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TRAVELLING WAVES IN THE LATTICE EPIDEMIC MODEL

ZHIXIAN YU, RONG YUAN

Abstract. In this article, we establish the existence and nonexistence of trav-

elling waves for a lattice non-monotone integral equation which is an epidemic
model. Moreover, the wave is either convergent to the positive equilibrium or

oscillating on the positive equilibrium at positive infinity, and has the exponen-

tial asymptotic behavior at negative infinity. For the non-monotone case, the
asymptotic speed of propagation also coincides with the minimal wave speed.

1. Introduction

One of the epidemic models on the lattice Z is

un(t) =
∫ t

0

∑
j∈Z

An−j(t−τ)g(uj(τ))dτ+fn(t), t ≥ 0, n ∈ Z = {0,±1, . . . }. (1.1)

The existence of nonnegative solution and the asymptotic speed of propagation of
(1.1) have been studied in [24] under some suitable assumptions on the functions
An, g, and fn.

Equation (1.1) corresponds to an initial value problem (the history up to t = 0
is prescribed; in fact it is incorporated in the function fn). On the other hand, if
one wants to describe an epidemic which has been evolving from the beginning of
time then one arrives at the time-translation invariant homogeneous equation

un(t) =
∫ t

−∞

∑
j∈Z

An−j(t− τ)g(uj(τ))dτ, t ∈ R := (−∞,∞), n ∈ Z, (1.2)

which is investigated in [24] about the existence and nonexistence of the travelling
wave (i.e. solution of the form un(t) = u(n+ ct), where c > 0) when g is a nonde-
creasing function. Furthermore, authors in [24] showed that the asymptotic spread
speed coincides with the minimal wave speed in the case that g is a nondecreasing
function.

For a continuous analogue of (1.1), one may consider the integral equation

u(t, x) =
∫ t

0

A(t− τ)
∫

Rn

g(u(τ, ξ))V (x− ξ)dξdτ + f(t, x), t ≥ 0, x ∈ R. (1.3)
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The behaviors of (1.3) and its corresponding homogeneous equation were investi-
gated in [4, 5, 6], such as the existence of travelling waves, the minimal wave speed,
the asymptotic speed of propagation, etc. There have been extensive investiga-
tions on travelling waves for reaction-diffusion equations [7, 8, 12, 13, 15, 16, 17,
21, 20, 25, 26, 27, 28, 29], integral equations [4, 5, 6, 18, 19], and lattice equations
[3, 9, 10, 14, 22]. The concept of the asymptotic speed of spread was first introduced
by Aronson & Weinberger [1, 2], (see also [9, 10, 11, 14, 18, 19, 22, 23, 24] and the
references therein).

Note that authors in [24] established the asymptotic speed of propagation for
(1.1) when g may be a non-monotone function, but the existence of travelling
waves for (1.2) was admitted only when g is nondecreasing. To our knowledge, the
existence of travelling wave solutions for (1.2) with a non-monotone function g is
still an open problem, let alone the relation between the spreading speed and the
minimal wave speed for (1.2) with a non-monotone function g. In this paper, we
will give an affirmative answer. More precisely, we will be mainly concerned with
the existence and nonexistence of travelling waves, and the relation between the
spreading speed and the minimal wave speed for (1.2) when g is a non-monotone
function. Moreover, the wave is either convergent to the positive equilibrium or
oscillating on the positive equilibrium at positive infinity.

We use the notation: Z = {0,±1,±2, . . . }, N+ = {1, 2, . . . }, R+ = [0,+∞). We
shall assume that the following hold through this article.

