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ON THE PENALIZED OBSTACLE PROBLEM IN THE UNIT
HALF BALL

ERIK LINDGREN

Abstract. We study the penalized obstacle problem in the unit half ball,
i.e. an approximation of the obstacle problem in the unit half ball. The main

result states that when the approximation parameter is small enough and when

certain level sets are sufficiently close to the hyperplane {x1 = 0}, then these
level sets are uniformly C1 regular graphs. As a by-product, we also recover

some regularity of the free boundary for the limiting problem, i.e., for the

obstacle problem.

1. Introduction

1.1. Problem. Given some non-negative boundary data g ∈ L∞(B+
1 ) ∩ H1(B+

1 )
we study the penalized obstacle problem in the unit half ball; that is

∆uε = βε(uε) in B+
1 = B1 ∩ {x1 > 0},

uε = g on ∂B1 ∩ {x1 > 0},
uε = 0 on B1 ∩ {x1 = 0}.

Here we assume that βε is any function satisfying the same assumptions as in [5]
and [6], see section 1.3 for details. This would then imply by the maximum principle
that uε ≥ 0. We will refer to B1 ∩ {x1 = 0} as the fixed boundary.

1.2. Known result. The penalized obstacle problem has been well studied, see [4],
[2], [5] and [6]. Brezis and Kinderlehrer proved the uniform local C1,1 regularity.
Redondo proved, using the result of Kinderlehrer and Stampacchia, that the level
sets of uε are locally uniform C1,α-graphs in some direction. However, the behaviour
of the level sets close to the fixed boundary is so far unknown for the penalized
obstacle problem. The present paper contributes in this direction.

In the case of the obstacle problem (the limiting case when ε → 0), the behaviour
of the free boundary has been studied in [7]. There the authors prove that, close
to the fixed boundary, the free boundary is a C1-graph in directions close to e1. In
fact, they prove this in a more general setting, which includes the obstacle problem
as a special case.
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1.3. Main result. Before mentioning the main result of this paper we must care-
fully define which class of solutions we will work with.

Definition 1.1. We say βε ∈ Cε if
(1) For any ε > 0, βε is uniformly Lipschitz on R,
(2) βε(t) ≤ 0 for all t ≤ 0 and all ε > 0,
(3) βε(0) = 0 and βε(t) ≤ 1,
(4) β′′ε (t) ≤ 0,
(5) There holds

0 ≤ 1− βε(t)
ε

≤ β′ε(t) ≤
1
ε
,

whenever t ≥ 0.

One can deduce that Ψε ≤ βε ≤ Φε, where

Ψε(t) =

{
t/ε t ≤ 0,

1− e−t/ε t > 0,

and

Φε(t) =

{
t/ε t ≤ ε,

1 t > ε.

In addition, one can see that if βε(·) ∈ Cε then βε(s·) ∈ Cε/s. This scaling property
will be used frequently further on. In what follows we use the notation

B+
r (x) = Br(x) ∩ {x1 > 0}.

We define the local class of solutions as the following:

Definition 1.2. We say uε ∈ Pr(M, ε) if
(1) ∆uε = βε(uε) in B+

r where βε ∈ Cε.
(2) uε ≥ 0 on ∂Br ∩ {x1 > 0}.
(3) uε = 0 on Br ∩ {x1 = 0},
(4) supB+

r
uε ≤ M .

The main result of this paper is the C1,1-estimates and the uniform (in ε) C1

regularity of the εγ-level sets for any 0 < γ < 1, as stated below in Theorem 1 and
2. A simple consequence of Theorem 1.4 is Corollary 1.5.

Theorem 1.3. Let uε ∈ P1(M, ε). Then there is a constant C = C(n, M) such
that

‖uε‖C1,1(B+
1/2)

≤ C.

Theorem 1.4. Let uε ∈ P1(M, ε). Assume moreover that y ∈ ∂{uε > εγ} ∩ B+
1/2

for some 0 < γ < 1. Then there are constants ε0, ρ > 0 depending on M , γ and
the dimension such that

max(ε, y1) < ε0

implies that B+
ρ (y)∩∂{uε > εγ} is a C1-graph with the C1-norm bounded indepen-

dently of ε and y1. Moreover, the normal of ∂{uε > εγ} at y converges to e1 as
y1 → 0.

