the introduction. Let O be a standard open subset of Rn, F : O → Rn a
standard continuous function. Let I be an interval of R containing 0 and φ : I → Rn

a function such that φ(0) is nearstandard in O. Let J be a connected subset of I,
eventually an external collection, such that 0 ∈ J .

Definition 5.1 (Stroboscopic property). Let t and t′ be in J . The function φ is
said to satisfy the stroboscopic property S(t, t′) if [t, t′] ⊂ J , t′ ' t, φ(s) ' φ(t) for
all s in [t, t′] and

φ(t)− φ(t′)
t− t′

' F (φ(t)).

Under suitable conditions, the Stroboscopy Lemma asserts that the function φ
is approximated by the solution of the initial value problem

dx

dt
= F (x), x(0) = ◦(φ(0)), (5.1)

where ◦(φ(0)) denotes the standard part of φ(0).

Theorem 5.2 (Stroboscopy Lemma). Suppose that

(i) There exists µ > 0 such that, whenever t ∈ J is limited and φ(t) is near-
standard in O, there is t′ ∈ J such that t′ − t ≥ µ and the function φ
satisfies the stroboscopic property S(t, t′).

(ii) The initial value problem (5.1) has a unique solution x(t).

Then, for any standard L in the maximal positive interval of definition of x(t), we
have [0, L] ⊂ J and φ(t) ' x(t) for all t ∈ [0, L].

Proof of Theorem 3.2. Consider τ1 ≥ 0 such that [0, τ1] ⊂ [0, L] and E(τ) is
nearstandard in intJ for all τ ∈ [0, τ1]. Let us consider the external collection

J = {τ ≥ 0 : E(s) nearstandard in intJ for all s ∈ [0, τ ]}

which contains the interval [0, τ1]. Let us show that E(τ) satisfies the hypothesis
(i) of the Stroboscopy Lemma (Theorem 5.2).

Let µ = ε minE∈J P (E). Since P does not vanish and is continuous and J is a
compact subset, µ is positive. Let τ ′ limited in J , thus E(τ ′) is nearstandard in
intJ . Let us make the change of variables

r =
τ − τ ′

ε
, F (r) =

E(τ ′ + εr)− E(τ ′)
ε

, (5.2)

which transforms the system formed by (2.8) and (2.9) with initial condition
(x(τ ′), y(τ ′), z(τ ′), E(τ ′)) into

dx

dr
=

∂H

∂y
(x, y) + εf(x, y, z, ε),

dy

dr
= −∂H

∂x
(x, y) + εg(x, y, z, ε),

ε
dz

dr
= h(x, y, z, ε),

dF

dr
= ω(x, y, z, ε),

(5.3)
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with initial condition (x(τ ′), y(τ ′), z(τ ′), 0). Moreover, according to Tikhonov’s
Theorem, the components x(r), y(r) and F (r) of (5.3) are infinitely close, for all
limited r, to the solution of the standard system

dx

dr
=

∂H

∂y
(x, y),

dy

dr
= −∂H

∂x
(x, y),

dF

dr
= Ω(x, y),

with initial condition (ox(τ ′oy(τ ′), 0), where ox(τ ′) and oy(τ ′) are the standard
parts of x(τ ′) and y(τ ′). Hence, for all limited r,

x(r) ' q(r, E(τ ′)) ' q(r, E′),

y(r) ' p(r, E(τ ′)) ' p(r, E′),

where E′ is the standard part of E(τ ′) and

F (r) '
∫ r

0

Ω(q(ν,E′), p(ν, E′))dν.