(A1) For any j ∈ Z, Aj ∈ C(R+) and Aj(t) = A−j(t) ≥ 0;
∑

j∈Z Aj ∈ L1(R+)∩
L∞(R+) with

∫∞
0

∑
j∈Z Aj(τ)dτ = 1; there exists a λ̄ : 0 < λ̄ ≤ ∞ such

that ∫ ∞

0

∑
j∈Z

Aj(τ)e−λjdτ <∞

for λ ∈ [0, λ̄).
(G1) g ∈ C(R+,R+) and |g(u)− g(v)| ≤ g′(0)|u− v| for u, v ∈ R+;
(G2) g(0) = 0; there exists K > 0 such that g(K) = K, g(u) > u for 0 < u < K

and g(u) < u for u > K;
(G3) g′(0)u ≥ g(u) for u ∈ R+ and there exists K∗ ≥ K such that g(u) ≤ K∗

for all u ∈ [0,K∗].
(G4) There exists σ ∈ (0, 1] such that

lim sup
u→0+

[g′(0)− g(u)/u]u−σ <∞.

(G5) g(u) < 2K − u for u ∈ [0,K) and g(u) > 2K − u for u ∈ (K,K∗].

2. Main results

In this section, we first establish the existence of travelling waves for the system
(1.2) by using the Schauder’s fixed point theorem. The key idea is to construct two
monotone functions to squeeze g. This approach was initially used in [13]. We will
further establish the nonexistence of travelling wave solutions.

A travelling wave of (1.2) is a special translation invariant solution of (1.2) with
the form un(t) = φ(n + ct), where c > 0 is the wave speed. Letting ξ = n + ct, it
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follows that φ must be a solution of the following wave profile equation

φ(ξ) =
∫ ∞

0

∑
j∈Z

Aj(τ)g(φ(ξ − j − cτ))dτ, ξ ∈ R. (2.1)

Under the assumptions (G1)–(G2), it is easily seen that 0 and K are the only two
equilibria of (2.1). We will find a solution φ of (2.1) with the boundary conditions

lim
ξ→−∞

φ(ξ) = 0, lim inf
ξ→∞

φ(ξ) > 0. (2.2)

Define

g−(u) = inf
u≤v≤K∗

{g(v)}, g+(u) = min{g′(0)u,K∗} for u ∈ [0,K∗].

Similar to the proof of [13, Lemma 3.1], it is easily seen that the following lemma
holds.

Lemma 2.1. Assume that (A1), (G1)–(G4) hold. Then the following assertions
hold.

(i) g−(u) and g+(u) are nondecreasing on [0,K∗] and Lispchitz continuous on
[0,K∗]; that is, |g±(u)− g±(v)| ≤ g′(0)|u− v| for u, v ∈ [0,K∗];

(ii) g−(u) ≤ g(u) ≤ g+(u), for u ∈ [0,K∗];
(iii) g′(0)u ≥ g−(u) > 0 and g′(0)u ≥ g+(u) > 0 for all u ∈ (0,K∗];
(iv) There exists 0 < K∗ ≤ K such that g−(K∗) = K∗. Moreover, g−(0) =

g−(K∗)−K∗ = 0 and g+(0) = g+(K∗)−K∗ = 0;
(v) lim supu→0+ [g′(0)− g−(u)/u]u−σ <∞.

Let
∆c(λ) = g′(0)

∫ ∞

0

e−λcτ
∑
j∈Z

Aj(τ)e−λjdτ.

According to Assumption (A1), for any c > 0, ∆c(λ) is well defined on [0, λ̄). We
have the following lemma.

Lemma 2.2 (Lemma 3.1, [24]). Assume that (A1) holds and g′(0) > 1. Then,
there exist c∗ > 0 and λ∗ > 0 such that the following assertions hold.

(i) ∆c∗(λ∗) = 1, ∂∆c(λ)
∂λ |c=c∗,λ=λ∗ = 0; i.e, λ∗ is the minimal zero point of

∆c∗(λ) = 1;
(ii) For any c ∈ (0, c∗) and λ ∈ [0, λ̄), ∆c(λ) > 1;
(iii) For any c > c∗, the equation ∆c(λ) = 1 has two real roots λ1 and λ2; that

is, ∆c(λ1) = ∆c(λ2) = 1: 0 < λ1 < λ∗ < λ2 < λ̄. Moreover, ∆c(λ) < 1 for
any λ ∈ (λ1, λ2).

Now we are in a position to state our main results about the existence and
nonexistence of travelling waves.

