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SOLITARY WAVES FOR A COUPLED NONLINEAR
SCHRÖDINGER SYSTEM WITH DISPERSION MANAGEMENT

PANAYOTIS PANAYOTAROS, MAURICIO SEPÚLVEDA, OCTAVIO VERA

Abstract. We consider a system of coupled nonlinear Schrödinger equations

with periodically varying dispersion coefficient that arises in the context of
fiber-optics communication. We use Lions’s Concentration Compactness prin-

ciple to show the existence of standing waves with prescribed L2 norm in an

averaged equation that approximates the coupled system. We also use the
Mountain Pass Lemma to prove the existence of standing waves with pre-

scribed frequencies.

1. Introduction

Over the previous years, certain nonlinear dispersive equations with nonlocal
nonlinearity have arisen in the context of optical communications and have become
the subject of intense numerical and analytical study [1, 10, 15, 20, 32]. In 1981,
Kaminow [14] showed that single-mode optical fibers are not really “single-mode”
but actually bimodal due to the presence of birefringence. It can occur that the
linear birefringence makes a pulse split in two pieces, while nonlinear birefringence
can prevent splitting. Menyuk [19] showed that the evolution of two orthogonal
pulse envelopes in birefringent optical fiber is governed by the Coupled Nonlinear
Schrödinger System (CNLSS)

iut + uxx + |u|2u+ β|v|2u = 0, (1.1)

ivt + vxx + |v|2v + β|u|2v = 0 (1.2)

where x ∈ R, t ∈ R. u = u(x, t) and v = v(x, t) are complex unknown functions and
β is a real positive constant which depends on the anisotropy of the fiber. System
(1.1), (1.2) is important for industrial applications in fiber communication systems
[12], and all-optical switching devices [13]. Another motivation for studying the
CNLSS arises from the Hartree-Fock theory for a binary mixture of Bose-Einstein
condensates in two different hyperfine states, cf. [7].

In optical fiber devices a key goal is to transfer pulses over long distances. It
is therefore important to stabilize pulses and counteract the effects of loss and
dispersion along the fiber. Approaches to these problems rely mostly on techniques
related to linear models. However, over the past two decades there have been
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suggested different approaches which intend to make use of the nonlinear effects
[6]. As a model, we consider the Nonlinear Schrödinger (briefly NLS) equation

iut + d(t)uxx + c(t)|u|2u = 0 (1.3)

for the envelope function u = u(x, t) of the electromagnetic wave. t ∈ R is the
distance along the fiber, whereas the coordinate x ∈ R is the physical time. The
initial condition u(x, t0) describes a signal that is given at all times x at a point
t0 along the fiber. The dispersion and nonlinearity parameters c, d respectively
depend on properties of the fiber, and can be chosen to vary with t.

Varying the dispersion and nonlinearity parameters along the fiber is known
as “dispersion management”. The technique was introduced in the early eighties
[16] and refined during the last decade [21], emerging as a dominant technology
for high bandwidth data transmission through optical fibers, see [8, 9, 26] and
references therein. In a dispersion managed fiber link, short segments of fiber with
opposite linear dispersion are joined together in a periodically repeated structure,
forming a fiber whose linear dispersion is effectively cancelled out over each period
of dispersion management. In such a system, the characteristic length of local
dispersion is much shorter than that of nonlinearity or average dispersion, so that
on the scale of a typical dispersion management segment, the effect of nonlinearity
and average dispersion can be made small relative to those of the local dispersion.

A basic problem for NLS type equations such as (1.3) is to prove that they
support solitary wave solutions. These are localized solutions that maintain their
form and are expected play a important role in the dynamics, see e.g. Tsai [31]. In
Zharnitsky et al. [32] solutions of this type were found for an equation of NLS type
whose solutions approximate those of (1.3). It is natural to ask whether similar
solutions exist for the coupled NLS system.

The Cauchy problem for the system (1.1)-(1.2) was first studied by Siqueira
[27, 28] who showed that, for initial data u0 ∈ H1(R) and v0 ∈ H1(R), the solution
satisfies u ∈ C(R : H1(R)) ∩ C1(R : H−1(R)) and v ∈ C(R : H1(R)) ∩ C1(R :
H−1(R). The proof uses techniques developed in [3, 4]. This CNLSS has been
extensively studied for many authors, see [5, 14, 19] and references therein.

The starting point in this work is the nonautonomous CNLSS

iut + d(t)uxx + ε|u|2u+ εβ|v|2u+ εαuxx = 0, (1.4)

ivt + d(t)vxx + ε|v|2v + εβ|u|2v + εαvxx = 0 (1.5)

where d(t) is a periodically varying group velocity dispersion with zero average,
εα is the average (or residual) dispersion, and x and t correspond to the distance
along the fiber and the retarded time respectively. System (1.4), (1.5) will be
approximated by the autonomous averaged CNLSS

iwt + εαwxx + ε〈Q1〉(w, z) = 0, (1.6)

izt + εαzxx + ε〈Q2〉(w, z) = 0, (1.7)

with 〈Q1〉, 〈Q2〉 nonlocal cubic nonlinearities given in section 2. The averaged
system is derived from (1.4), (1.5) by a formal averaging argument we present
in section 2. It is expected that, as ε → 0, solutions of (1.6), (1.7) should ap-
proximate solutions of (1.4), (1.5) over a time interval of size O(ε−1) (see [32]
for the single NLS case). Extending results of [5] we can see that (1.6), (1.7)
with initial data (w(0), z(0)) = (w0, z0) ∈ H1(R) × H1(R) has a unique solution
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(w(t), z(t)) ∈ C(R,H1(R) × H1(R)), assuming some mild regularity assumptions
on d.

Following the general idea of seeking solitary waves, we are specifically interested
in solutions of (1.6), (1.7) of the form

w(x, t) = eiω1tϕ(x), z(x, t) = eiω2tψ(x) (1.8)

where ϕ,ψ ∈ H1(R), ϕ,ψ 6≡ 0 and ω1, ω2 ∈ R.
To state the main results, define the linear operators T (t) by requiring that

T (t)u0 be the solution of iut = d(t)uxx = 0, with u(0) = u0, and consider the
functional 〈H〉 : H1(R)×H1(R)) → R defined by

〈H〉(u, v) =
∫ 1

0

∫
R

[
α(|vx|2+|vx|2−

1
2
|T (t)u|4− 1

2
|T (t)v|4−β|T (t)u|2|T (t)v|2

]
dx dt,

(1.9)
We then have the following result.

Theorem 1.1. Let α > 0. Then for any λ1, λ2 > 0 (1.6), (1.7) has a solution
of the form (1.8) that minimizes 〈H〉 over all (u, v) ∈ H1(R) × H1(R) satisfying
‖u‖L2(R) = λ1, ‖v‖L2(R) = λ2.

The proof of Theorem 1.1 is based on minimization, and the Concentration-
Compactness Principle and is given is section 4, where we also remark on the
stability of the standing wave solutions. In Theorem 1.1 the frequencies ω1, ω2 are
a-priori unspecified. It is also possible to obtain standing waves with prescribed
frequencies.

Theorem 1.2. Let α > 0. Consider any pair of ω1, ω2 > 0. Then (1.6), (1.7) has
a solution of the form (1.8).

The proof of Theorem 1.2 is based on the Mountain Pass Lemma applied to a
functional obtained from the Hamiltonian of (1.6), (1.7) and is given is section 5.

The paper is organized as follows. In section 2 we formally derive the averaged
system from a coupled NLS system with variable dispersion. Section 3 states some
basic preliminary results used in the the subsequent proofs. In section 4 we for-
mulate the constrained minimization problem for solutions of the form (1.8) and
prove Theorem 1.1. by showing the existence of minimizers. We also comment on
stability and the cases α = 0, α < 0. In section 5 we prove Theorem 1.2.

2. The averaged NLS system

From the point of view of modelling the starting point is the coupled nonlinear
Schrödinger system system(CNLSS)

iuτ +
1
ε
d

(τ
ε

)
uzz + c

(τ
ε

)
|u|2u+ β|v|2u+ αuzz = 0 (2.1)

ivτ +
1
ε
d

(τ
ε

)
vzz + c

(τ
ε

)
|v|2v + β|u|2v + αvzz = 0 (2.2)

u(x, 0) = u0(x) (2.3)

v(x, 0) = v0(x). (2.4)

with x ∈ R, t ∈ R, and u = u(x, t), v = v(x, t) complex unknown functions. The
real functions d, c are 1-periodic, piecewise-continuous and have vanishing average
over their period. The real parameter α is the average dispersion coefficient. The
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parameter β is real, positive and models the anisotropy of the fiber. ε is a real
positive parameter, and we are interested in the case where ε is small; this implies
that the functions d, c have exhibit rapid, high amplitude oscillation.

Letting τ = εσ, (2.1)-(2.2) become

iuσ + d(σ)uzz + εc(σ)|u|2u+ εβ|v|2u+ εαuzz = 0,

ivσ + d(σ)vzz + εc(σ)|v|2v + εβ|u|2v + εαvzz = 0.

Furthermore, letting t = t(σ), t′(σ) = c(σ) and τ = x we put (2.1)-(2.2) in the form

iut + d(t)uxx + ε|u|2u+ εβ|v|2u+ εαuxx = 0, (2.5)

ivt + d(t)vxx + ε|v|2v + εβ|u|2v + εαvxx = 0. (2.6)

of (1.1)-(1.2). Equivalently the system is written as

iUt + d(t)Uxx + εF (u, v)U + εαUxx = 0 (2.7)

where

U =
[
u
v

]
, F (u, v) =

[
|u|2 β|v|2
|v|2 β|u|2

]
Consider (2.7) with ε = 0. Using Stone’s theorem [23], we obtain U(x, t) =

T (t)U0, where T (t) is the fundamental solution of iUt +d(t)Uxx = 0. This operator
is easily computed using the Fourier Transform F

T (t)U0(x) =
1√
2π

∫
R
eixξϕ(ξ, t)FU(ξ, 0) dξ

where ϕ(ξ, t) = e−iξ2 R t
0 d(τ) dτ . Moreover, due to the periodicity of d(t), both ϕ(ξ, t)

and T (t) are periodic in t. The family of unitary operators T (t) is periodic T (t+1) =
T (t) since the average of d over its period vanishes. We observe that T (t) is an
isometry on Hs(R)×Hs(R) for all s ∈ R.

Using the solution of the linear system, we define the functions w, z by u(x, t) =
T (t)w(x, t) and v(x, t) = T (t)z(x, t) respectively.

