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PULLBACK ATTRACTORS FOR NON-AUTONOMOUS
PARABOLIC EQUATIONS INVOLVING GRUSHIN OPERATORS

CUNG THE ANH

Abstract. Using the asymptotic a priori estimate method, we prove the exis-

tence of pullback attractors for a non-autonomous semilinear degenerate par-

abolic equation involving the Grushin operator in a bounded domain. We as-
sume a polynomial type growth on the nonlinearity, and an exponential growth

on the external force. The obtained results extend some existing results for

non-autonomous reaction-diffusion equations.

1. Introduction

The understanding of the asymptotic behavior of dynamical systems is one of the
most important problems of modern mathematical physics. One way to attack the
problem for dissipative dynamical systems is to analyze the existence and structure
of its global attractor, which in the autonomous case, is an invariant compact set
which attracts all the trajectories of the system, uniformly on bounded sets. This
set has, in general, a very complicated geometry which reflects the complexity of
the long-time behavior of the system (see e.g. [4, 17] and references therein).

However, non-autonomous equations are also of great importance and interest as
they appear in many applications in the natural sciences. On some occasions, some
phenomena are modelled by nonlinear evolutionary equations which do not take into
account all the relevant information of the real systems. Instead some neglected
quantities can be modelled as an external force which in general becomes time-
dependent (sometimes periodic, quasiperiodic or almost periodic due to seasonal
regimes).

The long-time behavior of solutions of such equations have been studied ex-
tensively in the last years. The first attempt was to extend the notion of global
attractor to the non-autonomous case which led to the concept of the so-called
uniform attractor (see [4]). It is remarkable that the conditions ensuring the ex-
istence of the uniform attractor parallel those for autonomous case. However, one
disadvantage of the uniform attractor is that it need not to be ”invariant” unlike
the global attractor for autonomous systems. Moreover, it is well-known that the
trajectories may be unbounded for many non-autonomous systems when time tends
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to infinity and there does not exist the uniform attractor for these systems. In or-
der to overcome this drawback, a new concept, called pulback attractor, has been
introduced for non-autonomous case. The theory of pullback attractors has been
developed for both the non-autonomous and random dynamical systems and has
shown to be very useful in the understanding of the dynamics of non-autonomous
dynamical systems (see [3] and references therein). In the recent years, the exis-
tence of pullback attractors has been proved for some partial differential equations
(see, for instance, [3, 9, 10, 16, 19, 21]). However, to the best of our knowledge, lit-
tle seems to be known for the asymptotic behavior of solutions of non-autonomous
degenerate equations.

One of the class of degenerate equations that has been studied widely in recent
years is the class of equations involving an operator of Grushin type

Gsu = ∆x1u + |x1|2s∆x2u, (x1, x2) ∈ Ω ⊂ RN1 × RN2 , s ≥ 0.

This operator was first introduced in [7]. Noting that G0 = ∆ and Gs, when s > 0,
is not elliptic in domains in RN1 ×RN2 intersecting with the hyperplane {x1 = 0}.
The existence and nonexistence results for the elliptic equation

−Gsu + f(u) = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

were proved in [18]. Furthermore, the semilinear elliptic systems with the Grushin
type operator, which are in the Hamilton form or in the potential form, were also
studied in [5, 6].

In this paper we study the following non-autonomous semilinear degenerate par-
abolic equation in a bounded domain Ω ⊂ RN1 × RN2 (N1, N2 ≥ 1) with smooth
boundary ∂Ω,

∂u

∂t
−Gsu + f(u) = g(t), x ∈ Ω, t > τ,

u|t=τ = uτ (x), x ∈ Ω,

u|∂Ω = 0,

(1.1)

where uτ ∈ L2(Ω) is given, f : R → R is a C1 function satisfying

C1|u|p − k1 ≤ f(u)u ≤ C2|u|p + k2, p ≥ 2, (1.2)

f ′(u) ≥ −`, for all u ∈ R, (1.3)

and the external force g satisfies

g ∈ L2
loc(R;L2(Ω)),

∫ 0

−∞
eλ1s|g(s)|22ds < ∞,

∫ 0

−∞

∫ s

−∞
eλ1r|g(r)|22 dr ds < ∞,

(1.4)

g′ ∈ L2
loc(R;L2(Ω)),

∫ 0

−∞
eλ1s|g′(s)|22ds < ∞, (1.5)

where C1, C2, k1, k2, ` are positive constants, λ1 is the first eigenvalue of the operator
−Gs in Ω with the homogeneous Dirichlet boundary condition.