Theorem 2.3 (Existence). Assume that (A1), (G1)–(G4) hold, and that g′(0) > 1.
Then we have

(i) For c > c∗, the system (1.2) has a travelling wave φ ∈ C(R, [0,K∗]) satis-
fying

lim
ξ→−∞

φ(ξ)e−λ1ξ = 1,

K∗ ≤ α := lim inf
ξ→∞

φ(ξ) ≤ K ≤ β := lim sup
ξ→∞

φ(ξ) ≤ K∗
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Moreover, either α = β = K or K∗ < α < K < β; that is, the wave is
either convergent to the positive equilibrium or oscillating on the positive
equilibrium at positive infinity.

(ii) If, in addition, either g(u) is nondecreasing in u ∈ [0,K] or (G5) holds,
then α = β = K; that is, the wave is convergent to the positive equilibrium.

(iii) For c = c∗, the system (1.2) has a travelling wave φ(n+c∗t) ∈ C(R, [0,K∗])\
{0,K}. Moreover, if g(u) is nondecreasing in u ∈ [0,K], then the travelling
wave φ(n+ c∗t) satisfies the asymptotic behavior

lim
ξ→−∞

φ(ξ) = 0, lim
ξ→∞

φ(ξ) = K.

Theorem 2.4 (Non-existence). Assume that (A1), (G1)–(G4) hold. Then we have
the following assertions:

(i) If g′(0) < 1, for any c > 0, the system (1.2) has no nonnegative bounded
travelling wave solution satisfying (2.2);

(ii) If g′(0) > 1, for 0 < c < c∗, the system (1.2) has also no nonnegative
bounded travelling wave satisfying (2.2).

Remark 2.5. If g(u) is nondecreasing in u ∈ [0,K], letting K∗ = K, then Theorem
2.3 in this present paper reduces to [24, Theorem 4.1]. The nonexistence, (ii) of
Theorem 2.4, is a consequence of the result that c∗ is the spreading speed which
is established in [24, Theorem 3.2]. Note that the non-existence result of travelling
waves still has not been reported in [24] when g′(0) < 1.

Remark 2.6. By Theorems 2.3 and 2.4, it is easily seen that c∗ is the minimal
wave speed. According to the results in [24], c∗ is also the asymptotic speed of prop-
agation for the model (1.1) without presupposing that the function g be monotone.
Thus we can also conclude that the minimal wave speed for the model (1.2) co-
incides with the asymptotic speed of propagation for the model (1.1) without the
monotonicity of g. We can further obtain some good properties of travelling waves
at positive infinity for the model (1.2) with non-monotone function g.

According to the above remarks, we need to prove only Theorem 2.3 with non-
monotonicity of g and Theorem 2.4(i). To complete our main results, we need to
make some preparations. Define an operator T : C(R, [0,K∗]) → C(R,R+) by

T (φ)(ξ) =
∫ ∞

0

∑
j∈Z

Aj(τ)g(φ(ξ − j − cτ))dτ, ξ ∈ R, φ ∈ C(R, [0,K∗]). (2.3)

It is obvious that T is well defined and a fixed point of T is a solution of (2.1),
which is a travelling wave of (1.2). Let T± be as in (2.3) with g replaced by g±.
By Lemma 2.1, it is easily seen that T± are nondecreasing on C(R, [0,K∗]) and

T−(φ) ≤ T (φ) ≤ T+(φ), for φ ∈ C(R, [0,K∗]). (2.4)

Lemma 2.7. Assume (A1), (G1)–(G4), and that g′(0) > 1. Then T+(φ̄+)(ξ) ≤
φ̄+(ξ), where

φ̄+(ξ) =: min{K∗, eλ1ξ}, for ξ ∈ R. (2.5)

Proof. Since g+(u) is nondecreasing in u and φ̄+(ξ) ≤ K∗, for ξ ∈ R, we can obtain

T+(φ̄+)(ξ) ≤
∫ ∞

0

∑
j∈Z

Aj(τ)g+(K∗)dτ = g+(K∗) = K∗, ξ ∈ R. (2.6)
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Note that g+(u) ≤ g′(0)u, for u ∈ [0,K∗], and φ̄+(ξ) ≤ eλ1ξ for ξ ∈ R. It follows
that

T+(φ̄+)(ξ) ≤
∫ ∞

0

∑
j∈Z

Aj(τ)g′(0)φ̄+(ξ − cτ − j)dτ

≤
∫ ∞

0

∑
j∈Z

Aj(τ)g′(0)eλ1(ξ−cτ−j)dτ

= eλ1ξ∆c(λ1) = eλ1ξ.