Then, (2.5)-(2.6) imply

iwt + εαwxx + εQ1(w, z, t) = 0, (2.8)

izt + εαzxx + εQ2(w, z, t) = 0, (2.9)

where

Q1(w, z, t) = T−1(t)
(
|T (t)w|2T (t)w + β|T (t)z|2T (t)w

)
,

Q2(w, z, t) = T−1(t)
(
|T (t)z|2T (t)z + β|T (t)w|2T (t)z

)
.

We now replace (2.5)-(2.6) by the averaged system

iwt + εαwxx + ε〈Q1〉(w, z) = 0, (2.10)

izt + εαzxx + ε〈Q2〉(w, z) = 0 (2.11)

with

〈Q1〉(w, z) =
∫ 1

0

Q1(w, z, t) dt, (2.12)

〈Q2〉(w, z) =
∫ 1

0

Q2(w, z, t) dt. (2.13)
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System (2.10)-(2.11) is obtained by formally averaging the explicit time depen-
dence in (2.8)-(2.9). This is motivated by the intuitive idea that in the limit ε→ 0,
solutions of the averaged system should approximate solutions of (2.8)-(2.9), as in
the classical averaging method for ODEs. In the context of the single NLS with
time varying coefficients, the analogue of (2.10)-(2.11) was formally derived by [8],
[1]. Zharnitsky et al. [32] give a precise statement justifying the averaging step.
Rescaling time in(2.10) and (2.11) by changing t→ t/ε gives

iwt + αwxx + 〈Q1〉(w, z) = 0 (2.14)
izt + αzxx + 〈Q2〉(w, z) = 0. (2.15)

The structure of (2.14)-(2.15) is very close to the structure of the coupled non-
linear Schrödinger system and we can extend the theory of existence for the cou-
pled nonlinear Schrödinger system to (2.14)-(2.15) (See J. C. Ceballos et al. [5])
and references therein. In particular we similarly show that system (2.14), (2.15)
with initial data (w0, z0) ∈ H1(R) × H1(R) has a unique solution (w(t), z(t)) ∈
C(R,H1(R)×H1(R)) ∩ C1(R,H−1(R)×H−1(R)).

Remark 2.1. Systems (2.5)-(2.6), (2.8)-(2.9), and the averaged system (2.14)-
(2.15) are Hamiltonian. For instance (2.14)-(2.15) can be formally written as Hamil-
ton’s equations

wt = −i δ
δz∗

〈H〉, zt = −i δ

δw∗
〈H〉,

with Hamiltonian

〈H〉 =
∫ 1

0

∫
R

[
α|wx|2 + α|zx|2 −

1
2
|T (t)w|4 − 1

2
|T (t)z|4 − β|T (t)w|2|T (t)z|2

]
dx dt,

(2.16)
see e.g. [30] for this notation. We furthermore check that ‖w‖L2(R), ‖z‖L2(R) are
conserved quantities.

Remark 2.2. For 〈T 〉 defined by

〈T 〉u =
∫ 1

0

T (t)u dt

we have, using the Fourier Transform of the function u as Fu is

F(〈T 〉u)(ξ) =
( ∫ 1

0

eiξ2 R t
0 d(τ) dτdt

)
Fu(ξ). (2.17)

Indeed, using (2.7) with ε = 0, we have

F
(
e−i∂2

x

R t
0 d(τ) dτU

)
= eiξ2 R t

0 d(τ) dτFU.

Remark 2.3. Let Θ(η) = e−iη2 R t
0 d(τ) dτ . Applying the Fourier transform we have

FQ1(w, z)(ξ)

=
∫

η1−η2+η3=ξ

Θ(η2
1 − η2

2 + η2
3 − ξ2)Fw1(η1)Fw∗2(η2)Fw3(η3) dη1 dη2 dη3

+ β

∫
µ1−µ2+η3=ξ

Θ(µ2
1 − µ2

2 + η2
3 − ξ2)Fz1(µ1)Fz∗2(µ2)Fw3(η3) dµ1 dµ2 dη3

and

FQ2(w, z)(ξ)
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=
∫

µ1−µ2+µ3=ξ

Θ(µ2
1 − µ2

2 + µ2
3 − ξ2)Fz1(µ1)Fz∗2(µ2)Fz3(µ3) dµ1 dµ2 dµ3

+ β

∫
η1−η2+µ3=ξ

Θ(η2
1 − η2

2 + µ2
3 − ξ2)Fw1(η1)Fw∗2(η2)Fz3(µ3) dη1 dη2 dµ3.

Using the fact that T is an isometry in H1(R),

‖Q1(w, z)‖H1(R)

≤ c
(
‖w1‖H1(R)‖w2‖H1(R)‖w3‖H1(R) + β‖z1‖H1(R)‖z2‖H1(R)‖w3‖H1(R)

)
,

and

‖Q2(w, z)‖H1(R)

≤ c
(
‖z1‖H1(R)‖z2‖H1(R)‖z3‖H1(R) + β‖w1‖H1(R)‖w2‖H1(R)‖z3‖H1(R)

)
.

Hence,

‖〈Q1〉(w, z)‖H1(R)

≤ c
(
‖w1‖H1(R)‖w2‖H1(R)‖w3‖H1(R) + β‖z1‖H1(R)‖z2‖H1(R)‖w3‖H1(R)

)
,

and

‖〈Q2〉(w, z)‖H1(R)

≤ c
(
‖z1‖H1(R)‖z2‖H1(R)‖z3‖H1(R) + β‖w1‖H1(R)‖w2‖H1(R)‖z3‖H1(R)

)
.

Moreover,

〈Q1〉∗(w, z) = 〈Q1〉(w∗, z∗), 〈Q2〉∗(w, z) = 〈Q1〉(w∗, z∗)

3. Preliminary results

We state some basic results that will be used in sections 4, 5. We start with a
technical lemma that is based on the Gagliardo-Nirenberg inequality.

Lemma 3.1. For all u ∈ H1(R) we have

‖u‖2L∞(R) ≤ 2‖u‖L2(R)‖ux‖L2(R), (3.1)

‖u‖4L4(R) ≤ 2‖u‖3L2(R)‖ux‖L2(R). (3.2)

Lemma 3.2 ([3, page 185]). Let 0 < α < 4/n. Let u ∈ H1(Rn). Then there exists
c > 0 such that∫

Rn

|u|α+2 dx ≤ c
(

sup
φ∈Rn

∫
{|x−φ|≤1}

|u(x)|2 dx
)α/2

‖u‖2H1(Rn). (3.3)

To prove Theorem 1.1 we solve a minimization problem in unbounded domains.
The main technical tool is Lemma 3.3 below. In general, the invariance of Rn by
the non-compact groups of translations and dilations creates possible loss of com-
pactness: as an illustration of these difficulties, recall that the Rellich-Kondrakov
theorem [2] is no more valid in Rn. The consequence of this fact is that, except for
the special case of convex functionals, the standard convexity-compactness meth-
ods used in problems set in bounded domains fail to treat problems in unbounded
domains.

Next, we state the Lion’s Concentration-Compactness Principle. See [17, Lemma
III, page 135].
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Lemma 3.3. If λ > 0 and {uk}k∈N is a bounded sequence of H1(R) with P (uk) ≡
‖uk‖2L2(R) = λ, then there exists a subsequence {ukj}j∈N for which one of the fol-
lowing properties holds:

(1) (compactness) There exists a sequence {xj}j∈N such that for every ε > 0
there exists 0 < R <∞ so that∫ xj+R

xj−R

|ukj
|2 dx ≥ λ− ε. (3.4)

(2) (vanishing) For any 0 < R < +∞

lim
j→∞

sup
φ∈R

∫ φ+R

φ−R

|ukj |2 dx = 0. (3.5)

(3) (splitting) There exists 0 < γ < λ such that for every ε > 0 there exists
j0 ≥ 0 and two sequences {u′j}j∈N ⊆ H1(R) and {u′′j }j∈N ⊆ H1(R) with
compact disjoint supports, such that for j ≥ j0,

‖u′j‖H1(R) + ‖u′′j ‖H1(R) ≤ 4 sup
j∈N

‖ukj
‖H1(R), (3.6)

‖ukj
− u′j − u′′j ‖L2(R) ≤ ε, (3.7)

|
∫

R
|u′j |2 dx− γ| ≤ ε (3.8)

|
∫

R
|u′′j |2 dx+ γ − λ| ≤ ε, (3.9)

‖
∂u′j
∂x

‖L2(R) + ‖
∂u′′j
∂x

‖L2(R) ≤ ‖
∂ukj

∂x
‖L2(R) + ε (3.10)

Moreover dist(supp(uj), supp(u′′j )) > 2ε−1.

Remark 3.4. In the case of splitting of Lemma 3.3 (i.e. case 3), Zharnitsky et
al [32, Lemma 6.1] show that u′j , u

′′
j can be chosen to be of the form u′j(x) =

ρ(x− xj)um(x), u′′j (x) = θ(x− xj)um(x), where {xj}j∈N is a sequence of points in
R, and the functions ρ, ϑ : R → [0, 1] are C∞, even and satisfy

(i) |ρ′(x)|, |ϑ′(x)| < ε, for all x ∈ R,
(ii) ρ(x) = 1, if |x| < t1; ρ(x) = 0, if |x| ≥ t1 + 2ε−1; ϑ(x) = 1, if |x| > t2;

ϑ(x) = 0, if |x| ≤ t2 − 2ε−1, where 0 < t1 < t2, t2 − t1 > 6ε−1.
The above inequalities imply that supp ρ∩ suppϑ = ∅, dist(supp ρ, suppϑ) > 2ε−1.
Moreover 1− ρ(x− xj)− ϑ(x− xj) ≥ 0, ∀x, xj ∈ R.

The proof of Theorem 1.2 is based on the Mountain Pass Lemma below. Let E
be a Banach space and H : E → R a function which satisfies any of the following
conditions:
(PS)a The Palais-Smale Compactness Condition at a value a ∈ R: Every sequence

{xj}j∈N in E, such that H(xj) → a and ‖H′(xj)‖ → 0, has a convergent
subsequence.

(PS) The Palais-Smale Compactness Condition: (PS)a holds for every a ∈ R.
(MP ) The Mountain Pass Condition: There is an open neighborhood U of 0 and

some x0 6= U such that

max{H(0),H(x0)} < m ≡ inf{H(x) : x ∈ ∂U}.
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Let A denote the family of all continuous paths g : [0, 1] → H joining 0 to
x0, and put c ≡ infg∈A H(g(t)). Clearly c ≥ m.

