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NEUMANN BOUNDARY-VALUE PROBLEMS FOR
DIFFERENTIAL INCLUSIONS IN BANACH SPACES

MYELKEBIR AITALIOUBRAHIM

Abstract. In this article, a fixed point theorem is used to investigate the
existence of solutions for differential inclusions, with Neumann boundary con-

ditions, in Banach spaces.

1. Introduction

The aim of this article is to establish the existence of solutions to the boundary-
value problem

ẍ(t) ∈ F (t, x(t), ẋ(t)), a.e. on [0, 1]

ẋ(0) = r, ẋ(1) = s,
(1.1)

where F is a closed multifunction, measurable in the first argument and Lipschitz
continuous in the second argument; and r, s are in a Banach space E.

Neumann boundary-value problems have received the attention of many authors.
For review of results on Neumann boundary-value problems for differential equa-
tions, we refer the reader to the papers by Boucherif and Al-malki [2], Wang, Cui
and Zhang [10], Mawhin and Ruiz [7], Guennoun [6], Granas, Guenther and Lee
[5] and the references therein. The techniques involved, in most of these works,
are based on the upper and lower solution method, the topological degree, and the
topological transversality theorem.

In the literature there are a few papers dealing with the existence of solutions for
Neumann boundary-value problems for differential inclusions. Our main purpose,
in this paper, is to obtain the existence of solutions to (1.1), in infinite dimensional
space, and in the case when the multifunction F is nonconvex. We used the fixed
point theorem introduced by Covitz and Nadler for contraction multi-valued maps.

The paper is organized as follows. In Section 2 we recall some preliminary facts
that we need in the sequel while in Section 3, we prove our main result.

2. Preliminaries and statement of the main results

Let E be a real separable Banach space with the norm ‖ · ‖. We denote by
C([0, 1], E) the Banach space of continuous functions from [0, 1] to E equipped with
the norm ‖x(·)‖∞ := sup

{
‖x(t)‖; t ∈ [0, 1]

}
. For x ∈ E and for nonempty sets
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A,B of E we denote d(x,A) = inf{d(x, y); y ∈ A}, e(A,B) := sup{d(x,B);x ∈ A}
and H(A,B) := max{e(A,B), e(B,A)}. A multifunction is said to be measurable
if its graph is measurable. For more detail on measurability theory, we refer the
reader to the book of Castaing-Valadier [3].

For the sake of completeness, we recall the following results that will be used in
the sequel.

Definition 2.1. Let T : E → 2E be a multi function with closed values
• T is k-Lipschitz if H

(
T (x), T (y)

)
≤ k‖x− y‖ for each x, y ∈ E.

• T is a contraction if it is k-Lipschitz with k < 1.
• T has a fixed point if there exists x ∈ E such that x ∈ T (x).

Lemma 2.2 ([4]). If T : E → 2E is a contraction with nonempty closed values,
then it has a fixed point.

Lemma 2.3 ([11]). Assume that F : [a, b] × E → 2E is a multi function with
nonempty closed values satisfying:

• For every x ∈ E, F (., x) is measurable on [a, b];
• For every t ∈ [a, b], F (t, .) is (Hausdorff) continuous on E.

Then for any measurable function x(·) : [a, b] → E, the multi function F (., x(·)) is
measurable on [a, b].

Definition 2.4. A measurable multi-valued function F : [0, 1] → 2E is said to
be integrably bounded if there exists a function h ∈ L1([0, 1], E) such that for all
v ∈ F (t), ‖v‖ ≤ h(t) for almost every t ∈ [0, 1].

Definition 2.5. A function x(·) : [0, 1] → E is said to be a solution of (1.1) if x(·)
is absolutely continuous on [0, 1] and satisfies (1.1).