Sending ε → 0 we obtain the following result for the obstacle problem, which is
a slightly stronger result than the one in [7] since it only requires the free boundary
to be near the fixed one.
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Corollary 1.5. Let u0 ∈ P1(M, 0), that is u0 is a solution to the obstacle problem,
and suppose y ∈ ∂{u0 > 0}. Then there is a constant ε0 depending on M such that
y1 < ε0 implies that B+

ρ (y) ∩ ∂{u0 > 0} is a C1-graph with the C1-norm bounded
independently y1.

2. Non-degeneracy

Here we state the result that the solutions do not grow too slow. This is impor-
tant when considering sequences as we will do later, since it implies the stability
of the level sets under uniform convergence. For the sake of completeness, we give
the standard proof.

Proposition 2.1. Let uε ∈ P1(M, ε) and assume uε(y) ≥ ε. Then there is C =
C(n) > 0 such that

sup
Br(y)∩B+

1

(uε − uε(y)) ≥ Cr2

for r < dist(y, ∂B+
1 ).

Proof. Take y ∈ {uε = δ} for some δ ≥ ε and let

v = uε − δ − |y − z|2

8n
.

Then ∆v ≥ βε(uε)− 1/4 ≥ 0 in {uε > δ/2} ∩ B+
r (y) for any r such that B+

r (y) ⊂
B+

1 . Therefore, v attains its maximum on the boundary of {uε > δ/2} ∩ B+
r (x0).

Furthermore, v(y) = 0, v ≤ 0 on {uε = δ} and v ≤ 0 on {x1 = 0}. Hence v attains
its positive maximum at some z ∈ ∂Br(y) ∩ {x1 > 0}. This yields the desired
result. �

3. C1,1-estimates in B+
1/2

In this section we prove that the functions uε are uniformly bounded in the space
C1,1(B+

1/2). The first step is to show that we have quadratic growth up to the fixed
boundary.

Lemma 3.1. Let uε ∈ P1(M, ε). Then there are constants C, r0 > 0 depending on
M and the dimension such that

sup
B+

r

|uε(x)− x · ∇uε(0)| ≤ Cr2

for r < r0.

Proof. We prove that for any r we have either

sup
B+

r

|uε(x)− x · ∇uε(0)| ≤ Cr2,

or there is a k ∈ N such that

sup
B+

r

|uε(x)− x · ∇uε(0)| ≤ 4−k sup
B+

2kr

|uε(x)− x · ∇uε(0)|.

Assume that this statement fails, then there are sequences of εj , rj → 0 and uj = uεj

such that
Sj ≥ Cjr2

j

and
Sj ≥ 4−kS2krj

,
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for all k ∈ N. Here
Sj = sup

B+
rj

|uj(x)− x · ∇uj(0)|.

Let

vj(x) =
uj(rjx)− rjx · ∇uj(0)

Sj
.

Then
(1) vj(0) = |∇vj(0)| = 0,
(2) supB+

1
|vj | = 1,

(3) supB+
2k
|vj | ≤ 4k for all k ∈ N,

(4) supB+
R
|∂evj | ≤ C/j for any e ·e1 = 0 and any R > 0, since by the maximum

principle |∂euj(x)| ≤ C|x|,
(5) |∆vj | = C/j in B+

1/rj
.

Therefore, there is a subsequence, again labelled vj , converging in C1,α(B+
R) for

any R to a function v0 satisfying
(1) v0(0) = |∇v0(0)| = 0,
(2) supB+

1
|v0| = 1,

(3) supB+
2k
|v0| ≤ 4k for all k ∈ N,

(4) Dev0 = 0 for any e · e1 = 0 in Rn
+,

(5) ∆v0 = 0 in Rn
+.

Clearly, (4) implies that v0 is one-dimensional. Then (1) and (5) implies that v0 = 0
which contradicts (2). �

This estimate implies, as we will now see, that uε is uniformly C1,1. The proof
is standard.

Proof of Theorem 1.3. Since interior estimates are already known (see Theorem 2
in [2] even though this is stated in a slightly different form, this can also be proved
with methods similar to the ones in the proof of Lemma 3.1), it suffices to obtain
estimates near the fixed boundary.

Take y ∈ B+
1/2∩{x1 < r0/2} where r0 is as in Lemma 3.1. Consider the function

v(x) =
uε(|y|x + y)− (|y|x + y) · ∇uε(0)

|y|2
.