Lemma 3.5 (Mountain Pass Lemma [24]). Let H : E → R be a C1 function
satisfying (MP ). Then there exists a sequence {xj}j∈N in E such that

H(xj) → c and ‖H′(xj)‖ → 0. (3.11)

If H also satisfies (PS)c with c as in (MP ), then c is a critical value: That is, for
some xc in E, H(xc) = c and H′(xc) = 0T = (0, 0, . . . , 0).

We also state three results by Zharnitsky et al. [32] that are used to apply the
above results to nonlinearities that involve the operator T of Section 2. Consider
the linear part of the coupled free Schrödinger system

iut + uxx = 0 (3.12)

ivt + vxx = 0; (3.13)

i.e. the two equations decoupled and are the same. Consider (3.12) and let

εn(t) = sup
φ∈R

∫ φ+1

φ−1

|un(x, t)|2 dx. (3.14)

Recall that solutions exist in C(R,H1(R)), and that the L2 norm is conserved.

Lemma 3.6. Let {un(x, 0)}n be a sequence of vanishing initial data; i.e., εn(0) →
0 as n → ∞. Consider corresponding solutions un = un(x, t) and assume that
‖un‖H1(R) ≤ c, and ‖un‖L2(R) = 1, ∀t ∈ R. Then {un(x, t)}n∈N is also vanishing
and the following estimate holds

εn(t) ≤ 2εn(0) + 2
√
cεn(0)t, ∀t ∈ R. (3.15)

Similar bounds hold for the solutions of iut + d(t)uxx = 0.

Lemma 3.7. Consider solutions un = un(x, t) of

iut + d(t)uxx = 0 (3.16)

with d(t) piecewise smooth with a finite number of non-degenerate zeros. Assume
vanishing initial data (as in Lemma 3.6). Define εn(t) as in (3.14) and assume
that ‖un‖H1(R) ≤ c, ‖un‖L2(R) = 1. Then εn(t) satisfies (3.15).

Considering the splitting case of Lemma 3.3, we see that uj splits, up a small
error, to functions u′j , u

′′
j that have disjoint supports. The following lemma [32,

Lemma 6.3] implies that products of T (t)u′j , T (t)u′′j are also small.

Lemma 3.8. Let λ > 0. Let {uk}k∈N be a bounded sequence in H1(R) with
‖uk‖2L2(R) = λ, ∀k ∈ N that splits in the sense of Lemma 3.3. Then ∀ε > 0
and corresponding subsequences {u′j}j∈N and {u′′j }j∈N (as in Lemma 3.3) there ex-
ist disjoint sets S1, S2, S1 ∪ S2 = R and a constant C depending on λ only such
that ∫

S1

|T (t)u′j |2 ≤ Cε,

∫
S2

|T (t)u′′j |2 ≤ Cε, ∀t ∈ [0, 1]. (3.17)
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4. Standing waves by constrained minimization

We seek solutions of (2.14), (2.15) of the standing wave form

w(x, t) = eiω1tϕ(x), z(x, t) = eiω2tψ(x) (4.1)

where ϕ,ψ ∈ H1(R), ϕ,ψ 6≡ 0 and ω1, ω2 ∈ R. Inserting (4.1) into (2.14), (2.15)
we obtain the nonlinear eigenvalue problem

−ω1ϕ+ αϕxx + 〈Q1〉(ϕ,ψ) = 0 (4.2)

−ω2ψ + αψxx + 〈Q2〉(ϕ,ψ) = 0. (4.3)

Consider the C1 functional 〈H〉 : H1(R)×H1(R) → R defined by

〈H〉(w, z)

=
∫ 1

0

∫
R

[
α|wx|2 + α|zx|2 −

1
2
|T (t)w|4 − 1

2
|T (t)z|4 − β|T (t)w|2|T (t)z|2

]
dx dt.

(4.4)
Let P (u) = ‖u‖2L2(R) and define the C1 functionals Pj : H1(R) × H1(R) → R,
j = 1, 2, by P1(w, z) = P (w), P2(w, z) = P (z) respectively. Calculating the Fréchet
derivatives of 〈H〉, P1, P2 we see that (4.2), (4.3) are the Euler-Lagrange equations
for the extrema of 〈H〉 in H1(R)×H1(R) with the constraints Pj(w, z) = λj > 0,
j = 1, 2. We shall seek solutions of (4.2), (4.3) by finding (w, z) ∈ H1(R)×H1(R),
P (w) = λ1, P (z) = λ2 that attains

Pλ1,λ2 = inf{〈H〉(w, z) : (w, z) ∈ H1(R)×H1(R), P (w) = λ1, P (z) = λ2}. (4.5)

The solution of the constrained minimization problem depends on the sign of the
parameter α. The case α > 0 is examined in subsection 4.1. The cases α = 0,
α < 0 are discussed in subsection 4.2.

In the proof of Theorem 1.1 we will use some facts about related minimization
problems for single NLS equations. Define the C1 functional 〈H1〉 : H1(R) → R by

〈H1〉(w) =
∫ 1

0

∫
R

[
α|wx|2 −

1
2
|T (t)w|4

]
dx dt, α > 0,

and let
Pλ = inf{〈H1〉(w) : w ∈ H1(R), P (w) = λ}.

Also, for z ∈ H1(R) define the C1 functional 〈H1,z〉 : H1(R) → R by

〈H1,z〉(w) =
∫ 1

0

∫
R

[
α|wx|2 −

1
2
|T (t)w|4 − β|T (t)w|2|T (t)z|2

]
dx dt, α, β > 0,

and let
P 1

λ(z) = inf{〈H1,z〉(w) : w ∈ H1(R), P (w) = λ}.
The general idea for proving Theorem 1.1 is to show that a minimizing sequence

{(wm, zm)}m∈N for 〈H〉 with the above L2−norm constraints converges in H1(R)×
H1(R). Our assumptions on {(wm, zm)}m∈N are seen to imply that each of the
sequences {wm, }m∈N, {zm, }m∈N satisfies the assumptions of Lemma 3.3. In Lemma
4.9 we consider all combinations of three scenarios of Lemma 3.3 for each sequence
and show that the only possibility is that both {wm, }m∈N, and {zm, }m∈N follow
the compactness scenario. Most of the effort in the proving this fact goes into ruling
out the possibility that at least one of the sequences undergoes splitting in the sense
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of Lemma 3.3. The see that this does not happen we note from the definitions above
that

〈H〉(wm, zm) = 〈H1,zm
〉(wm) + 〈H1〉(zm) = 〈H1,wm

〉(zm) + 〈H1〉(wm).

In the case where, for instance, {wm, }m∈N splits, we consider the first equality and
see that Lemma 4.1 below implies that there exists a w ∈ H1(R), P (w) = λ1, such
that 〈H1,zm

〉(wm) > 〈H1,zm
〉(w). Lemmas 4.2-4.4 below imply that even though

w will in general depend on zm, 〈H1,zm
〉(wm)− 〈H1,zm

〉(w) is bounded away from
zero by a positive constant that is independent of zm. It then easily follows that
{(wm, zm)}m∈N) is not minimizing. The proof of Theorem 1.1 is completed in
Theorem 4.7, where we show that a minimizing sequence must in fact converge in
H1(R)×H1(R).

In Lemma 4.1 below we show the existence of the minimizer for 〈H1,z〉. The
proof is similar to the proof of the existence of a minimizer for 〈H1〉 by Zharnitsky
et al, see [32], and some details are omitted. In particular, all estimates that involve
the operator T are as in [32]. The proof is in Section 4.1. In Lemmas 4.2-4.3 we
show that under H1 boundedness conditions on the functions involved, the strict
subadditivity inequalities for 〈H1,z〉 can be made uniform in z. In Lemma 4.4 we
show that a sequence {wm, }m∈N that splits misses the infimum of 〈H1,z〉 (i.e. stays
above it) by a quantity that is independent of z. The proof is in Section 4.1 and
uses Lemmas 4.2, 4.3, and the observation that some estimates from part 7 of the
proof of Lemma 4.1 are uniform in z.

Lemma 4.1. Let z ∈ H1(R), λ > 0. Then P 1
λ(z) < 0 and there exists w̃ ∈ H1(R),

P (w̃) = λ, satisfying 〈H1,z〉(w̃) = P 1
λ(z).

Lemma 4.2. Let θ > 1, λ > 0, M > 0, and z ∈ H1(R), with ‖z‖H1(R) ≤M . Then
there exists K > 0, independent of z, for which

P 1
θλ(z) ≤ θP 1

λ(z) + θ(1− θ)K.

Proof. Let w̃ ∈ H1(R), P (w̃) = λ satisfy 〈H1,z〉(w̃) = P 1
λ(z) (such w̃ exists by

Lemma 4.1). Let θ > 1. Then

〈H1,z〉(
√
θw̃) =

∫ 1

0

∫
R

[
θα|w̃x|2 −

1
2
θ2|T (t)w̃|4 − βθ|T (t)w̃|2|T (t)z|2

]
dx dt

= θ〈H1,z〉(w̃) + θ(1− θ)
∫ 1

0

∫
R
|T (t)w̃|4dx dt

= θP 1
λ(z) + θ(1− θ)

∫ 1

0

∫
R
|T (t)w̃|4dx dt.

Therefore,

P 1
θλ(z) ≤ θP 1

λ(z) + θ(1− θ)
∫ 1

0

∫
R
|T (t)w̃|4dx dt. (4.6)

We want to show that the integral in (4.6) is bounded below by someK independent
of z. Suppose on the contrary that there exists a sequence {zn}n∈N ∈ H1(R),
with ‖zn‖H1(R) ≤ M , for all n ∈ N, for which the minimizers w̃n of 〈H1,zn〉 over
w ∈ H1(R), P (w) = λ satisfy

lim
n→∞

∫ 1

0

∫
R
|T (t)w̃n|4dx dt = 0.
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By Lemma 3.1, the definition of T , and the boundedness of the sequence {zn}n∈N
in H1(R) we have

‖T (t)zn‖2L4(R) ≤ C, ∀n ∈ N.

Furthermore,∫ 1

0

∫
R
|T (t)w̃n|2|T (t)zn|2dx dt ≤

∫ 1

0

‖T (t)w̃n‖2L4(R)‖T (t)zn‖2L4(R)dt,

hence

lim
n→∞

∫ 1

0

∫
R
|T (t)w̃n|2|T (t)zn|2 dx dt = 0.