(2.7)

According to the definition of φ̄+ and (2.6)-(2.7), we have T+(φ̄+)(ξ) ≤ φ̄+(ξ) for
ξ ∈ R. This completes the proof. �

Similar to the proof of Lemma 2.7, it is easily seen that the following lemma
holds.

Lemma 2.8. Assume (A1), (G1)–(G4), and that g′(0) > 1. Then T−(φ̄−)(ξ) ≤
φ̄−(ξ), where

φ̄−(ξ) =: min{K∗, eλ1ξ}, for ξ ∈ R.

Lemma 2.9. Assume that (A1), (G1)–(G4) hold, and g′(0) > 1. Then for every
γ ∈ (1,min{1 + σ, λ2

λ1
}), there exists large enough Q(γ) > 1 such that for any

q ≥ Q(γ), we have T−(φ−)(ξ) ≥ φ−(ξ), where

φ−(ξ) =: max{0, eλ1ξ − qeγλ1ξ}, for ξ ∈ R. (2.8)

Proof. Let ξ0 = − ln q
λ1(γ−1) . Then we have

φ−(ξ) = 0 for ξ ≥ ξ0,

φ−(ξ) = eλ1ξ − qeγλ1ξ for ξ ≤ ξ0.

Obviously, it follows that

T−(φ−)(ξ) ≥ 0 for ξ ∈ R. (2.9)

By the definition of g−(u) and Lemma 2.1(v), there exist δ > 0 and 0 < M < ∞
such that

g(u) ≥ g−(u) ≥ g′(0)u−Mu1+σ for u ∈ [0, δ]. (2.10)

It is easily seen that there existsQ1(γ) > 1 such that eλ1ξ−qeγλ1ξ ≤ δ for q ≥ Q1(γ).
Therefore,

0 ≤ φ−(ξ) ≤ δ for ξ ∈ R. (2.11)

Since ξ0 < 0 and 1 + σ > γ, it is easy to see that

φ̄+(ξ) ≥ φ−(ξ) ≥ eλ1ξ − qeγλ1ξ for ξ ∈ R, (2.12)

[φ−(ξ)]1+σ ≤ eγλ1ξ for ξ ∈ R. (2.13)

Thus, according to (2.10)-(2.13), we have

g′(0)φ−(ξ)−M [φ−(ξ)]1+σ ≥ g′(0)eλ1ξ − g′(0)qeγλ1ξ −Meγλ1ξ
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and
T−(φ−)(ξ)

≥
∫ ∞

0

∑
j∈Z

Aj(τ)[g′(0)φ−(ξ − cτ − j)−M [φ−(ξ − cτ − j)]1+σdτ

≥
∫ ∞

0

∑
j∈Z

Aj(τ)
[
g′(0)eλ1(ξ−cτ−j) − g′(0)qeγλ1(ξ−cτ−j) −Meγλ1(ξ−cτ−j)

]
dτ

= eλ1ξ∆c(λ1)− qeγλ1ξ
[
∆c(γλ1) +

M

q

∫ ∞

0

∑
j∈Z

Aj(τ)e−γλ1(j+cτ)
]
dτ.