The nonlinearity f is assumed to satisfy the polynomial type growth and a
standard dissipative condition. A typical example of a function satisfying conditions
(1.2)-(1.3) is

f(u) ∼ u|u|p−2, p ≥ 2 ( for |u| large).
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The conditions in (1.4) hold if g ∈ L2
loc(R;L2(Ω)) and there exist γ ∈ (0, λ1), τ ∈ R

(w.l.o.g. τ < 0) and Mτ > 0 such that |g(t)|22 ≤ Mτe−γt for all t ≤ τ .
The existence and long-time behavior of solutions to problems of type (1.1)

in the autonomous case, that is the case of g independent of time t, has been
studied in [1, 2]. In this paper we continue studying the long-time behavior of
solutions to problem (1.1) by allowing the external force g to depend on time t.
The natural energy space for problem (1.1) involves the space S1

0(Ω) (see Section 2
for its definition). The main aim of this paper is to prove the following result.

Theorem 1.1. Assume that f and g satisfy conditions (1.2)-(1.5). Then problem
(1.1) generates a process U(t, τ) in L2(Ω), which possesses a pullback D-attractor
in S1

0(Ω) ∩ Lp(Ω).

Let us describe the methods used in the paper. First, we use the compactness
method [11] to prove the global existence of a weak solution and use a priori esti-
mates to show the existence of a family of pullback D-absorbing sets B̂ = {B(t) :
t ∈ R} in S1

0(Ω) ∩ Lp(Ω)) for the process. By the compactness of the embed-
ding S1

0(Ω) ↪→ L2(Ω), the process is pullback D-asymptotically compact in L2(Ω).
This immediately implies the existence of a pullback D-attractor in L2(Ω). When
proving the existence of pullback D-attractors in Lp(Ω) and in S1

0(Ω) ∩ Lp(Ω), to
overcome the difficulty since lack of embbeding results, we use the asymptotic a
priori estimate method initiated in [13] for autonomous equations and developed
in [12] for non-autonomous equations. It is noticed that, to prove the existence of
pullback attractors in L2(Ω) and in Lp(Ω), we need only assume the external force
g satisfies condition (1.4), while to prove the existence of a pullback attractor in
S1

0(Ω) ∩ Lp(Ω) we need the additional assumption (1.5). Thus, in particular, our
results improve the recent results in [16, 9, 10] for the non-autonomous Laplacian
equations in bounded domains.

The content of the paper is as follows. In Section 2, for the convenience of
the reader, we recall some concepts and results on function spaces and pullback
attractors which we will use. Section 3 is devoted to the proof of main results.
First, the global existence and uniqueness of a weak solution to problem (1.1) are
proved by using the compactness method. Then we prove the existence of pullback
attractors in various spaces by using the asymptotic a priori estimate method.

2. Preliminaries

Function space and operator. The natural energy space for problem (1.1) in-
volves the space S1

0(Ω), defined as the closure of C1
0 (Ω̄) with respect to the norm

‖u‖ :=
( ∫

Ω

(|∇x1u|2 + |x1|2s|∇x2u|2)dx
)1/2

.

The space S1
0(Ω) is a Hilbert space with respect to the scalar product

((u, v)) :=
∫

Ω

(∇x1u∇x1v + |x1|2s∇x2u∇x2v)dx.

The following lemma comes from [18].

Lemma 2.1. Assume that Ω is a bounded domain in RN1 × RN2 (N1, N2 ≥ 1).
Then the following embeddings hold:

(i) S1
0(Ω) ↪→ L2∗s (Ω) continuously,
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(ii) S1
0(Ω) ↪→ Lp(Ω) compactly if p ∈ [1, 2∗s), where 2∗s = 2N(s)

N(s)−2 , N(s) = N1 +
(s + 1)N2.

For the rest of this article, for the sake of brevity, we denote by | · |2, (·, ·), ‖ · ‖,
((·, ·)) the norms and scalar products in L2(Ω) and S1

0(Ω) respectively, and by | · |p
the norm in Lp(Ω).

It is known (see [2]) that there exists a complete orthonormal system of eigen-
vectors {ej} corresponding to the eigenvalues {λj} such that

(ej , ek) = δjk, −Gsej = λjej , j, k = 1, 2, . . . ,

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . , λj → +∞ as j →∞.