Thus the negative terms of 〈H1,zn
〉(w̃n) vanish and for any ε > 0 there exists n0 > 0

such that 〈H1,zn
〉(w̃n) > −ε, ∀n > n0. On the other hand, for every z, w̃ ∈ H1(R),

P (w̃) = λ,

P 1
λ(z) ≤

∫ 1

0

∫
R

[
θα|w̃x|2 −

1
2
θ2|T (t)w̃|4 − βθ|T (t)w̃|2|T (t)z|2

]
dx dt

≤
∫ 1

0

∫
R

[
θα|w̃x|2 −

1
2
θ2|T (t)w̃|4

]
dx dt

= 〈H1〉(w̃) < Pλ,

a contradiction, since by [32], Pλ < 0. �

Lemma 4.3. Let λ1, λ2 > 0, M > 0. Let z ∈ H1(R), with ‖z‖H1(R) ≤M . Define
γ by min{λ1, λ2} = γmax{λ1, λ2} and let θ = 1 + γ. Then there exists K > 0,
independent of z, for which

P 1
λ1+λ2

(z) ≤ P 1
λ1

(z) + P 1
λ2

(z) + θ(1− θ)K.

Proof. The case λ1 = λ2 follows immediately by Lemma 4.2 with λ = λ1, θ = 2.
Otherwise we may assume without loss of generality that λ1 = γλ2 with γ < 1.
Then, by Lemma 4.2

P 1
λ1+λ2

(z) = P 1
(1+γ)λ2

(z) ≤ (1 + γ)P 1
λ2

(z) + θ(1− θ)K

= P 1
λ2

(z) + γP 1
γ−1λ1

(z) + θ(1− θ)K

≤ P 1
λ2

(z) + P 1
λ1

(z) + θ(1− θ)K.

�

Lemma 4.4. Let z ∈ H1(R), ‖z‖H1(R) ≤ M1, and λ > 0. Consider sequence
{wj}j∈N in H1(R) that satisfies P (wj) = λ, ‖wj‖H1(R) ≤M2, ∀j ∈ N and splits in
the sense of Lemma 3.3. Then there exists a subsequence {wm}m∈N, and µ, m0 > 0,
all independent of z, such that for m > m0 we have 〈H1,z〉(wm) ≥ Pλ(z) + µ.

Remark 4.5. µ will in general depend on the sequence {wj}j∈N (through θ, see
the proof of Lemma 4.4 in Section 4.1).
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4.1. Positive average dispersion. First, we prove the following.
Claim. Pλ > −∞. In fact, using Lemma 3.1, the definition of T , the Hölder
inequality and straightforward calculations, we obtain

〈H〉(w, z) ≥
∫ 1

0

(
α‖wx‖2L2(R) + α‖zx‖L2(R) −

1
2
(β + 1)‖T (t)w‖4L4(R)

− 1
2
(β + 1)‖T (t)z‖4L4(R)

)
dt

≥ α‖wx‖2L2(R) + α‖zx‖2L2(R) − (β + 1)λ3/2
1 ‖wx‖L2(R)

− (β + 1)λ3/2
2 ‖zx‖L2(R)

= α
[
‖wx‖2L2(R) −

(β + 1)
α

λ
3/2
1 ‖wx‖L2(R)

]
+ α

[
‖zx‖2L2(R) −

(β + 1)
α

λ
3/2
2 ‖zx‖L2(R)

]
= α

(
‖wx‖L2(R) −

(β + 1)
2α

λ
3/2
1

)2

− (β + 1)2

4α
λ3

1

+ α
(
‖zx‖L2(R) −

(β + 1)
2α

λ
3/2
2

)2

− (β + 1)2

4α
λ3

2

≥ − (β + 1)2

2α
(λ3

1 + λ3
2) > −∞, ∀ w, z ∈ H1(R).

(4.7)

Taking the infimum, the claim follows.

Lemma 4.6. The minimization problem (4.5) with α > 0 has negative infimum
Pλ1,λ2 < 0.

Proof. Let w =
√
λ1v, z =

√
λ2v, with P (v) = 1. Let 〈H̃1〉(w) = 1

2 〈H〉(w, z). The
minimization problem for the functional 〈H̃1〉, subject to P (v) = λ, arises in the
averaged equation for the single NLS, considered in [32]. The existence of v, with
P (v) = 1, and 〈H̃1〉(w) < 0 is shown in [32, Theorem B.1], (v is a Gaussian). �

The main result of this section, leading immediately to Theorem 1.1, is as follows.

Theorem 4.7 (Existence). There exists a solution to the problem (4.5). Moreover,
every minimizing sequence has a subsequence which converges strongly in H1(R)×
H1(R).

Proof of Theorem 1.1. By the C1 regularity of 〈H〉 the minimizers of Theorem 4.7
satisfy (2.14), (2.15). �

Remark 4.8. In the special case λ1 = λ2 = λ we have

Pλ,λ = 2P̃1 = 2〈H̃1〉(φ), (4.8)

where

〈H̃1〉(w) =
∫ 1

0

∫
R

[
α|wx|2 −

β + 1
2

|T (t)w|4
]
dx dt,

Pλ = inf{〈H̃1〉(w) : w ∈ H1(R), P (w) = λ},

and φ =∈ H1(R) satisfies P (φ) = λ. An analogous result for (2.8), (2.2) with
T = id (i.e. d ≡ 0) was shown in [22]. The existence of φ follows from [32],
since 〈H̃1〉 is 〈H1〉 with a different parameter in front of the nonlinearity. To see
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(4.8), we observe that by the first line of (4.7) 〈H〉(w, z) ≥ 〈H̃1〉(w) + 〈H̃1〉(z), ∀w,
z ∈ H1(R). Taking a minimizing sequence for 〈H〉 we then have Pλ,λ ≥ 2P̃1. On
the other hand, Pλ,λ ≤ 〈H〉(φ, φ) = 2P̃1.

To prove Theorem 4.7 we first show strong convergence in L2(R) using Lemma
3.3. We shall use the following lemma.

Lemma 4.9. In the constrained minimization problem (4.5) with positive average
dispersion α > 0, there exists a minimizing sequence {(wj , zj)}j∈N where the com-
ponents {wj}j∈N, {zj}j∈N are neither vanishing nor splitting in the sense of Lemma
3.3.

This lemma uses structural properties of the Hamiltonian and is proved below.
We examine combinations of the scenarios of Lemma 3.3 for each sequence and
we conclude that both {wj}j∈N, and {zj}j∈N follow the compactness scenario. In
Theorem 4.7 we show that each sequence converges strongly in L2(R), and that the
limits are concentrated in a common interval. This implies strong convergence of
{(wj , zj}j∈N in L2(R) × L2(R), which is used to show convergence of the quartic
term in the Hamiltonian. These results, in combination with lower semicontinuity
of the H1(R)×H1(R)-norm, give the existence of a minimizer.

Remark 4.10. By the second line of (4.7), we have that for any minimizing se-
quences of wk, zk, the norms ‖wk‖H1(R) and ‖zk‖H1(R) are bounded by constants
that depend on λ1, λ2.

Proof of Theorem 4.7. Let {(wj , zj)}j∈N be a minimizing sequence for 〈H〉(w, z).
By inequality (4.7), ‖wj‖H1(R) and ‖zj‖H1(R) must be bounded. From the Alaoglu’s
Theorem [25, page 66], there exists a weakly converging subsequences wjm and zjm

such that
(wjm

, zjm
) ⇀ (w∗, z∗) weakly in H1(R)×H1(R) (4.9)

for some (w∗, z∗) in H1(R) × H1(R). Applying Lemma 4.9, and Lemma 3.3, we
have that the minimizing sequences remains localized as m→∞. That is, for any
ε > 0 there exist R1, R2 > 0 and sequences {xm}, {ym} such that∫ xm+R1

xm−R1

|wm(x)|2 dx > λ1 − ε,

∫ ym+R2

ym−R2

|zm(x)|2 dx > λ2 − ε. (4.10)

The distance |xm−ym| will either remain bounded, ∀m ∈ N, or diverge. In the case
where |xn−ym| diverges, wm, zm are concentrated in finite intervals whose distance
diverges. Then the normalized sums um = Nm(wm + zm), Nm = (λ1 + λ2)/‖wm +
zm‖L2(R), define a sequence {um}m∈N ∈ H1(R), P (um) = λ1 + λ2, ∀m ∈ N, splits
in the sense of Lemma 3.3, for we easily check that wm, zm correspond to the pieces
u′m, u′′m of Lemma 3.3. Applying Lemma 3.8, and Lemmas 3.1 and 3.3, we have
that, for any ε > 0,∫ 1

0

∫
R
|T (t)w′m|2|T (t)w′′m|2 dx dt

=
∫ 1

0

( ∫
S1

|T (t)w′m|2|T (t)w′′m|2 dx+
∫ 1

0

∫
S2

|T (t)w′m|2|T (t)w′′m|2 dx
)
dt

≤ Cε1/2

∫ 1

0

(‖T (t)w′′m‖2L∞(R) + ‖T (t)w′m‖2L∞(R))dt ≤ c1ε
1/2,

(4.11)
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with C, c1 that depend on λ1, λ2. Thus the coupling term vanishes and the infimum
Pλ1,λ2 of 〈H〉 is attained by the nontrivial w, z that minimize 〈H1〉 over H1(R)
functions with P (w) = λ1, P (z) = λ2 respectively. Moreover Pλ1,λ2 = P 1

λ1
+ P 1

λ2
.

This value is also attained by arbitrary independent translates wX(x) = w(x−X),
zY (x) = w(x− Y ) of w, z respectively. Since T (t) is an isomorphism in L2(R), for
w, z 6= 0, there exist X, Y for which

−β
∫ 1

0

∫
R
|T (t)wX |2|T (t)zY |2 dx dt < 0.