Let G(t, s) be the Green function associated with the problem

−ÿ(t) + y(t) = 0, t ∈ [0, 1],

ẏ(0) = ẏ(1) = 0,

(see [8, 9]) which is explicitly given by

G(t, s) =

{ cosh(1−s) cosh(t)
sinh(1) , 0 ≤ t ≤ s ≤ 1,

cosh(1−t) cosh(s)
sinh(1) , 0 ≤ s ≤ t ≤ 1,

where cosh(x) = (ex + e−x)/2 and sinh(x) = (ex − e−x)/2. Obviously, G(t, s)
is continuous on [0, 1] × [0, 1] and 0 ≤ G(t, s) ≤ cosh2(1)/ sinh(1) = λ, for each
t, s ∈ [0, 1]. We shall prove the following theorem.

Theorem 2.6. Let F : [0, 1] × E × E → 2E be a set-valued map with nonempty
closed values satisfying

(i) For each (x, y) ∈ E×E, t 7→ F (t, x, y) is measurable and integrably bounded;
(ii) There exists a function m(·) ∈ L1([0, 1], R+) such that for all t ∈ [0, 1] and

for all x1, x2, y ∈ E

H
(
F (t, x1, y), F (t, x2, y)

)
≤ m(t)‖x1 − x2‖.

Then, if
∫ 1

0
(1 + m(s))ds < 1/λ, for all r, s ∈ E, Problem (1.1) has at least one

solution on [0, 1].
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3. Proof of the main result

Let r, s be in E. We introduce first the function ρ : [0, 1] → E defined by

ρ(t) =
1
2
(s− r)t2 + rt, ∀t ∈ [0, 1],

and the multifunction H : [0, 1]× C([0, 1], E) → 2E defined by

H(t, y(·)) = y(t)− F (t, y(t) + ρ(t), ẏ(t) + ρ̇(t)) + (s− r) (3.1)

for all (t, y(·)) ∈ [0, 1]× C([0, 1], E). Consider the problem:

−ÿ(t) + y(t) ∈ H(t, y(·)), a.e. on [0, 1]

ẏ(0) = 0, ẏ(1) = 0.
(3.2)

We should point out that the function y(·) is a solution of (3.2), if and only if
the function x(t) = y(t) + ρ(t) is a solution of (1.1), for all t ∈ [0, 1].

Next, by Lemma 2.3, for y(·) ∈ C([0, 1], E), F (·, y(·), ẏ(·)) is closed and mea-
surable, then it has a measurable selection which, by hypothesis (i), belongs to
L1([0, 1], E). Thus the set

SF,y(·) :=
{

f ∈ L1([0, 1], E) : f(t) ∈ F (t, y(t), ẏ(t)) for a.e. t ∈ [0, 1]
}

is nonempty. Let us transform problem (3.2) into a fixed point problem. Consider
the multi-valued map,

T : C([0, 1], E) → 2C([0,1],E)

defined as follows, for y(·) ∈ C([0, 1], E),

T (y(·)) =
{

z(·) ∈ C([0, 1], E) : z(t) =
∫ 1

0

G(t, s)h(s)ds,∀t ∈ [0, 1], h ∈ SH,y(·)

}
,

where

SH,y(·) :=
{

h ∈ L1([0, 1], E) : h(t) ∈ H(t, y(·)) for a.e. t ∈ [0, 1]
}

.

We shall show that T satisfies the assumptions of Lemma 2.2. The proof will be
given in two steps:
Step 1: T has non-empty closed-values. Indeed, let (yp(·))p≥0 ∈ T (y(·)) such that
(yp(·))p≥0 converges to ȳ(·) in C([0, 1], E). Then ȳ(·) ∈ C([0, 1], E) and for each
t ∈ [0, 1],

yp(t) ∈
∫ 1

0

G(t, s)H(s, y(·))ds,

where
∫ 1

0
G(t, s)H(s, y(·))ds is the Aumann’s integral of G(t, .)H(., y), which is

defined as ∫ 1

0

G(t, s)H(s, y(·))ds =
{∫ 1

0

G(t, s)h(s)ds, h ∈ SH,y(·)

}
.