Then, by Lemma 3.1

sup
x∈B1

|v(x)| = sup
x∈B|y|

∣∣∣∣uε(x + y)− (x + y) · ∇uε(0)
|y|2

∣∣∣∣
≤ sup

x∈B+
2|y|

∣∣∣∣uε(x)− x · ∇uε(0)
|y|2

∣∣∣∣ ≤ C.

Moreover,
|∆v(x)| = |βε(y2v + (|y|x + y) · ∇uε(0))| ≤ 1.

Therefore ‖u‖C1,α(B1/2) ≤ C by elliptic estimates. In particular, for any x ∈ B 1
2

there holds

C ≥ |∇v(x)| =
∣∣∣∣∇uε(y)−∇uε(0)

|y|

∣∣∣∣ ,
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and

C ≥ |∇v(x)| =
∣∣∣∣∇uε(|y|x + y)−∇uε(0)

|y|

∣∣∣∣ .

Combining the last to estimates gives

|∇uε(|y|x + y)−∇uε(y)| ≤ C|y| ≤ C|yx|.
Hence D2uε(y) is bounded independently of y. �

4. Classification of certain global solutions

For the proofs in this section we will need the following theorem, which is proved
in [1, Lemma 5.1] (even though slightly different form) and in [3, Theorem 9].

Theorem 4.1. Let u and v be two subharmonic functions such that u ·v = 0. Then
with

φ(r) =
1
r4

∫
Br

|∇u|2

|x|n−2
dx

∫
Br

|∇v|2

|x|n−2
dx

we have that φ is monotonically increasing. Moreover, if φ vanishes for all r then
one of the functions vanishes.

In the forthcoming sections, we will need the following characterization of global
solutions.

Proposition 4.2. Let u : Rn
+ → R be a function with the following properties:

(1) u ≥ 0,
(2) e1 ∈ ∂{u > t} for some t ≥ 0,
(3) u = 0 on x1 = 0,
(4) supBr

+ u ≤ Cr2 for r > 1,
(5) ∆u = βk(u) for some k ≥ 0, with β0(t) = χ{t>0} and βk ∈ Ck.

Then u is one-dimensional and monotone.

Proof. First we extend u to x1 < 0 by odd reflection, that will give us

∆u = βk(u)χ{x1>0} − βk(−u)χ{x1<0}.

Then we observe that

∆(∂eu) = (β′k(u)χ{x1>0}+β′k(−u)χ{x1<0})∂eu+βk(u)∂e(χ{x1>0})−βk(−u)∂e(χ{x1<0}).

Since β(0) = 0 and ∇χ{x1>0} is a finite measure the last two terms vanish. This
implies that (∂eu)± are both subharmonic and therefore Theorem 4.1 applies. Let

uR(x) =
u(Rx)

R2
.

Then
(1) ∆uR = βk(R2uR)χ{x1>0} − βk(−R2uR)χ{x1<0} where βk(R2t) ∈ Ck/R2 ,
(2) |uR(x)| ≤ C|x|2 for |x| > 1/R,
(3) e1/R ∈ ∂{uR > t/R2},
(4) −e1/R ∈ ∂{uR < −t/R2},
(5) |∇uR(0)| ≤ C/R.

We see that ∆uR will be uniformly bounded from above and from below. Moreover,
supB1

|uR| is uniformly bounded. Hence, there is by standard elliptic estimates,
a subsequence uj = uRj with Rj → ∞, converging in W 2,p

loc ∩ C1,α
loc . Invoking

Proposition 2.1 we can conclude that uj → u∞ where u∞ satisfies
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(1) ∆u∞ = χ{u∞>0}χ{x1>0} − χ{u∞<0}χ{x1<0} = χ{u∞>0} − χ{u∞<0},
(2) |u∞(x)| ≤ C|x|2 for all x,
(3) 0 ∈ ∂{u∞ > 0} ∩ ∂{u∞ < 0} ∩ {|∇u∞| = 0}.

By applying the classification of global solutions in [8], we obtain that up to rota-
tions

u∞ =
(x+

1 )2

2
− (x−1 )2

2
.

Again, Theorem 4.1 applies to ∂eu
±
j for any direction e. Thus,

0 = φ(∂eu∞, 1) = lim φ(∂euj , 1) = lim φ(∂eu, Rj) = φ(∂eu,∞).