But then 〈H〉(wX , zY ) < Pλ1,λ2 , which is a contradiction. Thus |xm − ym| remain
bounded, ∀m ∈ N. Then we can translate both wm, and zm by x̃m so that w̃m(x) =
wm(x− x̃m), z̃m(x) = zm(x− x̃m) satisfy∫ +R

−R

|w̃m(x)|2 dx > λ1 − ε,

∫ +R

−R

|z̃m(x)|2 dx > λ2 − ε. (4.12)

The fact that for any Rj > 0, the embedding H1(R) ↪→ L2([−Rj , Rj ]) is compact
(see [3], page 21) implies that H1(R)×H1(R) ↪→ L2([−Rj , Rj ])×L2([−Rj , Rj ]) is
also compact. It then follows that∫ R1

−R1

|w∗(x)|2 dx = lim
m→∞

∫ R1

−R1

|w̃m(x)|2 dx (4.13)∫ R2

−R2

|z∗(x)|2 dx = lim
m→∞

∫ R2

−R2

|z̃m(x)|2 dx. (4.14)

Using (4.13), (4.14) in (4.10), we have that for any ε > 0,∫
R
|w∗(x)|2 dx > λ1 − ε,

∫
R
|z∗(x)|2 dx > λ2 − ε

and therefore ‖w∗‖2L2(R) = λ1, ‖z∗‖2L2(R) = λ2. This implies convergence of the
L2(R) × L2(R) norm, which together with weak convergence in L2(R) × L2(R)
yields strong convergence of {(w̃m, z̃m)}m∈N in L2(R)× L2(R).
Claim. ‖(w̃m, z̃m)− (w∗, z∗)‖H1(R)×H1(R) → 0. In fact, using Lemma 3.1 and the
fact that w̃m and w∗ are bounded in H1(R) we obtain

‖w̃m − w∗‖4L4(R) ≤ 2‖w̃m − w∗‖3L2(R)‖∂xw̃m − ∂xw
∗‖L2(R) ≤ c‖w̃m − w∗‖3L2(R)

and taking the limit we have that ‖w̃m − w∗‖4L4(R) → 0. In a similar way ‖z̃m −
z∗‖4L4(R) → 0.

Applying the same argument to T (t)w̃m − T (t)w∗ we obtain T (t)w̃m → T (t)w∗

and hence
‖T (t)w̃m‖4L4([0,1]×R) → ‖T (t)w∗‖4L4([0,1]×R).

In a similar way we obtain that T (t)z̃m → T (t)z∗ and hence ‖T (t)z̃m‖4L4([0,1]×R) →
‖T (t)z∗‖4L4([0,1]×R). Using (4.9), and the fact that the Sobolev norm ‖·‖H1(R)×H1(R)

is weakly lower semi-continuous [3, page 19], it follows that ‖(w∗, z∗‖H1(R)×H1(R) ≤
limm→∞ inf ‖(w̃m, z̃m)‖H1(R)×H1(R).

Moreover, using the convergence of the L2(R)× L2(R) norm of (w̃m, z̃m) to the
L2(R) × L2(R) norm of (w∗, z∗), we conclude that P (w∗x) ≤ inf limm→∞ P (∂xw̃m)
and P (z∗x) ≤ inf limm→∞ P (∂xz̃m). Therefore, 〈H〉(w∗, z∗) ≤ limm→∞〈H〉(w̃m, z̃m)
which can only happen if 〈H〉(w∗, z∗) = limm→∞〈H〉(w̃m, z̃m). Since the negative
terms of 〈H〉 converge to their values at (w∗, z∗) we have that the L2(R) × L2(R)
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norm of (∂xw̃m, ∂xz̃m) converges to the L2(R) × L2(R) of (w∗, z∗). Combining
with the weak convergence, we have that (w̃m, z̃m) converges to (w∗, z∗) strongly
in H1(R)×H1(R). �

Proof of Lemma 4.9. Vanishing does not occur. We first consider the case where
both sequences {(wj}j∈N, {zj}j∈N vanish in the sense of Lemma 3.3. Then the
nonpositive terms of 〈H〉 must vanish: by Lemma 3.2∫ 1

0

∫
R
|T (t)wj |4 dx dt ≤

∫ 1

0

(
C‖T (t)‖2H1(R) sup

φ∈R

∫ φ+1

φ−1

|T (t)wj |2dx
)
dt→ 0

by the assumption that {wj}j∈N is vanishing, and Lemma 3.7. Similarly,∫ 1

0

∫
R
|T (t)wj |2|T (t)wj |2 dx dt ≤

∫ 1

0

( ∫
R
|T (t)wj |4 dx

∫
R
|T (t)wj |2 dx

)1/2

dt→ 0.

Thus P(λ1,λ2) ≥ 0, contradicting Lemma 4.6.
Consider the case where only {zj}j∈N is vanishing. Then non-positive terms

involving zj vanish by the above and Pλ1,λ2 ≥ P 1
λ1

, since |∂xzm| ≥ 0. Using
appropriate test functions for zm that vanish in the sense of Lemma 3.3 we see that
Pλ1,λ2 = P 1

λ1
. Let w satisfy 〈H1〉(w) = P 1

λ1
. But then setting z =

√
λ2
√

λ1
w , i.e.

P (z) = λ2, we have 〈H〉(w, z) < P 1
λ1

= Pλ1,λ2 , a contradiction. The argument for
the case where only {wj}j∈N is vanishing is identical.

Splitting does not occur. Consider the scenario where at least one component of
the minimizing sequence {(wn, zn)}n∈N splits. By (4.7), ‖wn‖H1(R), ‖zn‖H1(R) are
bounded, ∀n ∈ N. We may assume that the one that splits is {wn)}n∈N. Using
the definitions of 〈H〉, 〈H1,z〉, 〈H1〉, and Lemma 4.4, we can choose a subsequence
{wm}m∈N, µ, m0, all independent of {zn)}n∈N, so that for m > m0 we have

〈H〉(wm, zm) = 〈H1,zm
〉(wm) + 〈H1〉(zm) ≥ Pλ1(zm) + µ+ 〈H1〉(zm)

with µ > 0, independent of zn (µ will in general depend on {wn)}n∈N). Letting
w̃m ∈ H1(R), P (w̃m) = λ1, satisfy 〈H1,zm〉(w̃m) = Pλ1(zm) we therefore have

〈H〉(wm, zm) ≥ 〈H1,zm
〉(w̃m) + µ+ 〈H1〉(zn) ≥ Pλ1,λ2 + µ, ∀m > m0,

a contradiction with the assumption that {(wn, zn)}n∈N is a minimizing sequence.
The argument for the case where {zn)}n∈N is assumed to split is similar, use instead
〈H〉(wn, zn) = 〈H1,wn

〉(zn) + 〈H1〉(wn). �

Proof of Lemma 4.1. We outline the steps.
1. Claim. Pλ(z) > −∞. Let w, z ∈ H1(R), P (w) = λ. By Lemma 3.1∫

R
|T (t)w|4dx dt ≤ 2‖T (t)w‖L2(R)‖∂x(T (t)w)‖L2(R) ≤ 2λ3/2‖∂xw‖L2(R),

and∫
R
|T (t)w|2|T (t)z|2dx dt ≤ ‖T (t)w‖2L4(R)|T (t)z|2L4(R) ≤ 2C(z)λ3/4‖∂xw‖1/2

L2(R),

(4.15)
where C(z) is a function of ‖z‖H1(R). Therefore,

P 1
λ(z) ≥ ‖∂xw‖2L2(R) − λ3/2‖∂xw‖L2(R) − 2βλ3/4C(z)‖∂xw‖1/2

L2(R) (4.16)

which is bounded below by a constant that depends on λ, and ‖z‖H1(R).
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2. Claim. Pλ(z) < 0. Let w, z ∈ H1(R). Then 〈H1,z〉(w) ≤ 〈H1〉(w) ≤ Pλ. But
Pλ < 0 by [32].
3. Claim. Let z ∈ H1(R). Let λ, θ > 0. Then Pθλ(z) < θPλ(z). Let θ > 1,
w ∈ H1(R). Then

〈H1,z〉(
√
θw) =

∫ 1

0

∫
R

[
θα|wx|2 −

1
2
θ2|T (t)w|4 − βθ|T (t)w|2|T (t)z|2

]
dx dt

= θ〈H1,z〉(w) + θ(1− θ)
∫ 1

0

∫
R
|T (t)w|4dx dt.

(4.17)

Let {wn}n∈N ∈ H1(R), P (wn) = λ, be a minimizing sequence for 〈H1,z〉. We check
that

∫
R |T (t)wn|4dx is bounded away form zero: otherwise, by (4.15) both negative

terms of 〈H1,z〉 vanish and we have a contradiction with P 1
λ(z) < 0. Then (4.17)

implies that there exists a k > 0 such that P 1
θλ(z) ≤ θP 1

λ(z) + k < θP 1
λ(z).

4. Claim. Let z ∈ H1(R). Then Pλ1+λ2(z) < Pλ1(z) + Pλ2(z). This follows
immediately from step 3, see [32] (the argument also appears in the proof of Lemma
4.3).
5. Claim. Let {wn}n∈N ∈ H1(R), P (wn) = λ, be a minimizing sequence for
〈H1,z〉. Then ‖wn‖H1(R) ≤ M , ∀n ∈ N. The constant M is a function of λ, and
‖z‖H1(R). This follows immediately from (4.16).
6. By Claim 5 the minimizing sequence satisfies the hypothesis of Lemma 3.3. We
eliminate the vanishing scenario by combining Lemmas 3.2 and 3.7 to show that
if {wn}n∈N vanishes in the sense of Lemma 3.3 then the negative terms of 〈H1,z〉
vanish and we contradict the fact that P 1

λ(z) < 0.
7. We consider the splitting scenario: ∀ε > 0 there exist an m0 > 0, and a
subsequence {wm}m∈N such that m > m0 implies that wm = w′m +w′′m + hm, with
w′m, w′′m as in Lemma 3.3. We then have

〈H1,z〉(wm) = 〈H1,z〉(w′m) + 〈H1,z〉(w′′m) +Rm, (4.18)

where Rm = R1
m +R2

m +R2
m, and

R1
m =

∫ 1

0

∫
R
(2αRe[(∂xw

′
m)∗∂xw

′′
m]− 2(Re[(T (t)w′m)∗(T (t)w′′m)])2

− |T (t)w′m|2|T (t)w′′m|2 − (|T (t)w′m|2 + |T (t)w′′m|2 + 2β|T (t)z|2)
× Re[(T (t)w′m)∗(T (t)w′′m)]) dx dt,

(4.19)

R2
m =

∫ 1

0

∫
R
(2αRe[(∂xwm)∗∂xhm]) dx dt, (4.20)

R3
m =

∫ 1

0

∫
R
(−2(Re[(T (t)w′m)∗(T (t)hm)])2 − 2(Re[(T (t)w′′m)∗(T (t)hm)])2) dx dt

+
∫ 1

0

∫
R
(−(|T (t)w′m|2 + |T (t)w′′m|2)|T (t)hm|2 −

1
2
|T (t)hm|4) dx dt

+
∫ 1

0

∫
R
(−(|T (t)w′m|2 + |T (t)w′′m|2) Re[(T (t)(w′m + w′′m))∗(T (t)hm)]) dx dt

+
∫ 1

0

∫
R

(
− (Re[(T (t)w′m)∗(T (t)w′′m)] + Re[(T (t)(w′m + w′′m))∗T (t)hm])

× |T (t)hm|2
)
dx dt (4.21)
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+
∫ 1

0

∫
R

(
− β|T (t)z|2||T (t)hm|2 − 2β(Re[(T (t)(w′m + w′′m))∗T (t)hm])

× |T (t)z|2
)
dx dt.