Noting that

λ1 = inf
{‖u‖2
|u|22

: u ∈ S1
0(Ω), u 6= 0

}
,

we have
‖u‖2 ≥ λ1|u|22, for all u ∈ S1

0(Ω). (2.1)

Pullback D-attractors. Let X be a metric space with metric d. Denote by B(X)
the set of all bounded subsets of X. For A,B ⊂ X, the Hausdorff semi-distance
between A and B is defined by

dist(A,B) = sup
x∈A

inf
y∈B

d(x, y).

Let {U(t, τ) : t ≥ τ, τ ∈ R} be a process in X; i.e., U(t, τ) : X → X such that
U(τ, τ) = Id and U(t, s)U(s, τ) = U(t, τ) for all t ≥ s ≥ τ, τ ∈ R. The process
{U(t, τ)} is said to be norm-to-weak continuous if U(t, τ)xn ⇀ U(t, τ)x, as xn → x
in X, for all t ≥ τ, τ ∈ R. The following result is useful for verifying that a process
is norm-to-weak continuous.

Proposition 2.2. [22] Let X, Y be two Banach spaces, X∗, Y ∗ be respectively their
dual spaces. Assume that X is dense in Y , the injection i : X → Y is continuous
and its adjoint i∗ : Y ∗ → X∗ is dense, and {U(t, τ)} is a continuous or weak
continuous process on Y . Then {U(t, τ)} is norm-to-weak continuous on X iff for
t ≥ τ , τ ∈ R, U(t, τ) maps a compact set of X to be a bounded set of X.

Suppose that D is a nonempty class of parameterised sets D̂ = {D(t) : t ∈ R} ⊂
B(X).

Definition 2.3. The process {U(t, τ)} is said to be pullback D-asymptotically
compact if for any t ∈ R, any D̂ ∈ D, and any sequence {τn}n with τn ≤ t for all n,
and τn → −∞, any sequence xn ∈ D(τn), the sequence {U(t, τn)xn} is relatively
compact in X.

Definition 2.4. A process {U(t, τ)} is called pullback ω-D-limit compact if for
any ε > 0, any t ∈ R, and D̂ ∈ D, there exists a τ0 = τ0(D̂, ε, t) ≤ t such that

α
(
∪τ≤τ0 U(t, τ)D(τ)

)
≤ ε,

where α is the Kuratowski measure of noncompactness of B ∈ B(X),

α(B) = inf{δ > 0 | B has a finite open cover of sets of diameter ≤ δ}.

Lemma 2.5 ([9]). A process {U(t, τ)} is pullback D-asymptotically compact if and
only if it is ω-D-limit compact.
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Definition 2.6. A family of bounded sets B̂ ∈ D is called pullback D-absorbing for
the process {U(t, τ)} if for any t ∈ R and any D̂ ∈ D, there exists τ0 = τ0(D̂, t) ≤ t
such that

∪τ≤τ0U(t, τ)D(τ) ⊂ B(t).

Definition 2.7. A family Â = {A(t) : t ∈ R} ⊂ B(X) is said to be a pullback
D-attractor for {U(t, τ)} if

(1) A(t) is compact for all t ∈ R;
(2) Â is invariant; i.e., U(t, τ)A(τ) = A(t), for all t ≥ τ ;
(3) Â is pullback D-attracting; i.e.,

lim
τ→−∞

dist(U(t, τ)D(τ), A(t)) = 0,

for all D̂ ∈ D and all t ∈ R;
(4) If {C(t) : t ∈ R} is another family of closed attracting sets then A(t) ⊂ C(t),

for all t ∈ R.

Theorem 2.8. [9] Let {U(t, τ)} be a norm-to-weak continuous process such that
{U(t, τ)} is pullback D-asymptotically compact. If there exists a family of pullback
D-absorbing sets B̂ = {B(t) : t ∈ R} ∈ D, then {U(t, τ)} has a unique pullback
D-attractor Â = {A(t) : t ∈ R} and

A(t) = ∩s≤t∪τ≤sU(t, τ)B(τ).

3. Proof of the main result

Existence of global solutions. Putting

V = L2(τ, T ;S1
0(Ω)) ∩ Lp(τ, T ;Lp(Ω)),

V ∗ = L2(τ, T ;S−1(Ω)) + Lp′(τ, T ;Lp′(Ω)),

where p′ is the conjugate of p.