(2.14)
Since λ1 < γλ1 < λ2, we have

∆c(γλ1) < 1.
Therefore, there exists

Q(γ) ≥ max{1, Q1(γ),M
∫ ∞

0

∑
j∈Z

Aj(τ)e−γλ1(j+cτ)dτ},

large enough, such that for q ≥ Q(γ), it follows

∆c(γλ1) +
M

q

∫ ∞

0

∑
j∈Z

Aj(τ)e−γλ1(j+cτ)dτ ≤ 1. (2.15)

Hence, by (2.14)-(2.15), we have

T−(φ−)(ξ) ≥ eλ1ξ − qeγλ1ξ for ξ ∈ R. (2.16)

According to the definition of φ−(ξ), (2.9) and (2.16), it is easy to see that

T−(φ−)(ξ) ≥ φ−(ξ) for ξ ∈ R.

This completes the proof. �

Remark 2.10. The construction of φ̄+, φ̄− and φ− in (2.5) and (2.8) is due to
that for monotone case in [5] and [22].

Applying the iteration monotone scheme

φn+1(ξ) = T−(φn)(ξ)

φ0(ξ) = φ̄−(ξ),

by Lemmas 2.8 and 2.9, we can easily obtain the following result.

Proposition 2.11. Assume that (A1), (G1)–(G4) hold, and g′(0) > 1. Then, for
any c > c∗, there exists a nondecreasing fixed point φ− of T− such that T−(φ−)(ξ) =
φ−(ξ) and φ−(ξ) ≤ φ̄−(ξ) for all ξ ∈ R. Moreover,

lim
ξ→−∞

φ−(ξ)e−λ1ξ = 1 and lim
ξ→∞

φ−(ξ) = K∗.

For a given number λ > 0, let

Xλ := {φ ∈ C(R,R) : sup
ξ∈R

|φ(ξ)|e−λξ <∞}

and ‖φ‖λ = supξ∈R |φ(ξ)|e−λξ. Then it is easy to see that (Xλ, ‖ · ‖λ) is a Banach
space.
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By Lemmas 2.7–2.9 and Proposition 2.11, we have

φ−(ξ) = T−(φ−)(ξ) ≤ T−(φ̄−)(ξ) ≤ T+(φ̄−)(ξ) ≤ T+(φ̄+)(ξ) ≤ φ̄+(ξ).

Now fix a number λ ∈ (0, λ1). Clearly, both φ− and φ̄+ are elements in Xλ. Thus,
the set

Γ := {φ ∈ Xλ : φ−(ξ) ≤ φ(ξ) ≤ φ̄+(ξ), for ξ ∈ R}
is a nonempty, closed and convex subset of Xλ. For the operator T defined by (2.3),
we have the following lemmas.

Lemma 2.12. Assume that (A1), (G1)–(G4) hold, and g′(0) > 1. The following
assertions hold.

(i) T (Γ) ⊂ Γ;
(ii) T : Γ → Γ is continuous with respect to the norm ‖ · ‖λ in Xλ.

Proof. For any φ ∈ Γ, it is obvious that

φ− = T−(φ−) ≤ T−(φ) ≤ T (φ) ≤ T+(φ̄+) ≤ φ̄+,

which implies that T (Γ) ⊂ Γ. For any φ, ψ ∈ Γ, we have

‖T (φ)− T (ψ)‖λ = sup
ξ∈R

|T (φ)(ξ)− T (ψ)(ξ)|e−λξ

≤ sup
ξ∈R

∫ ∞

0

∑
j∈Z

Aj(τ)g′(0)|φ(ξ − cτ − j)− ψ(ξ − cτ − j)|e−λξdτ

≤
(
g′(0)

∫ ∞

0

∑
j∈Z

Aj(τ)e−λ(cτ+j)dτ
)
‖φ− ψ‖λ

≤
(
g′(0)

∫ ∞

0

∑
j∈Z

Aj(τ)e−λjdτ
)
‖φ− ψ‖λ.

Thus, T : Γ → Γ is continuous with respect to the norm ‖·‖λ in Xλ. This completes
the proof. �

Lemma 2.13. Assume that (A1), (G1)–(G4) hold, and g′(0) > 1. Then T : Γ → Γ
is compact.