Since φ is non-decreasing this implies that φ(∂eu, r) = 0 for all r. Hence, ei-
ther ∂eu ≥ 0 or ∂eu ≤ 0, for any direction e. This implies that u must be one-
dimensional. �

Remark 4.3. It seems plausible that a proof of this can be given without the use
of the ACF monotonicity formula. However, such a proof would be much longer
and more technically involved.

5. The C1 regularity of certain level sets close to the fixed
boundary

In this section we will prove that if the εγ-level set is close to the fixed boundary
then, due to the results in [5] and [6], the εγ-level set is a uniform (with respect to
ε) C1-graph.

The first step is to prove that the set {uε ≤ εγ} is not going to be too small
in this case, see Figure 1. This is needed in order to apply the results in [5] and
[6], which are of the type ”exterior flatness implies regularity”. In the rest of this
paper γ ∈ (0, 1) is fixed, so all estimates and results will depend on γ.

������
������
������
������

������
������
������
������
����

�
�
�
�

∂{uε > εγ}
B+

1

y

Bσy1(y)

Bσy1(y) ∩ {x1 ≤ y1 − σy1/2}

Figure 1. The situation when ∂{uε > εγ} is close to the fixed boundary.

Proposition 5.1. Let uε ∈ P1(M, ε) with |∇uε(y)| < y1 for some y ∈ B+
1 . Then

for any σ > 0 there is τ = τ(σ,M, γ, n) such that y ∈ {uε > εγ}, y · e1 = y1 < τ
and ε < τ imply that

By1σ(y) ∩ {x1 ≤ y1 −
y1σ

2
} ⊂ {uε ≤ εγ}. (5.1)
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Proof. If this is not true then there exist {uεj
> εγ

j } 3 yj
1 → 0, εj → 0, uεj

∈
P1(M, εj) and

xj ∈ Byj
1σ(y) ∩ {x1 ≤ yj

1 −
yj
1σ

2
} ∩ {uεj

> εγ
j }, for j = 1, 2, . . .

For

vj(x) =
uεj (y

j
1x + yj)

(yj
1)2

we have
(1) ∆vj = βεj (vj(y

j
1)

2) ∈ Cεj/(yj
1)2 for x1 > −1,

(2) vj ≥ 0,
(3) supBρ∩{x1>−1} vj ≤ C(M)ρ2 + C|∇uεj (y

j)|ρ/yj
1 + εγ

j /(yj
1)

2 + vj(0) for ρ <

r0/yj
1,

(4) 0 ∈ ∂{vj > εγ
j /(yj

1)
2},

(5) |∇vj(0)| = |∇uεj (y
j)|/|yj | ≤ 1,

(6) vj = 0 on x1 = −1,
(7) zj = (xj − yj)/yj

1 ∈ Bσ ∩ {x1 ≤ −σ
2 } ∩ ∂{vεj > εγ

j /(yj
1)

2}.
All these properties together with Proposition 2.1 allow us to pass to the limit for
a subsequence and obtain a limit function v0 and a limit point z = limj zj . We
observe that the C1,1-estimates give

0 = uεj
(yj − yj

1e1) ≥ uεj
(yj)−∇uεj

(yj) · e1y
j
1 − C(yj

1)
2,

which implies εγ
j < C(yj

1)
2. Clearly, this gives εj/(yj

1)
2 → 0. We split this into two

cases, depending on the limit of εγ
j /(yj

1)
2.

Case 1: εγ
j /(yj

1)
2 → 0. Then

(1) ∆v0 = χ{v0>0} for x1 > −1,
(2) v0 ≥ 0,
(3) supBρ∩{x1>−1} v0 ≤ C(M)ρ2 for ρ > 1,
(4) 0 ∈ ∂{v0 > 0},
(5) |∇v0(0)| = 0,
(6) v0 = 0 on x1 = −1,
(7) z ∈ Bσ ∩ {x1 ≤ −σ/2} ∩ ({v0 > 0} ∪ ∂{v0 > 0}).

Note that(1) follows from the fact that ∆vj ∈ Cεj/(yj
1)2 where εj/(yj

1)
2 → 0.