In particular, by periodicity, we obtain

F (P (E′)) '
∫ P (E′)

0

Ω(q(ν,E′), p(ν, E′))dν. (5.4)

We define now the successive instant of observation by τ ′′ = τ ′ + εP (E′). We
claim that τ ′′ ∈ J . Indeed, since τ ′ is in J , E(s) is nearstandard in intJ for
all s ∈ [0, τ ′]. On the other hand, let s ∈ [τ ′, τ ′′]. Let s = τ ′ + εr. By (5.2)
we have that E(s) = E(τ ′) + εF (r) ' E(τ ′) ' E′ for all r in [0, P (E′)]. Thus,
E(s) is nearstandard in intJ . We proved that, for any τ ′ limited in J and E(τ ′)
nearstandard in intJ , there exists τ ′′ such that 0 ' τ ′′ − τ ′ ≥ µ, [τ ′, τ ′′] ⊂ J ,
E(s) ' E(τ ′) for all s in [τ ′, τ ′′]. Moreover, by (5.4),

E(τ ′′)− E(τ ′)
τ ′′ − τ ′

=
F (P (E′))

P (E′)
' M(E′)

P (E′)
' M(E(τ ′))

P (E(τ ′))
.

By the Stroboscopy Lemma 5.2,

[0, L] ⊂ J and E(τ) ' Ē(τ) for all τ ∈ [0, L]. (5.5)

Proof of Theorem 4.1. Consider τ1 ≥ 0 such that [0, τ1] ⊂ [0, L] and E(τ), (resp.
λ(τ)) nearstandard in intJ (in intD ) for all τ ∈ [0, τ1]. Let us consider the external
collection

J = {τ ≥ 0 : E(s), (resp. λ(s)) nearstandard in intJ (in intD ) for all s ∈ [0, τ ]}.

Let µ = ε min{P (E, λ), E ∈ J, λ ∈ D}. Let τ ′ limited in J . The change of
variables

r =
τ − τ ′

ε
, F (r) =

E(τ ′ + εr)− E(τ ′)
ε

, Λ(r) =
λ(τ ′ + εr)− λ(τ ′)

ε
, (5.6)

transforms the system formed by (4.1) and (4.3) with initial condition

(x(τ ′), y(τ ′), z(τ ′), λ(τ ′), E(τ ′))
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into
dx

dr
=

∂H

∂y
(x, y, λ(τ ′) + εΛ(r)) + εf(x, y, z, λ(τ ′) + εΛ(r)),

dy

dr
= −∂H

∂x
(x, y, λ(τ ′) + εΛ(r)) + εg(x, y, z, λ(τ ′) + εΛ(r)),

ε
dz

dr
= h(x, y, z, λ(τ ′) + εΛ(r)),

dΛ
dr

= α(x, y, z, λ(τ ′) + εΛ(r)),

dF

dr
= ω(x, y, z, λ(τ ′) + εΛ(r)),

(5.7)

with initial condition (x(τ ′), y(τ ′), z(τ ′), 0, 0). Let λ′ be the standard part of λ(τ ′).
According to Tikhonov’s theorem one can state that for all limited r, the compo-
nents x(r), y(r), λ(r) and F (r) of (5.7) are infinitely close to the solution of the
standard system

dx

dr
=

∂H

∂y
(x, y, λ′),

dy

dr
= −∂H

∂x
(x, y, λ′),

dΛ
dr

= A(x, y, λ′),

dF

dr
= Ω(x, y, λ′),

with initial condition (ox(τ ′oy(τ ′), 0, 0), where ox(τ ′) and oy(τ ′) are the standard
parts of x(τ ′) and y(τ ′). That is, if E′ is the standard part of E(τ ′), then for all
limited r,

x(r) ' q(r, E′, λ′),

y(r) ' p(r, E′, λ′)),

F (r) '
∫ r

0

Ω(q(ν, E′, λ′), p(ν, E′, λ′), λ′)dν,

Λ(r) '
∫ r

0

A(q(ν,E′, λ′), p(ν,E′, λ′), λ′)dν.

By periodicity, we also have

F (P (E′, λ′)) '
∫ P (E′,λ′)

0

Ω(q(ν, E′, λ′), p(ν, E′, λ′), λ′)dν,

Λ(P (E′, λ′)) '
∫ P (E′,λ′)

0

A(q(ν,E′, λ′), p(ν,E′, λ′), λ′)dν.