Proof. Since 0 ≤ φ− ≤ T (φ) ≤ φ̄+ ≤ K∗ for φ ∈ Γ, it is obvious that the family of
functions {T (φ)(ξ) : φ ∈ Γ} is uniformly bounded in ξ ∈ R. On the other hand, it
follows from (A1) and (G1) that g(u) ≤ Lu for u ∈ R+ and there is M1 > 0 such
that

∑
j∈Z Aj(ξ) ≤M1 for ξ ∈ R. Therefore, for ξ1 > ξ2, we have

|T (φ)(ξ1)− T (φ)(ξ2)|

=
∣∣∣ ∫ ∞

0

∑
j∈Z

Aj(τ)g(φ(ξ1 − cτ − j))dτ −
∫ ∞

0

∑
j∈Z

Aj(τ)g(φ(ξ2 − cτ − j))dτ
∣∣∣

=
∣∣∣1
c

∫ ξ1

−∞

∑
j∈Z

Aj(
1
c
(ξ1 − τ))g(φ(τ − j))dτ

− 1
c

∫ ξ2

−∞

∑
j∈Z

Aj(
1
c
(ξ2 − τ))g(φ(τ − j))dτ

∣∣∣
≤ 1
c

∫ ξ2

−∞

∣∣∣ ∑
j∈Z

Aj(
1
c
(ξ2 − τ))−

∑
j∈Z

Aj(
1
c
(ξ1 − τ))

∣∣∣g(φ(τ − j))dτ
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+
1
c

∫ ξ1

ξ2

∑
j∈Z

Aj(
1
c
(ξ1 − τ))g(φ(τ − j))dτ

≤ g′(0)K∗

c

∫ ξ2

−∞

∣∣∣ ∑
j∈Z

Aj(
1
c
(ξ2 − τ))−

∑
j∈Z

Aj(
1
c
(ξ1 − τ))

∣∣∣dτ +
g′(0)K∗M1

c
|ξ1 − ξ2|

= g′(0)K∗
∫ ∞

0

∣∣∣ ∑
j∈Z

Aj(
1
c
(ξ1 − ξ2) + τ)−

∑
j∈Z

Aj(τ)
∣∣∣dτ +

g′(0)K∗M1

c
|ξ1 − ξ2|

= g′(0)K∗A(ξ1 − ξ2) +
g′(0)K∗M1

c
|ξ1 − ξ2|,

where
A(ξ) =

∫ ∞

0

∣∣∣ ∑
j∈Z

Aj(
1
c
ξ + τ)−

∑
j∈Z

Aj(τ)
∣∣∣dτ for ξ ∈ R. (2.17)

Since limξ→0 A(ξ) = 0, it follows from the above inequality that the family of func-
tions {T (φ)(ξ) : φ ∈ Γ} is equicontinuous in ξ ∈ R. Thus, by Arzera-Ascoli theorem,
for any given sequence {ψn}n≥1 in T (Γ), there exist a subsequence {ψnk

}k≥1 and
ψ ∈ C(R,R) such that limk→∞ ψnk

(ξ) = ψ(ξ) uniformly for ξ in any compact sub-
set of R. Since φ−(ξ) ≤ ψnk

(ξ) ≤ φ̄+(ξ) for ξ ∈ R, we have φ−(ξ) ≤ ψ(ξ) ≤ φ̄+(ξ)
for ξ ∈ R and ψ ∈ Γ. Since λ ∈ (0, λ1), it is easy to see that

lim
ξ→∞

(φ̄+(ξ)− φ−(ξ))e−λξ = 0,

lim
ξ→−∞

(φ̄+(ξ)− φ−(ξ))e−λξ = 0

which imply that for any ε > 0, there exists B > 0 such that

0 ≤ (φ̄+(ξ)− φ−(ξ))e−λξ ≤ ε, for |ξ| ≥ B. (2.18)

Since limk→∞(ψnk
(ξ) − ψ(ξ))e−λξ = 0 uniformly for ξ ∈ [−B,B], there exists a

k′ ∈ N+ such that
|ψnk

(ξ)− ψ(ξ)|e−λξ < ε, (2.19)
for ξ ∈ [−B,B], k ≥ k′. It follows from (2.18) and (2.19) that

‖ψnk
(ξ)− ψ(ξ)‖λ = sup

ξ∈R
|ψnk

(ξ)− ψ(ξ)|e−λξ ≤ ε, for k ≥ k′.