Moreover, (5) is a simple consequence of (4). Theorem B in [7] now implies that
v0 = (x+

1 )2/2. This contradicts (7) whenever 1 > σ > 0.
Case 2: εγ

j /(yj
1)

2 → t > 0. This is similar to case 1. The only difference is that
the origin will be in the t-level set instead of in the zero level set which also means
that we do not know that the gradient vanishes at the origin. Instead of using the
result from [7] we use Proposition 4.2 to say that v0 must be one-dimensional and
monotone. This yields a contradiction for 1 > σ > 0. �

Corollary 5.2. Let uε ∈ P1(M, ε). Then for any 0 < γ < 1 there is an ε0(M,γ, n)
such that y ∈ ∂{uε > εγ} and y1 < ε0 imply that ∂{uε > εγ}∩Bry1(y) is a uniform
(with respect to ε) C1-graph for some r > 0.

Proof. If |∇u(y)| ≥ y1 then, by the implicit function theorem, ∂{uε > εγ}∩Bry1(y)
is a C1,α-graph for some r > 0.
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In the other case, |∇uε(y)| < y1, let

v(x) =
uε(y1x + y)

y2
1

.

Moreover, take y1 < τ(σ,M, γ, n) as in Proposition 5.1 with σ small enough and so
that ε/y2

1 is sufficiently small. This is possible since we have εγ ≤ Cy2
1 .

If |∇uε(y)| < y1 we know by Proposition 5.1 that (5.1) holds. Thus,

|{v ≤ εγ/y2
1} ∩Bσ|

|Bσ|
≥ c0.

From [5, Proposition 19] and with [6, Theorem 16] it follows that, for σ sufficiently
small, ∂{v > εγ/y2

1} ∩Br(y) is a C1,α-graph for some r > 0.
By rescaling and combining the two cases, we obtain the desired result. �

Remark 5.3. Noteworthy is that in the proof of Corollary 5.2 we apply the result
in [5, 6] for the rescaled function v. For this we need ε/y2

1 to be small. This is
assured by the assumption γ < 1. To extend this result to γ = 1 we need to come
up with something different. In addition we note that in Corollary 5.2 we obtain
that the level sets are C1 but that the C1-norm might blow up as y1 → 0.

6. Tangential touching property of the εγ-level sets

Here we prove that the εγ-level set can be approximated with planes, provided
that ε is small enough and that the εγ-level set is close enough to the fixed boundary,
see Figure 2. In what follows, we will use the notation

Kδ(z) = {|x1 − z1| < δ
√

(x2 − z2)2 + · · ·+ (xn − zn)2}.

To avoid cumbersome notation we will also write Kδ(0) = Kδ.
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∂{uε > εγ}

B+
1Kδ(y)

y
Angle= arctan δ

Bρ(y)

Figure 2. The level set ∂{uε > εγ} is inside Kδ(y) when y is close
to the fixed boundary.

Proposition 6.1. Let u ∈ P1(ε, M). Then for any δ > 0 there are ε0(M,γ, n, δ)
and ρ(M,γ, n, δ) such that y ∈ ∂{uε > εγ} and max(ε, y1, |∇uε(y)|) < ε0 imply

∂{uε > εγ} ∩Bρ(y) ∩B+
1 ⊂ Kδ(y) ∩Bρ(y) ∩B+

1 . (6.1)
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Proof. If this is not true then for δ > 0 there are εj → 0, yj ∈ ∂{uεj
> εγ

j } with
max(|yj

1|, |∇uεj
(yj)|)| → 0 and xj with rj = |xj − yj | → 0, such that

xj ∈ Kδ(yj)c ∩ ∂{uεj
> εγ

j }. (6.2)

We want to prove that this cannot be true. The proof is divided into two different
cases with some sub-cases depending on the rate of convergence of yj

1, εj , |∇uεj
(yj)|

and rj .
Case A: |∇uεj

(yj)| < yj
1. Then we have cases A1-A3 as follows. By the C1,1-

estimates,

0 = u(yj − yj
1e1) ≥ u(yj)− |∇u(yj) · e1y

j
1| − C(yj

1)
2 ≥ εγ

j − C|yj
1|2.

Case A1: |yj
1| = o(rj). Let

vj(x) =
uεj

(rjx + yj)
r2
j

.