Definition 3.1. A function u is called a weak solution of (1.1) on (τ, T ) iff

u ∈ V,
∂u

∂t
∈ V ∗,

u|t=τ = uτ a.e. in Ω,

and∫ T

τ

∫
Ω

(∂u

∂t
ϕ +∇x1u∇x1ϕ + |x1|2s∇x2u∇x2ϕ + f(u)ϕ

)
dx dt =

∫ T

τ

∫
Ω

gϕ dx dt

for all test functions ϕ ∈ V .

The following proposition makes the initial condition in problem (1.1) meaning-
ful. Its proof is exactly the same as the proof of [2, Lemma 2.3].

Proposition 3.2. If u ∈ V and ∂u
∂t ∈ V ∗, then u ∈ C([τ, T ];L2(Ω)).

Theorem 3.3. Under assumptions (1.2)-(1.4), for any τ ∈ R, uτ ∈ L2(Ω) given,
problem (1.1) has a unique weak solution u defined on (τ,∞). Moreover, the fol-
lowing inequality holds:

|u(t)|22 ≤ e−λ1(t−τ)|uτ |22 +
2k1

λ1
|Ω|+ e−λ1t

λ1

∫ t

−∞
eλ1s|g(s)|22ds, ∀t ≥ τ. (3.1)
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Proof. The existence and uniqueness of a weak solution are proved similarly to
the autonomous case analyzed in [2], so it is omitted here. We now prove (3.1).
Multiplying (1.1) by u and integrating over Ω, we have

1
2

d

dt
|u|22 + ‖u‖2 +

∫
Ω

f(u)udx =
∫

Ω

g(t)u dx.

Using (1.2) and the Cauchy inequality, we obtain

d

dt
|u|22 + 2‖u‖2 + 2C1|u|pp ≤ 2k1|Ω|+

1
λ1
|g(t)|22 + λ1|u|22. (3.2)

Noting that ‖u‖2 ≥ λ1|u|22, we have

d

dt
|u|22 + λ1|u|22 ≤ 2k1|Ω|+

1
λ1
|g(t)|22. (3.3)

Applying the Gronwall lemma, we get (3.1). Hence it follows that the solution u
can be extended to [τ,+∞). �

Thanks to Theorem 3.3, we can define the family of maps

U(t, τ) : L2(Ω) → S1
0(Ω) ∩ Lp(Ω),

where U(t, τ)uτ is the unique solution of (1.1) with the initial datum uτ at time
τ . Then U defines a continuous process on L2(Ω). Moreover, U also defines pro-
cesses on Lp(Ω) and on S1

0(Ω) ∩ Lp(Ω), which are norm-to-weak continuous since
Proposition 2.2 and Lemma 3.4 below.

Existence of a family of pullback D-absorbing sets. Let R be the set of all
function r : R → (0,+∞) such that limt→−∞ teλ1tr2(t) = 0 and denote by D the
class of all families D̂ = {D(t) : t ∈ R} ⊂ B(S1

0(Ω) ∩ Lp(Ω)) such that D(t) ⊂
B(r(t)) for some r(t) ∈ R, where B(r(t)) denotes the closed ball in S1

0(Ω) ∩ Lp(Ω)
with radius r(t).

Lemma 3.4. Assume that f and g satisfy conditions (1.2)-(1.4), and u is the
weak solution of (1.1). Then there exists a constant c > 0 such that the following
inequality holds for t > τ :

|u|22 + ‖u‖2 + |u|pp ≤ c
((

1 + (t− τ) +
1

t− τ

)
e−λ1(t−τ)|uτ |22 +

(
1 +

1
t− τ

)
+

(
1 +

1
t− τ

)
e−λ1t

∫ t

−∞
eλ1s|g(s)|22ds

+
(
1 +

1
t− τ

)
e−λ1t

∫ t

−∞

∫ s

−∞
eλ1r|g(r)|22 dr ds

)
.

(3.4)

This implies that there exists a family of pullback D-absorbing sets in S1
0(Ω)∩Lp(Ω)

for the process {U(t, τ)}.

Proof. Multiplying (3.1) by eλ1t and integrating from τ to t, we get∫ t

τ

eλ1s|u|22ds ≤ (t−τ)eλ1τ |uτ |22+
2k1

λ2
1

|Ω|eλ1t+
1
λ1

∫ t

−∞

∫ s

−∞
eλ1r|g(r)|2 dr ds. (3.5)

Using (3.2) and the fact that ‖u‖2 ≥ λ1|u|22, we have

d

dtt
|u|22 + ‖u‖2 + 2C1|u|pp ≤ 2k1|Ω|+

1
λ1
|g(t)|22, (3.6)
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thus

d

dt
(eλ1t|u|22) + eλ1t(‖u‖2 + 2C1|u|pp) ≤ λ1e

λ1t|u|22 + 2k1|Ω|eλ1t +
eλ1t

λ1
|g(t)|22. (3.7)

Integrating from τ to t and using (3.5), we have∫ t

τ

eλ1s(‖u‖2 + 2C1|u|pp)ds

≤ (1 + λ1(t− τ))eλ1τ |uτ |22 +
4k1

λ1
|Ω|eλ1t +

1
λ1

∫ t

−∞
eλ1s|g(s)|22ds

+
∫ t

−∞

∫ s

−∞
eλ1r|g(r)|2 dr ds.