To estimate R1
m we first observe that (∂xw

′
m)∗∂xw

′′
m vanishes by Lemma 3.3.

The remaining terms involve products of T (t)w′m, and T (t)w′′m and are bounded
using Lemma 3.8 (as in (4.11)). Estimating the other terms in a similar way we find
R1

m ≤ C1ε
1/2 (assuming ε ≤ 1), where C1 depends on ‖z‖H1(R), and ‖wm‖H1(R).

R3
m contains terms proportional to T (t)hm or its modulus. These can be es-

timated using Lemma 3.1 and the fact that, by Lemma 3.3, ‖hm‖L2(R) ≤ ε, and
‖∂xhm‖L2(R) ≤ 5‖wm‖H1(R). For instance, on line 3 of (4.21), by Lemmas 3.1 and
3.3, ∫

R
‖T (t)w′m|2 + |T (t)w′′m|2||Re[(T (t)(w′m + w′′m))∗(T (t)hm)]| dx

≤ 4(‖T (t)w′m|2|L∞(R) + ‖T (t)w′′m|2|L∞(R))
∫

R
|T (t)(w′m + w′′m)‖T (t)hm| dx

≤ c3‖T (t)hm‖L2(R) ≤ c3ε, ∀t ∈ [0, 1],

where c3 depends on ‖wm‖H1(R). Other terms are estimated similarly, and we see
that R1

m ≤ C3ε (assuming ε ≤ 1), where C3 depends on ‖z‖H1(R), and ‖wm‖H1(R).
The integrand in R2

m is proportional to ∂xhm. This is not necessarily small,
however it can be written as small plus nonnegative: using Remark 3.4 we may
write hm = (1−ρm +ϑm)um, where ρm(x) = ρ(x−xm), ϑm(x) = ϑ(x−xm). Then

R2
m =

∫ 1

0

∫
R
(−Re[(∂xwm)∗(∂xρm + ∂xϑm)um]) dx dt

+
∫ 1

0

∫
R
(1− ρm + ϑm)|∂xum|2) dx dt.

(4.22)

Using the bounds on ∂xρm, ∂xϑm from Remark 3.4, the first integral, denoted by
R̃2

m, is estimated as

|R̃2
m| ≤

∫
R
|Re[(∂xwm)∗(∂xρm + ∂xϑm)um]|dx

≤ ‖∂xum‖L2(R)‖(∂xρm + ∂xϑm)um‖L2(R)

≤ ‖∂xum‖L2(R)‖∂xρm + ∂xϑm)‖L∞(R)‖um‖L2(R) ≤ C̃2ε, .

(4.23)

with C̃2 depending on ‖wm‖H1(R). The second integral in (4.22) is nonnegative.
Also, by Lemma 3.3, P (w′m) = λ1 + β′m, P (w′′m) = λ2 + β′′m, with λ1 + λ2 = λ,

|β′m|, |β′′m| < ε. Letting

w̃′m =
√
λ1

√
λ1 + β′m
w

′

m
, w̃′′m =

√
λ2

√
λ2 + β′′m
w

′′

m
,

r′m = 〈H1,z〉(w′m)− 〈H1,z〉(w̃′m), r′′m = 〈H1,z〉(w′′m)− 〈H1,z〉(w̃′′m)

we easily check that |r′m|, |r′′m| ≤ Cε, with C depending on ‖z‖H1(R), ‖wm‖H1(R).
Collecting the above we have

〈H1,z〉(wm) ≥ 〈H1,z〉(w̃′m) + 〈H1,z〉(w̃′′m) + R̃m, (4.24)
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with
R̃m = R1

m + R̃2
m +R3

m + r′m + r′′m, |R̃m| ≤ C̃ε1/2, (4.25)

where using also the boundedness of ‖wm‖H1(R) (Claim 6), C̃ depends on λ, and
‖z‖H1(R). Taking ε sufficiently small and using strict subadditivity (Claim 5),
(4.24), (4.25) imply 〈H1,z〉(wm) > Pλ(z), a contradiction.
8. Once the vanishing and splitting scenarios are eliminated strong convergence in
H1(R) up to translations follows as in [32]. �

Proof of Lemma 4.4. By the splitting assumption we have that for all ε > 0, there
exist an m̃ > 0, and a subsequence {wm}m∈N such that m > m̃ implies that
wm = w′m + w′′m + hm, with w′m, w′′m as in Lemma 3.3. Then 〈H1,z〉(wm) ≥
〈H1,z〉(w′m) + 〈H1,z〉(w′′m) + R̃m, with R̃m as in (4.25). Bounding R̃m as in Lemma
4.1 we additionally check that R̃m ≤ C̃ε1/2, where C̃ only depends only on M1,
M2. By Lemma 4.3 we then have

〈H1,z〉(wm) ≥ P 1
λ(z) + θ(1− θ)K + R̃m,

with K independent of z. By Lemmas 3.3 and 4.3, θ is determined by the se-
quence {wj}j∈N. The statement follows by setting µ = 1

2θ(1 − θ)K, and choosing
ε (sufficiently small) and a corresponding subsequence of {wj}j∈N. �

We add some remarks on the stability of standing wave solutions. LetM(λ1,λ2) by
the set of (u, v) that minimize 〈H〉 over (w, z) ∈ H1(R)×H1(R), with P (w) = λ1,
P (z) = λ2. Let (τa,yφ)(x) = eiaφ(x−y), a, y ∈ R, and for U ∈ H1(R)×H1(R). Also
let τ(U) be the set of all (τa1,yu1, τa2,yu2), with a1, a2, y ∈ R, u1, u2 ∈ H1(R). Note
that U ∈ M(λ1,λ2) implies that τ(U) ∈ M(λ1,λ2). For (x1, x2) ∈ H1(R) × H1(R),
U ⊂ H1(R)×H1(R) we say that x is ε−close to U is there exists (y1, y2) ∈ U such
that ‖x1 − y1‖H1(R + ‖x2 − y2‖H1(R < ε.

A solution of the form (1.8) of (1.6), (1.7) is orbitally stable if ∀ε > 0 there exists
a neighborhood Uε of (φ, ψ) ∈ H1(R) × H1(R) so that any (w(t), z(t)) satisfying
(1.6), (1.7) with initial condition (w(0), z(0)) ∈ Uε, remains ε−close to τ((φ, ψ)),
∀t ∈ R.

Proposition 4.11. Let x = (ϕ,ψ) ∈ Mλ1,λ2 , and assume that τ(x) = M(λ1,λ2).
Then the corresponding standing wave solution of (1.6), (1.7) is orbitally stable.

Proof. The statement follows from the continuity of the solutions (w(t), z(t)) of
(2.14), (2.15), the conservation of 〈H〉, P1, P2, see Remark 2.1, and the argument
by Ohta [22, p. 937]. �

Since the validity of assumption τ(x) = M(λ1,λ2) is not known, Theorem 1.1 only
implies a weaker stability statement below, using essentially the argument by [22,
p. 937] (we omit the proof). In particular, given x ∈M(λ1,λ2), let x ∈M(λ1,λ2),c(x)
be the set of y ∈ M(λ1,λ2) that can be connected to x by a continuous path γ :
[0, 1] → H1(R) ×H1(R) satisfying P1(γ(t)) = λ1, P2(γ(t)) = λ2, ∀t ∈ [0, 1]. Note
that τ(x) ⊂M(λ1,λ2),c(x). Then we have the following.

Proposition 4.12. Let x = (ϕ,ψ) ∈ M(λ1,λ2). Then ∀ε > 0 there exists a neigh-
borhood Uδ of x ∈ H1(R)×H1(R) such that any (u(t), v(t)) satisfying (1.6), (1.7)
with initial condition (u(0), v(0)) ∈ Uε remains ε−close to M(λ1,λ2),c(x), for all
t ∈ R.
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4.2. Nonpositive average dispersion. In the case α = 0 we can use Strichartz-
type estimates to bound the Hamiltonian from below in L2(R)× L2(R). However,
we do not have an H1 bound of minimizing sequences (i.e. as in Remark 4.10) and
we may have loss of compactness due to loss of control of derivatives. For the single
NLS equation this problem was analyzed successfully in [15], where it was shown
that vanishing and splitting of the minimizing sequence is not possible in neither
Fourier nor physical space and that we are back to the classical situation where
Sobolev’s embedding theorem can be applied. Similar ideas seem to apply for the
system as well, however the arguments are more lengthy and technical and we will
not pursue this case here.

For the case α < 0, the minimization problem can not have a globally minimizing
ground state solution since Pλ = −∞. We show that any critical points that may
exist can not be local minima.

Theorem 4.13. Let (w, z) be a critical point of the constrained averaged variational
principle (4.5) with negative average dispersion. Then, for any ε > 0, there exists
(φ, ψ) ∈ H1(R)×H1(R), such that ‖φ‖2L2(R) = λ1, ‖ψ‖2L2(R) = λ2, ‖w−φ‖H1(R) < ε,
‖z − ψ‖H1(R) < ε and 〈H〉(w, z) > 〈H〉(φ, ψ).

Proof. If (w, z) is a critical point of the constrained averaged principle (4.5) with
α < 0 then by Lemma 3.1, (w, z) ∈ H1(R) × H1(R), otherwise 〈H〉 would be
unbounded.

On the other hand, we perturb (w, z) with an arbitrary small high frequency
radiation at the tails, which will produce a smaller change in H1(R)×H1(R) but yet
an even small change in L2(R)×L2(R) and L4([0, 1] : L4(R))×L4([0, 1] : L4(R)). Let
ρ ∈ D(R) with supp ρ ⊆ [− 1

2 ,
1
2 ], 0 ≤ ρ ≤ 1 and an > 0 is specifically large and will

be chosen later. We define φn = 1
n2 e

in(x−an)ρan
(x) with ρan

(x) = ρ(x− an). Then
φn ∈ D(R), suppφn ⊆ supp ρan

(x) ⊆ [an − 1
2 , an + 1

2 ]. Let wn = w + φn and zn =
z+φn. Using that |wn|2 = wn ·wn = (w+φn)(w+φn) = |w|2 + |φn|2 + 2Re(wφn)
we have the following estimates

‖wn‖2L2(R) = ‖w‖2L2(R) + ‖φn‖2L2(R) + 2 Re
∫

R
wφn dx

≈ ‖w‖2L2(R) +O
( 1
n4

)
+O

( 1
n2+qn

)
≈ λ1 + ϕ(n)

(4.26)

where ϕ(n) ≈ O
(

1
n4

)
, |w| < 1/nqn for x ∈ supp ρan

.