Let τ ′′ = τ ′ + εP (E′, λ′) ∈ J be the successive instant. By (5.6),

E(τ ′′)− E(τ ′)
τ ′′ − τ ′

=
F (P (E′, λ′))

P (E′, λ′)
' M(E′, λ′)

P (E′, λ′)
' M(E(τ ′), λ(τ ′))

P (E(τ ′), λ(τ ′))
,

λ(τ ′′)− λ(τ ′)
τ ′′ − τ ′

=
A(P (E′, λ′))

P (E′, λ′)
' N(E′, λ′)

P (E′, λ′)
' N(E(τ ′), λ(τ ′))

P (E(τ ′), λ(τ ′))

By the Stroboscopy Lemma, [0, L] ⊂ J , E(τ) ' Ē(τ) and λ(τ) ' λ̄(τ) for all τ in
[0, L].
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6. Applications

The following examples should be viewed more as didactic examples to illustrate
the results, than as arising from practical problems.

Example 1. The system associated to the following third order differential equa-
tion

ε
...
x = h(x, ẍ),

where ε > 0 is a small real parameter and h a sufficiently smooth function, is given
by

ẋ = y, ẏ = z1, εż1 = h(x, z1), (6.1)
where the dot denotes the derivative with respect to t. We suppose that z1 = u(x)
is an isolated root of h(x, z1) = 0 and that Tikhonov’s Theorem conditions are
satisfied; in particular, ∂h

∂z1
(x, z1) < 0, which makes the slow manifold z1 = u(x)

attractive. To obtain the general form (1.6), we apply the change of variable

εz = z1 − u(x),

which transforms (6.1) into the system

ẋ = y, ẏ = u(x) + εz, εż = h̃(x, y, z1, ε), (6.2)

where

h̃(x, y, z, ε) =
∂h

∂z1
(x, u(x)).z − u′(x)y + o(ε).

The slow equation
q̇ = p, ṗ = u(q), (6.3)

is a Hamiltonian system with the Hamiltonian function

H(p, q) = −U(q) +
p2

2
,

where U ′ = u. The formula (2.7) becomes

ω(x, y, z, ε) = εyz,

and the averaged equation (2.10), where τ = εt, takes the form

dĒ

dτ
=

M(Ē)
P (Ē)

=
1

P (Ē)

∫ P (Ē)

0

Ω(q(v, Ē), p(v, Ē))dv, (6.4)

where

Ω(q, p) = u′2
( ∂h

∂z1
(q, u(q))

)−1
, (6.5)

and (q(v, Ē), p(v, Ē)) is a P (Ē)-periodic solution of (6.3). One can see that

P (Ē) = 2
∫ q2(Ē)

q1(Ē)

dq√
2(Ē + U(q))

, (6.6)

where q1(Ē) and q2(Ē) are respectively the minimum and the maximum of an
oscillation on the closed orbit C(Ē). According to Theorem 2.1, the solution
(x(t, ε), y(t, ε), z(t, ε)) of (6.2) with initial condition (p0, q0, z0) mainly satisfies

lim
ε→0

(x(t, ε), y(t, ε)) = (q(t, E0), p(t, E0)) for all t ∈ [0, kP (E0)], k ∈ N,

lim
ε→0

z(t, ε) = u(q(t, E0)) for all t ∈]0, kP (E0)],
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where E0 = p2
0
2 − U(q0). Moreover, according to Theorem 2.2, the total energy

E(t, ε) = H(x(t, ε), y(t, ε)) of the system satisfies

lim
ε→0

E(t, ε) = Ē(εt) for all t ∈ [0, L/ε],

where Ē(τ) is the solution of (6.4) with initial condition E0 and defined on [0, L].
To illustrate the effectiveness of the stroboscopy method, we present a numerical

simulation of the example above where we chose h(x, ẍ) = −ẍ − x, which gives
a singularly perturbed harmonic oscillator. Hence, u(x) = −x and system (6.2)
corresponds to

ẋ = y,

ẏ = −x + εz,

εż = y − z.

(6.7)

The Hamiltonian function of the corresponding slow Hamiltonian equation is

H(q, p) =
1
2
q2 +

1
2
p2,

and the period is exactly

P (Ē) = 2
∫ √

2Ē

−
√

2Ē

dq√
2(Ē − 1

2q2)
= 2π.