Using the fact that the set-valued map F is closed and from (3.1), we conclude that
the set ∫ 1

0

G(t, s)H(s, y(·))ds

is closed for all t ∈ [0, 1]. Then

ȳ(t) ∈
∫ 1

0

G(t, s)H(s, y(·))ds.



4 M. AITALIOUBRAHIM EJDE-2010/104

So, there exists h ∈ SH,y(·) such that

ȳ(t) =
∫ 1

0

G(t, s)h(s)ds.

Hence ȳ(·) ∈ T (y(·)). So T (y(·)) is closed for each y(·) ∈ C([0, 1], E).
Step 2: T is a contraction. Indeed, let y1(·), y2(·) ∈ C([0, 1], E) and consider z1(·) ∈
T (y1(·)). Then there exists h1 ∈ SH,y1(·) such that

z1(t) =
∫ 1

0

G(t, s)h1(s)ds, ∀t ∈ [0, 1].

Using (3.1), there exists f1 ∈ SF,y1(·) such that

h1(t) = y1(t)− f1(t) + (s− r), ∀t ∈ [0, 1].

On the other hand, let ε > 0 and consider the valued map Uε : [0, 1] → 2E , given
by

Uε(t) =
{
x ∈ E : ‖f1(t)− x‖ ≤ m(t)‖y1(t)− y2(t)‖+ ε

}
.

We claim that Uε(t) is nonempty, for each t ∈ [0, 1]. Indeed, let t ∈ [0, 1], we have

H
(
F (t, y1(t), ẏ1(t)), F (t, y2(t), ẏ2(t))

)
≤ m(t)‖y1(t)− y2(t)‖.

Hence, there exists x ∈ F (t, y2(t), ẏ2(t)), such that

‖f1(t)− x‖ ≤ m(t)‖y1(t)− y2(t)‖+ ε.

By [3, Theorem III.40], the multifunction

V : t → Uε(t) ∩ F (t, y2(t), ẏ2(t)) is measurable. (3.3)

Then there exists a measurable selection for V denoted f2 such that, for all t ∈ [0, 1],

f2(t) ∈ F (t, y2(t), ẏ2(t))

and
‖f1(t)− f2(t)‖ ≤ m(t)‖y1(t)− y2(t)‖+ ε.

Now, for all t ∈ [0, 1], set h2(t) = y2(t)− f2(t) + (s− r) and

z2(t) =
∫ 1

0

G(t, s)h2(s)ds.

We have

‖z1(t)− z2(t)‖ ≤
∫ 1

0

‖G(t, s)‖‖h1(s)− h2(s)‖ds

≤ λ

∫ 1

0

‖y1(s)− y2(s)‖ds + λ

∫ 1

0

‖f1(s)− f2(s)‖ds

≤ λ

∫ 1

0

‖y1(s)− y2(s)‖ds + λ

∫ 1

0

m(s)‖y1(s)− y2(s)‖ds + λε

≤ λ‖y1(·)− y2(·)‖∞
∫ 1

0

(1 + m(s))ds + λε.

So, we conclude that

‖z1(·)− z2(·)‖∞ ≤ λ‖y1(·)− y2(·)‖∞
∫ 1

0

(1 + m(s))ds + λε.
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By an analogous relation, obtained by interchanging the roles of y1(·) and y2(·), it
follows that

H
(
T (y1(·)), T (y2(·))

)
≤ λ‖y1(·)− y2(·)‖∞

∫ 1

0

(1 + m(s))ds + λε.

By letting ε → 0, we obtain

H
(
T (y1(·)), T (y2(·))

)
≤ λ‖y1(·)− y2(·)‖∞

∫ 1

0

(1 + m(s))ds.

Consequently, if
∫ 1

0
(1 + m(s))ds < 1

λ , T is a contraction. By Lemma 2.2, T has a
fixed point which is a solution of (3.2). The proof is complete.
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