‖∂xwn‖2L2(R) = ‖wx‖2L2(R) + ‖∂xφn‖2L2(R) + 2Re
∫

R
∂xw∂xφn dx

≤ ‖wx‖2L2(R) +
cρ
n2

− 2Re
∫

R
w∂xxφn dx

≈ ‖wx‖2L2(R) +
cρ
n2

+O
( 1
nqn

) (4.27)

since ∂xφn = ein(x−an)/n2
(
inρan

(x) + ∂xρan
(x)

)
. Moreover,

‖Twn‖4L4([0,1]:L4(R)) = ‖Tw‖4L4([0,1]:L4(R)) +R,
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where

|R| ≤ ‖Tφn‖4L4([0,1]:L4(R)) + 4
∫ 1

0

∫
R
|Tw|3|Tφn| dx dt

+ 6
∫ 1

0

∫
R
|Tw|2|Tφn|2 dx dt+ 4

∫ 1

0

∫
R
|Tw||Tφn|3 dx dt.

We estimate these integrals using Lemma 3.7 and they turn out to be small. In
a similar way we obtain the same estimates for zn. From (4.26), by scaling the
sequences with

√
λj + ϕ(n), we obtain new sequences w′n and z′n respectively sat-

isfying the constraint ‖w′n‖2L2(R) = λ1, ‖z′n‖2L2(R) = λ2, and satisfying the following
〈H〉(w′n, z′n) < 〈H〉(w, z), with ‖w′n − w‖H1(R) → 0, and ‖z′n − z‖H1(R) → 0, as
n→∞. �

5. Standing waves with prescribed frequencies

In this section we find solutions of the nonlinear eigenvalue problem (4.2), (4.3)
with ω1, ω2 > 0. It will be assumed that α > 0. Consider the C1 functional
H : H1(R)×H1(R) → R, H ∈ C1 defined by

H(ϕ,ψ) =
∫

R
(ω1|ϕ|2 + ω2|ψ|2 + α|ϕx|2 + α|ψx|2) dx

−
∫ 1

0

∫
R

[1
2
|T (t)ϕ|4 +

1
2
|T (t)ψ|4 + β|T (t)ϕ|2|T (t)ψ|2

]
dx dt,

(5.1)

for (ϕ,ψ) ∈ H1(R) ×H1(R). Calculating the Fréchet derivative of H we see that
critical points of H must satisfy (4.2), (4.3).

We will find critical points of H by applying the Mountain Pass Lemma. Consider
the norm

‖(ϕ,ψ)‖2H =
∫

R
(ω1|ϕ|2 + ω2|ψ|2 + α|ϕx|2 + α|ψx|2) dx (5.2)

for (ϕ,ψ) ∈ H1(R,R2). Let E = H1(R,R2), and U = Bρ(0). Let

‖(ϕ,ψ)‖E = ‖(ϕ,ψ)‖H1(R) =
∫

R
(|ϕ|2 + |ψ|2 + |ϕx|2 + |ψx|2) dx. (5.3)

Note that the norms ‖ · ‖H and ‖ · ‖E are equivalent. Also note that

H(ϕ,ψ) = ‖(ϕ,ψ)‖2H −
∫ 1

0

∫
R

[1
2
|T (t)ϕ|4 +

1
2
|T (t)ψ|4 + β|T (t)ϕ|2|T (t)ψ|2

]
dx dt.

(5.4)

Proof Of Theorem 1.2. We have

β

∫ 1

0

∫
R
|T (t)ϕ|2|T (t)ψ|2dx dt ≤ β

2

∫ 1

0

(
‖T (t)ϕ‖4L4(R) + ‖T (t)ψ‖4L4(R)

)
dt.

Then

−
∫ 1

0

∫
R

[1
2
|T (t)ϕ|4 +

1
2
|T (t)ψ|4 + β|T (t)ϕ|2|T (t)ψ|2

]
dx dt

≥ − (β + 1)
2

∫ 1

0

(
‖T (t)ϕ‖4L4(R) + ‖T (t)ψ‖4L4(R)

)
dt.



EJDE-2010/107 SOLITARY WAVES 21

Using Lemma 3.1,

−
∫ 1

0

∫
R

[1
2
|T (t)ϕ|4 +

1
2
|T (t)ψ|4 + β|T (t)ϕ|2|T (t)ψ|2

]
dx dt ≥ −(β + 1)‖(ϕ,ψ)‖3E .

Then in (5.4), we have

H(ϕ,ψ) ≥ ‖(ϕ,ψ)‖2H − (β + 1)‖(ϕ,ψ)‖3E . (5.5)

By the equivalence of the norms ‖ · ‖E and ‖ · ‖H,

H(ϕ,ψ) ≥ 1
c2
‖(ϕ,ψ)‖2E − (β + 1)‖(ϕ,ψ)‖3E

=
1
c2
‖(ϕ,ψ)‖2E (1− c2(β + 1)‖(ϕ,ψ)‖E) .

Let ‖(ϕ,ψ)‖E = ρ and c = c2(β + 1), then the graph ρ2

c (1− cρ) is strictly positive
for ρ ∈

(
0, 1

c

) (
1− cρ > 0 ⇔ ρ < 1

c

)
. Take ρ = 2

3c . Hence, for (ϕ,ψ) ∈ ∂Bρ, i. e.,
‖(ϕ,ψ)‖E = ρ, we have

H(ϕ,ψ) ≥ 1
c

(
2
3c

)2 (
1− c

2
3c

)
=

4
27c3

= a > 0.

Moreover, H(0, 0) = 0. Hence, the functional H has a strict local minimum at 0 in
the function space E = H1(R,R2).
Claim. We have

H(θϕ0, θψ0) → −∞ as θ → +∞. (5.6)

In fact,

H(θϕ0, θψ0) = ‖(θϕ0, θψ0)‖2H −
∫ 1

0

∫
R

[1
2
θ4|T (t)ϕ0|4 +

1
2
θ4|T (t)ψ0|4

+ βθ4|T (t)ϕ0|2|T (t)ψ0|2
]
dx dt

= θ2‖(ϕ0, ψ0)‖2H − θ4
∫ 1

0

∫
R

[1
2
|T (t)ϕ0|4 +

1
2
|T (t)ψ0|4

+ β|T (t)ϕ0|2|T (t)ψ0|2
]
dx dt.

Then

H(θϕ0, θψ0)
θ2

= ‖(ϕ0, ψ0)‖2H − θ2
∫ 1

0

∫
R

[1
2
|T (t)ϕ0|4 +

1
2
|T (t)ψ0|4

+ β|T (t)ϕ0|2|T (t)ψ0|2
]
dx dt.

(5.7)

Choose (ϕ0, ψ0) ∈ E fixed, in (5.7) we obtain

lim
θ→+∞

H(θϕ0, θψ0)
θ2

= −∞.

The claim follows. Therefore, H(ϕ,ψ) satisfies the conditions of the Mountain
Pass Lemma. Hence, applying the Mountain Pass Lemma we obtain a subsequence
{(ϕj , ψj)}j∈N in H1(R)×H1(R) with the following tow properties:

H(ϕj , ψj) → c, ‖H′(ϕj , ψj)‖ → 0 as j → +∞ (5.8)

where c is a positive constant.
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Claim. Any sequence {(ϕj , ψj)}j∈N in H1(R) × H1(R) satisfying (5.8) must be
bounded. In fact, suppose that {(ϕj , ψj)}j∈N satisfies (5.8), but ‖(ϕj , ψj)‖ → ∞
as j →∞ where ‖ · ‖ can be either ‖ · ‖H or ‖ · ‖H1(R)×H1(R). It follows that

H(ϕj , ψj)
‖(ϕj , ψj)‖2

→ 0 as n→∞ . (5.9)

Also
H′(ϕj , ψj) · (ϕj , ψj)

‖(ϕj , ψj)‖2
→ 0 as n→∞. (5.10)

On the other hand

H(ϕj , ψj) =
∫

R
(ω1|ϕj |2 + ω2|ψj |2 + α|ϕjx

|2 + α|ψjx
|2) dx

− 1
2

∫ 1

0

∫
R

[
|T (t)ϕj |4 + |T (t)ψj |4 + 2β|T (t)ϕj |2|T (t)ψj |2

]
dx dt,

for (ϕj , ψj) ∈ H1(R)×H1(R), and

H′(ϕj , ψj) · (ϕj , ψj)

= 2
∫

R
(ω1|ϕj |2 + ω2|ψj |2 + α|ϕjx |2 + α|ψjx |2) dx

− 2
∫ 1

0

∫
R

[
|T (t)ϕj |4 + |T (t)ψj |4 + 2β|T (t)ϕj |2|T (t)ψj |2

]
dx dt

for (ϕj , ψj) ∈ H1(R)×H1(R). Moreover,

2H(ϕj , ψj)−H′(ϕj , ψj) · (ϕj , ψj)

=
∫ 1

0

∫
R

[
|T (t)ϕj |4 + |T (t)ψj |4 + 2β|T (t)ϕj |2|T (t)ψj |2

]
dx dt.

Using (5.9) and (5.10) we have

0 = lim
j→∞

∫ 1

0

∫
R

[
|T (t)ϕj |4 + |T (t)ψj |4 + 2β|T (t)ϕj |2|T (t)ψj |2

]
dx dt

‖(ϕj , ψj)‖2
.

Moreover,

H′(ϕj , ψj) · (ϕj , ψj)

= 2‖(ϕj , ψj)‖2H − 2
∫ 1

0

∫
R

[
|T (t)ϕj |4 + |T (t)ψj |4 + 2β|T (t)ϕj |2|T (t)ψj |2

]
dx dt.

Dividing by ‖(ϕj , ψj)‖2 and letting j → ∞ gives 0 = 2 − 0 = 2, which is a
contradiction. Thus {(ϕj , ψj)}j∈N must be bounded. The claim follows. Thus,
there exists a subsequence, still denoted by {(ϕj , ψj)}j∈N such that

ϕj ⇀ ϕ weakly in H1(R)

ψj ⇀ ψ weakly in H1(R).