Moreover, according to (6.5) and to the first equation of (6.7),

M(Ē) =
∮

C(Ē)

p2(ν, Ē)dν =
∮

C(Ē)

√
2Ē − q2dq

= 2
√

2Ē

∫ √
2Ē

−
√

2Ē

√
1− (

q√
2Ē

)2dq.

By the change of variable X = q/
√

2Ē, one has

M(Ē) = 4Ē

∫ 1

−1

(
√

1−X2)dX = 2πĒ.

If we fix the initial conditions (p0, q0, z0) = (1, 2, 1), the averaged equation (6.4) is
simply

dĒ

dτ
= Ē, Ē(0) =

5
2
, (6.8)

with exact solution

Ē(τ) =
5
2
eτ .

Figure 1 shows how the considered trajectory jumps to the neighborhood of the
slow manifold z = y of the system (6.7) before it evolves along the closed orbits of
the slow equation drawn on this slow manifold. Figure 2 is a comparison between
the exact variation of the total energy E(τ) and the solution Ē(τ) of the averaged
equation (6.8) with the mentioned initial conditions. Note that the oscillating curve
corresponds to E(τ).
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x(t)

–3 –2 –1 0 1 2 3
y(t)

0

4

8

z(t)

Figure 1. Numerical simulation of the trajectory of (6.7) with
initial condition (1, 2, 10), ε = .01, t = 0..100
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6

7

E(t)

0 0.2 0.4 0.6 0.8 1t

Figure 2. Comparison between E(τ) and Ē(τ) for the system
(6.7) with ε = .01

Example 2. Consider the system

ẋ = y,

ẏ = −λx + εz,

εż = −z + λy,

λ̇ = ελxy,

(6.9)
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In the same way as above, one can obtain

P (Ē, λ̄) = 2
∫ √

2Ē/λ̄

−
√

2Ē/λ̄

dq√
2(Ē − 1

2 λ̄q2)
=

2π√
λ̄

.

According to (4.4), (4.5), (4.6) and the first equation of (6.9), we get

M(Ē, λ̄) =
∮

C(Ē,λ̄)

[λ̄p2(ν, Ē, λ̄) +
λ̄

2
q3(ν, Ē, λ̄)p(ν, Ē, λ̄]dν

=
∮

C(Ē,λ̄)

λ̄pdq +
∮

C(Ē,λ̄)

λ̄

2
q3dq

= 2
√

2Ē

∫ √
2Ē/λ̄

−
√

2Ē/λ̄

λ̄

√
2Ē − λ̄q2dq + 0

=
2πλ̄Ē√

λ̄
.

According to (4.5), (4.7) and the first equation of (6.9), we also get

N(Ē, λ̄) =
∮

C(Ē,λ̄)

λ̄2qpdν = 2
∫ √

2Ē/λ̄

−
√

2Ē/λ̄

qdq = 0.

Hence, the averaged system describing the drift of E and λ is given by the simple
system

Ē′ =
M(Ē, λ̄)
P (Ē, λ̄)

:= λĒ,

λ̄′ =
N(Ē, λ̄)
P (Ē, λ̄)

:= 0.

(6.10)

3

4

5

6

7

E(t)

0 0.2 0.4 0.6 0.8 1t

Figure 3. Comparison between E(τ) and Ē(τ) for the system
(6.9) with ε = .01
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1
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1.04

1.05

1.06

l(t)

0 0.2 0.4 0.6 0.8 1t

Figure 4. Comparison between λ(τ) and λ̄(τ) for the system (6.9)
with ε = .01

Figures 3 and 4 compare the exact solutions E(τ) and λ(τ) of (6.9) with initial
condition E0 = 5/2 and λ0 = 1 at time scale τ = εt, and the solutions Ē(τ) = 5

2eτ

and λ̄(τ) = 1 of (6.10). It is worth noting that in Figure 4 the difference between
the oscillating curve and the averaged one does not exceed 0.06 for 0 ≤ τ ≤ 1, that
is for 0 ≤ t ≤ 100.
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et Jean-louis Callot, ed. by A. Fruchard and A. Troesh (IRMA Publication, 1995), 95-124.

[16] T. Sari; Petite histoire de la stroboscopie, In Colloque Trajectorien á la mémoire de Georges
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