Thus, limk→∞ ψnk
= ψ in Xλ. This completes the proof. �

Proof of Theorem 2.3(i). By Lemmas 2.9 and 2.12, the Schauder’s fixed point the-
orem implies that there exists φ ∈ Γ such that φ = T (φ) and hence φ is a travelling
wave of (1.2). Since 0 ≤ φ−(ξ) ≤ φ(ξ) ≤ φ̄+(ξ) ≤ K∗ for ξ ∈ R, we can obtain

lim
ξ→−∞

φ(ξ) = 0, lim
ξ→−∞

φ(ξ)e−λ1ξ = 1.

Moreover,

K∗ = lim
ξ→∞

φ−(ξ) ≤ lim inf
ξ→∞

φ(ξ) ≤ lim sup
ξ→∞

φ(ξ) ≤ lim
ξ→∞

φ̄+(ξ) = K∗, (2.20)

that is, K∗ ≤ α ≤ β ≤ K∗. Next, we shall show that α ≤ K ≤ β. Indeed, if α = β,
then limξ→∞ φ(ξ) = α exists. Taking ξ → ∞ and applying L’Hospital’s rule to
(2.1), we can obtain α = g(α) which yields α = β = K.

Now we consider that α < β. If there is a large number M2 > 0 such that φ′ > 0
on [M2,∞) or φ′ < 0 on [M2,∞), then limξ→∞ φ(ξ) exists and hence α = β, which
is impossible. Thus, φ(ξ) is oscillating on positive infinity and then there exist two
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sequences {ξj}j∈N with ξj → ∞ and {yi}i∈N with yi → ∞ as i → ∞ such that
φ(ξj) → α as j →∞, and φ(yi) → β as i→∞.

By (A1), for any ε > 0, there are sufficiently large numbers τ0 > 0 and J0 > 0
such that

K∗
∫ ∞

τ0

∑
j∈Z

Aj(τ)dτ <
ε

3
and K∗

∫ τ0

0

∑
|j|≥J0

Aj(τ)dτ <
ε

3
.

Since g is continuous, there exists δ > 0 such that

max{g(u) : u ∈ [α− δ, β + δ]} < max{g(u) : u ∈ [α, β]}+
ε

3
.

For such a δ > 0, there exists a large enough number M3 > 0 such that

φ(ξ) ∈ [α− δ, β + δ], for all ξ ≥M3.

We take a large enough integer M4 > 0 such that ξm ≥ M3 + J0 + cτ0 for all
m ≥M4. Thus, for m ≥M4, we have

φ(ξm)

=
∫ ∞

0

∑
j∈Z

Aj(τ)g(φ(ξm − j − cτ))dτ

=
∫ ∞

τ0

∑
j∈Z

Aj(τ)g(φ(ξm − j − cτ))dτ +
∫ τ0

0

∑
|j|≥J0

Aj(τ)g(φ(ξm − j − cτ))dτ

+
∫ τ0

0

∑
|j|<J0

Aj(τ)g(φ(ξm − j − cτ))dτ

≤ K∗
∫ ∞

τ0

∑
j∈Z

Aj(τ)dτ +K∗
∫ τ0

0

∑
|j|≥J0

Aj(τ)dτ + max{g(u) : u ∈ [α− δ, β + δ]}

< max{g(u) : u ∈ [α, β]}+ ε.

Taking the limit as m→∞, we have

β ≤ max{g(u) : u ∈ [α, β]}+ ε.

Thus, letting ε→ 0+, it follows that

β ≤ max{g(u) : u ∈ [α, β]}. (2.21)

Similarly, it follows that

α ≥ min{g(u) : u ∈ [α, β]}. (2.22)

If α < β ≤ K, then (2.22) and (G2) imply that α ≥ min{g(u) : α ≤ u ≤ β} > α,
which is a contradiction. If K ≤ α < β, then (2.21) and (G2) also imply that
β ≤ max{g(u) : α ≤ u ≤ β} < β, a contradiction. Hence we conclude that
α < K < β.