Claim. (ϕ,ψ) is nontrivial. In fact, since ‖H′(ϕj , ψj)‖ → 0 and {(ϕj , ψj)} is
bounded, H′(ϕj , ψj) · (ϕj , ψj) → 0. Hence,

2H(ϕj , ψj)−H′(ϕj , ψj) · (ϕj , ψj)

=
∫ 1

0

∫
R

[
|T (t)ϕj |4 + |T (t)ψj |4 + 2β|T (t)ϕj |2|T (t)ψj |2

]
dx dt→ 0.
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Using the Palais-Smale condition we have that the sequence cannot be vanishing.
Indeed,

c

2
<

∫
R
[|T (t)ϕj |4 + |T (t)ψj |4 + 2β|T (t)ϕj |2|T (t)ψj |2] dx dt

≤ (β + 1)
∫

R
[|T (t)ϕj |4 + |T (t)ψj |4] dx dt

< (β + 1)
(
‖T (tj)ϕj‖2L∞(R)‖ϕj‖2L2(R) + ‖T (tj)ϕj‖2L∞(R)‖ϕj‖2L2(R)

)
for some tj ∈ [0, 1] given that j is sufficiently large and therefore,

‖T (tj)ϕj‖L∞(R) >
c1
2
> 0, ‖T (tj)ψj‖L∞(R) >

c1
2
> 0.

Therefore, by rearranging the sequence (ϕj , ψj) so that the maxima are assumed
at x = 0, we obtain that the weak limit (ϕ,ψ) is nontrivial.

Finally, we show that H′(ϕ,ψ) · (u, v) = 0 for any (u, v) ∈ H1(R) ×H1(R). In
fact, we show that the expression

H′(ϕ,ψ) · (u, v)−H′(ϕn, ψn) · (u, v)

=
∫

R
[ω1 · 2 Re((ϕ− ϕn)u) + ω2 · 2 Re((ψ − ψn)v) + α · 2 Re((ϕ− ϕn)xux)

+ α · 2 Re((ψ − ψn)xvx)] dx

− 2
∫ 1

0

∫
R

[
|T (t)ϕ|2 · Re(T (t)ϕ · T (t)u)− |T (t)ϕn|2 · Re(T (t)ϕn · T (t)u)

]
dx dt

− 2
∫ 1

0

∫
R

[
|T (t)ψ|2 · Re(T (t)ψ · T (t)v)− |T (t)ψn|2 · Re(T (t)ψn · T (t)v)

]
dx dt

− 2β
∫ 1

0

∫
R

[
|T (t)ϕ|2 · Re(T (t)ψ · T (t)v)− |T (t)ϕn|2 · Re(T (t)ψn · T (t)v)

]
dx dt

− 2β
∫ 1

0

∫
R

[
|T (t)ψ|2 · Re(T (t)ϕ · T (t)u)− |T (t)ψn|2 · Re(T (t)ϕn · T (t)u)

]
dx dt

(5.11)
converges to zero as n → ∞. The first integral on the right-hand side in (5.11)
tends to zero, because ϕ − ϕn ⇀ 0 and ψ − ψn ⇀ 0 in H1(R) respectively. The
other integrals are estimated as follows.
Claim. We have

|T (t)ϕ|2 · Re(T (t)ϕT (t)u)− |T (t)ϕn|2 · Re(T (t)ϕnT (t)u)

≤ |T (t)u||T (t)(ϕ− ϕn)|
[
|T (t)ϕ|2 + (|T (t)ϕ|+ |T (t)ϕn|) |T (t)ϕn|

]
.

(5.12)

In fact,

|T (t)ϕ|2 · Re(T (t)ϕT (t)u)− |T (t)ϕn|2 · Re(T (t)ϕnT (t)u)

= |T (t)ϕ|2 · Re(T (t)(ϕ− ϕn)T (t)u+ T (t)ϕnT (t)u)− |T (t)ϕn|2 · Re(T (t)ϕnT (t)u)

= |T (t)ϕ|2(Re(T (t)(ϕ− ϕn)T (t)u+ Re(T (t)ϕnT (t)u))

− |T (t)ϕn|2 · Re(T (t)ϕnT (t)u)

= |T (t)ϕ|2 Re(T (t)(ϕ− ϕn)T (t)u) + Re((|T (t)ϕ|2 − |T (t)ϕn|2)T (t)ϕnT (t)u)

= |T (t)ϕ|2 Re(T (t)(ϕ− ϕn)T (t)u) + Re((|T (t)ϕ| − |T (t)ϕn|)(|T (t)ϕ|
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+ |T (t)ϕn|)T (t)ϕnT (t)u)

≤ |T (t)ϕ|2|T (t)(ϕ− ϕn)||T (t)u|+ ||T (t)ϕ| − |T (t)ϕn||(|T (t)ϕ|
+ |T (t)ϕn|)|T (t)ϕn||T (t)u|

≤ |T (t)ϕ|2|T (t)(ϕ− ϕn)||T (t)u|+ |T (t)ϕ− T (t)ϕn|(|T (t)ϕ|
+ |T (t)ϕn|)|T (t)ϕn||T (t)u|

= |T (t)ϕ|2|T (t)(ϕ− ϕn)||T (t)u|+ |T (t)(ϕ− ϕn)|(|T (t)ϕ|
+ |T (t)ϕn|)|T (t)ϕn||T (t)u|

= |T (t)u||T (t)(ϕ− ϕn)|
(
|T (t)ϕ|2 + (|T (t)ϕ|+ |T (t)ϕn|)|T (t)ϕn|

)
.

In a similar way we obtain

|T (t)ϕ|2 · Re(T (t)ψ · T (t)v)− |T (t)ϕn|2 · Re(T (t)ψn · T (t)v)

≤ |T (t)v||T (t)ϕ|2|T (t)(ψ − ψn)|
+ |T (t)v||T (t)ψ||T (t)(ϕ− ϕn)|(|T (t)ϕ|+ |T (t)ϕn|).

(5.13)

Hence in (5.11), we have

H′(ϕ,ψ) · (u, v)−H′(ϕn, ψn) · (u, v)

≤ 2
∫ 1

0

∫
R

[
|T (t)u||T (t)(ϕ− ϕn)|

(
|T (t)ϕ|2 + (|T (t)ϕ|+ |T (t)ϕn|) |T (t)ϕn|

) ]
dx dt

− 2
∫ 1

0

∫
R

[
|T (t)v||T (t)(ψ − ψn)|

(
|T (t)ψ|2 +

(
|T (t)ψ|

+ |T (t)ψn|
)
|T (t)ψn|

)]
dx dt

− 2β
∫ 1

0

∫
R

[
|T (t)v||T (t)ϕ|2|T (t)(ψ − ψn)|

+ |T (t)v||T (t)ψ||T (t)(ϕ− ϕn)|(|T (t)ϕ|+ |T (t)ϕn|)
]
dx dt

− 2β
∫ 1

0

∫
R

[
|T (t)u||T (t)ψ|2|T (t)(ϕ− ϕn)|

+ |T (t)v||T (t)ϕ||T (t)(ψ − ψn)|(|T (t)ψ|+ |T (t)ψn|)
]
dx dt.

(5.14)
We estimate the first integral on the right-hand side in (5.14). We take a sufficiently
large interval K = [−R,R], so that |u(x)| < ε (respectively |v(x)| < ε), for all
x ∈ K. Thus, using Lemma 3.7 and the boundedness of ϕ, ϕn (respectively ψ, ψn)
in H1(R) we obtain the bound∣∣∣ ∫ 1

0

∫
R\K

[
|T (t)u||T (t)(ϕ− ϕn)|

(
|T (t)ϕ|2

+ (|T (t)ϕ|+ |T (t)ϕn|) |T (t)ϕn|
)]
dx dt

∣∣∣ ≤ cε

that is uniform in time. To estimate on the remaining interval K = [−R,R], using
H1([−R,R])

c
↪→ C0([−R,R]) we have that the sequences converges strongly ϕn → ϕ

for x ∈ K (respectively ψn → ψ for x ∈ K). Therefore, we can show that

sup
x∈K,t∈[0,1]

|T (t)(ϕ− ϕn)| < ε
(
respectively, sup

x∈K,t∈[0,1]

|T (t)(ψ − ψn)| < ε
)
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provided n is sufficiently large. In fact, we take a large set Kε = [R− 1/ε,R+1/ε],
then choosing n so large that

sup
x∈Kε

|ϕ− ϕn| < ε,
(
respectively, sup

x∈Kε

|ψ − ψn| < ε
)

we can apply Lemma 3.7 to show the localization does not occur.
Now, we can estimate the integral on the remaining interval∫

K

[
|T (t)u||T (t)(ϕ− ϕn)|

(
|T (t)ϕ|2 + (|T (t)ϕ|+ |T (t)ϕn|) |T (t)ϕn|

) ]
dx

≤ C sup
x∈K

|T (ϕ− ϕn)| ≤ Cε,

where C does not depend on n. The other terms in (5.14) are estimated in a similar
way. �
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26 P. PANAYOTAROS, M. SEPÚLVEDA, O. VERA EJDE-2010/107

[19] C. R. Menyuk; Nonlinear pulse propagation in birefringence optical fiber, IEEE J. Quantum

Electron, 23(1987) 174-176.

[20] J. Moeser, I. Gabitov and C. K. R. T. Jones; Pulse stabilization by high order dispersion
management, Opt. Lett. 27(24)(2002) 2206-2208.

[21] M. Nakazawa, H. Kubota, K. Suzuki and E. Yamida; Recent progress in soliton transmission

technology, Chaos Vol. 10, 3(2000) 486-514.
[22] M. Ohta; Stability of solitary waves for coupled nonlinear Schrödinger equations, Nonlinear

Analysis, Theory Meth. Appl. 26 (1995) 933-939.

[23] A. Pazy; Semigroups of linear operators and applications to partial differential equations,
Springer-Verlag, New York, 1983.

[24] P. H. Rabinowitz; Minimax methods in critical point theory with applications to differential

equations, CBMS Regional Conference Series in Mathematics, Vol. 65, American Mathemat-
ical Society, Providence, RI, 1986.

[25] W. Rudin; Functional Analysis, Tata McGraw-Hill, 1974.
[26] T. Schafer, V. Mezentsev, K. H. Spatschek and S. K. Turitsyn; The dispersion-managed

soliton as a ground states of a macroscopic nonlinear quantum oscillator, R. Soc. Lond.

Proc. Ser. A, Math. Phys. Eng. Sci. 457(2001) 273-282.
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E-mail address: panos@mym.iimas.unam.mx

Mauricio Sepúlveda
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