Then
(1) ∆vj = βεj

(vjr
2
j ) ∈ Cεj/r2

j
for x1 > −yj

1/rj ,
(2) vj ≥ 0,
(3) supBρ∩{x1>−yj

1/rj} vj ≤ C(M)ρ2 + C|∇uεj (y
j)|ρ/rj + εγ

j /r2
j + vj(0) for ρ <

r0/rj for some r0 > 0,
(4) 0 ∈ ∂{vj > εγ

j /r2
j} with εγ

j /r2
j ≤ C(M)|yj |2/r2

j → 0,
(5) |∇vj(0)| = |∇uεj

(yj)/rj | ≤ |yj
1|/rj → 0,

(6) vj = 0 on x1 = −yj
1/rj ,

(7) zj = (xj − yj)/rj ∈ ∂B1 ∩Kc
δ ∩ ∂{vj > εγ

j /r2
j}.

We can, by standard compactness arguments, pass to the limit for a subsequence
vjk

→ v0. Using Proposition 2.1, we see that v0 satisfies
(1) ∆v0 = χ{v0>0} in x1 > 0,
(2) v0 ≥ 0,
(3) supB+

ρ
v0 ≤ C(M)ρ2 for all ρ > 1,

(4) 0 ∈ ∂{v0 > 0},
(5) |∇v0(0)| = 0,
(6) v0 = 0 for x1 = 0,
(7) z0 ∈ ∂B1 ∩Kc

δ ∩ ∂{v0 > 0}.
[7, Theorem B] implies together with (1)-(6) that

v0 =
(x+

1 )2

2
,

which contradicts (7).
Case A2: 0 < 1/A < |yj

1|/rj < A < ∞. This case is very similar to the ones in
the proof of of Proposition 5.1. We obtain that the limit will be one-dimensional
via either [7] or Proposition 4.2. This leads to a contradiction.
Case A3: yj

1/rj →∞. We recall that, as in the proof of Proposition 5.1, we have
εγ

j < C(yj
1)

2. This implies (yj
1)

2/εγ
j 6→ 0 and (yj

1)
2/εj →∞. Let

vj(x) =
uεj

(yj
1x + yj)

(yj
1)2

.

Then
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(1) ∆vj = βεj
(vj |yj

1|2) ∈ Cεj/(yj
1)2 on vj > 0 for x1 > −1,

(2) vj ≥ 0,
(3) supBρ∩{x1>−1} vj ≤ C(M)ρ2 + C|∇uεj

(yj)|ρ/yj
1 + εγ

j /(yj
1)

2 + vj(0) for ρ <

r0/yj
1,

(4) 0 ∈ ∂{vj > εγ
j /(yj

1)
2},

(5) |∇vj(0)| = ∇uεj
(yj)/|yj | ≤ 1,

(6) vj = 0 on x1 = −1,
(7) zj = (xj − yj)/yj

1 ∈ Kc
δ ∩ {vj > εγ

j /(yj
1)

2}.

When yj
1 is small enough, Corollary 5.2 assures that ∂{vj > εγ

j /(yj
1)

2} ∩ Bc0 is a
uniform C1-graph for c0 small. Since |zj | → 0, (7) implies that ∂{vj > εγ

j /(yj
1)

2}
has a tangential direction in Kc

δ . All these properties allow us, together with
Proposition 2.1, to pass to the limit for a subsequence and obtain a function v0

satisfying

(1) ∆v0 = χ{v0>0} for x1 > −1,
(2) v0 ≥ 0,
(3) supBρ∩{x1>−1} v0 ≤ C(M)ρ2 + t for all ρ > 1,
(4) 0 ∈ ∂{v0 > t} for some bounded t,
(5) |∇v0(0)| ≤ 1,
(6) v0 = 0 on x1 = −1,
(7) The set ∂{v0 > t}∩Bc0 has a tangential direction in Kc

δ , for some small c0.

As in cases 1 and 2 in the proof of Proposition 5.1, (1)-(7) imply that v0 is one-
dimensional. Therefore it can only depend on x1, which contradicts (7), since (7)
says that the level set of v0 has a tangent lying in Kc

δ .
Case B: |∇uεj

(yj)| > yj
1. This implies by the C1,1-estimates that

0 = u(yj − yj
1e1) ≥ u(yj)− |∇u(yj) · e1y

j
1| − C(yj

1)
2 ≥ εγ

j − C|∇uεj
(yj)|2,

which gives εγ
j ≤ C|∇u(yj)|2. Let sj = |∇u(yj)|. For the first two cases B1 and

B2, let us define

vj(x) =
uεj

(sjx + yj)
s2

j

.