(ii). Let u1, u2 ∈ [α, β] such that g(u1) = max{g(u) : α ≤ u ≤ β} and g(u2) =
min{g(u) : α ≤ u ≤ β}. Then it is split into three cases.

Case 1. K ≤ u1 ≤ β. If u1 = β, according to (2.21), β ≤ g(β), which is invalid
since β > K. Therefore u1 < β. By (2.21) and u1 ≥ K, we have β ≤ g(u1) ≤ u1 <
β, which is contradiction.

Case 2. α ≤ u2 ≤ K. If u2 = α, according to (2.22), α ≥ g(α), which is
impossible since α < K. Therefore α < u2. By (2.22) and u2 ≤ K, we have
α ≥ g(u2) ≥ u2 > α, which is also contradiction.
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Case 3. u1 < K < u2. By (2.21)-(2.22) and (G5), we have

β − α ≤ g(u1)− g(u2) < (2K − u1)− (2K − u2) = u2 − u1,

which is impossible.
Thus, α = β and hence the limit limξ→∞ φ(y) = α ∈ [K∗,K∗] exists. Taking

y → ∞ and applying L’Hospital’s rule to (2.1), we can obtain α = g(α) which
yields α = K.

(iii). In the case where c = c∗, we can obtain the existence of travelling waves
by using a limiting argument similar to [9, 19, 24]. Let {cm} ⊂ (c∗, c∗ + 1] with
limm→∞ cm = c∗. Since cm > c∗, (2.1) with c = cm admits a solution φm ∈
C(R, [0,K∗]) such that

lim
ξ→−∞

φm(ξ) = 0, lim inf
ξ→∞

φm(ξ) ≥ K∗.

Without loss of generality, we may assume that φm(0) = 1
2K∗ for m ∈ N+. Note

that

φm(ξ) =
∫ ∞

0

∑
j∈Z

Aj(τ)g(φm(ξ − j − cmτ))dτ, for ξ ∈ R, m ∈ N+. (2.23)

It is easy to see that

|φm(ξ1)− φm(ξ2)| ≤ g′(0)K∗A(ξ1 − ξ2) +
g′(0)K∗M1

cm
|ξ1 − ξ2|,

where A(ξ) and M1 are defined in the proof of Lemma 2.12. Therefore, {φm(ξ)} is
uniformly bounded and equicontinuous in ξ ∈ R. Using Arzera-Ascoli theorem, we
can obtain a subsequence {φmk

} and φ such that limk→∞ φmk
(ξ) = φ(ξ) uniformly

for ξ in any compact subset of R. Clearly, φ(0) = 1
2K∗ and φ ∈ C(R, [0,K∗]). By

the dominated convergence theorem and (2.21), it follows that

φ(ξ) =
∫ ∞

0

∑
j∈Z

Aj(τ)g(φ(ξ − j − c∗τ))dτ, for ξ ∈ R.

and hence, φ(n+ c∗t) is a travelling wave of (1.2). This completes the proof. �

Remark 2.14. Note that Γ in the present paper and the set Y in [9] are different.
We can obtain (2.20) by the construction of a suitable set Γ. The conclusion in [9]
similar to (2.20) must be obtained by the property of the spreading speed (see, [9,
Theorem 2.2]) since it could not be obtained by the construction of Y .

Proof of Theorem 2.4(i). Assume that (1.2) has a nonnegative bounded solution φ
with (2.2). It is obvious that φ 6≡ constant. Letting ‖φ‖∞ = supξ∈R |φ(ξ)| > 0 and
according to (2.1), we have

‖φ‖∞ = sup
ξ∈R

|φ(ξ)|

≤ sup
ξ∈R

∫ ∞

0

∑
j∈Z

Aj(τ)g′(0)φ(ξ − j − cτ)dτ

<

∫ ∞

0

∑
j∈Z

Aj(τ)‖φ‖∞dτ

= ‖φ‖∞
which is a contradiction. This completes the proof. �
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