Then

(1) ∆vj = βεj
(vjs

2
j ) ∈ Cεj/s2

j
on vj > 0 for x1 > −yj

1/sj ,
(2) vj ≥ 0,
(3) supBρ∩{x1>−yj

1/sj} |vj | ≤ C(M)ρ2 + εγ
j /(sj)2 + vj(0) for ρ < r0/sj ,

(4) 0 ∈ ∂{vj > εγ
j /(sj)2},

(5) |∇vj(0)| = 1,
(6) vj = 0 on x1 = −y1/sj ,
(7) With zj = (xj − yj)/sj ∈ Kc

δ ∩ ∂{vj > εγ
j /(sj)2}.

For this, we consider two different cases.
Case B1: |zj | = rj/sj → 0. This yields a situation similar to case A3. Via

Corollary 5.2 and Proposition 4.2 we obtain a contradiction.
Case B2: A < |zj | < 1/A. Then the situation is similar to the one in case A2.

Thus, we obtain, either by Proposition 4.2 or Theorem B in [7], that the limit is
one dimensional. This leads to a contradiction.
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Case B3: |zj | → ∞, i.e. sj = o(rj). Then εγ
j ≤ Cs2

j = o(r2
j ). By the

assumptions in this case, yj
1 = o(rj). Let

vj(x) =
uεj

(rjx + yj)
r2
j

.

Then similar arguments as in case A1 leads to contradiction. Since all cases lead
to a contradiction, the theorem is proved. �

6.1. The C1 regularity of the εγ-level set. Now we are ready to prove the
uniform C1 regularity of the εγ-level sets.

Proof of Theorem 1.4. We apply Corollary 5.2 and obtain that for y1 < ε0, the level
set ∂{uε > εγ} ∩Bry1(y) is differentiable. In addition, we know that the normal at
a point y, denoted by ny, is continuous with modulus of continuity σ(·/y1), where
σ is a modulus of continuity. Hence, it might blow up when y1 → 0. We need to
prove that ny is uniformly continuous.

Take two points y, z ∈ ∂{uε > εγ} ∩ {x1 < ε0}. From Proposition 6.1 it follows
that for any τ > 0 there is δτ such that y1 < δτ implies ‖ny − e1‖ < τ/2. We split
the proof into three cases:
Case 1: y1, z1 < δτ/2. Then obviously ‖ny − nz‖ ≤ τ .
Case 2: y1 < δτ/2 and z1 > δτ/2. Then ‖z − y‖ < δτ/2 implies ‖ny − nz‖ ≤ τ .
Case 3: y1, z1 > δτ/2. From the arguments above,

‖ny − nz‖ ≤ σ(2‖y − z‖/δτ ),

which implies that ‖ny − nz‖ ≤ τ if ‖y − z‖ is small enough. �

Finally we give the proof of Corollary 1.5.

Proof of Corollary 1.5. By Theorem 1.3 we have uniform C1,1-estimates and by
Theorem 1.4 we have uniform C1-estimates of the sets ∂{uε > εγ} when y1 and ε
are smaller than ε0. Letting ε → 0 we have uε → u0. Observing that Proposition
2.1 implies that the limiting set is indeed the free boundary, ∂{u0 > 0}, the result
follows. �

Acknowledgements. I would like to take the opportunity to thank my supervisor
Henrik Shahgholian for introducing me to the problem and for all his pertinent com-
ments and suggestions. Furthermore, I am grateful to Régis Monneau for carefully
reading the paper and coming with many valuable comments.

This research project is part of the ESF program GLOBAL. The author has been
supported by grant KAW 2005.0098 from the Knut and Alice Wallenberg Founda-
tion. Part of this work was carried out during a one-month stay at the Petroleum
Institute, Abu Dhabi, partially supported by STINT foundation. Moreover, I thank
the Petroleum Institute for the hospitality during my visit.

References

[1] Hans Wilhelm Alt, Luis A. Caffarelli, and Avner Friedman. Variational problems with two
phases and their free boundaries. Trans. Amer. Math. Soc., 282(2):431–461, 1984.
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