(3.8)

Combining (3.5) and (3.8), we obtain∫ t

τ

eλ1s(‖u‖2 + 2C1|u|pp + |u|22)ds

≤ (1 + (λ1 + 1)(t− τ))eλ1τ |uτ |22

+
2k1(2λ1 + 1)

λ2
1

|Ω|eλ1t +
1
λ1

∫ t

−∞
eλ1s|g(s)|22ds

+
(
1 +

1
λ1

) ∫ t

−∞

∫ s

−∞
eλ1r|g(r)|22 dr ds.

(3.9)

From (1.2) we deduce that there exist constants C̃1, C̃2, k̃1, k̃2 such that

C̃1|s|p − k̃1 ≤ F (s) ≤ C̃1|s|p + k̃2, (3.10)

where F (s) =
∫ s

0
f(τ)dτ . Combining (3.6) and (3.10), we get

d

dt
|u|22 + ‖u‖2 + C5

∫
Ω

F (u)dx ≤ 1
λ1
|g(t)|22 + C6. (3.11)

We now give some formal calculations, a rigorous proof is done by using Galerkin
approximations and Lemma 11.2 in [15]. Mutiplying (1.1) by ut and integrating
over Ω, we have

|ut|22 +
1
2

d

dt

(
‖u‖2 + 2

∫
Ω

F (u)dx
)

=
∫

Ω

g(t)utdx ≤ 1
2
|g(t)|22 +

1
2
|ut|22,

thus
d

dt

(
‖u‖2 + 2

∫
Ω

F (u)dx
)
≤ |g(t)|22. (3.12)

Using (3.11), (3.12) and (2.1), we have (without loss of generality C8 < λ1)

d

dt
G(u) + C8G(u) ≤ C9|g(t)|22 + C7,

where G(u) = |u|22 + ‖u‖2 + 2
∫
Ω

F (u)dx, that implies

d

dt
((t− τ)eλ1tG(u)) ≤ (1 + (λ1 −C8)(t− τ))G(u)eλ1t + (C7 + C9|g(t)|22)(t− τ)eλ1t.
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Integrating from τ to t, we get

(t− τ)G(u)

≤ (1 + C11(t− τ))
∫ t

τ

G(u)eλ1sds + C10(t− τ)eλ1t + C9(t− τ)
∫ t

τ

eλ1s|g(s)|22ds.

Using (3.9) we get the desired inequality (3.4) for a suitable constant c > 0.
Let

r0(t) = 2c
(
1 + e−λ1t

∫ t

−∞
eλ1s|g(s)|22ds + e−λ1t

∫ t

−∞

∫ s

−∞
eλ1r|g(r)|22 dr ds

)
,

and B0(r0(t)) be the closed ball in S1
0(Ω) ∩ Lp(Ω) centered at 0 with radius r0(t).

Obviously for any D̂ ∈ D and any t ∈ R, by (3.4) there exists τ0 = τ0(D̂, t) ≤ t
such that the solution u with initial datum uτ ∈ D(τ) at time τ satisfies

|u|22 + ‖u‖2 + |u|pp ≤ r0(t) for all τ ≤ τ0;

i.e., B̂ = {B0(r0(t)) : t ∈ R} is a family of bounded pullback D-absorbing sets in
S1

0(Ω) ∩ Lp(Ω). �

From the above lemma we deduce that the process {U(t, τ)} maps a compact set
of S1

0(Ω)∩Lp(Ω) to be a bounded set of S1
0(Ω)∩Lp(Ω), and thus by Proposition 2.2,

the process {U(t, τ)} is norm-to-weak continuous in S1
0(Ω)∩Lp(Ω). Since {U(t, τ)}

has a family of pullback D-absorbing sets in S1
0(Ω) ∩ Lp(Ω), in order to prove the

existence of pullback D-attractors, we only need to check that {U(t, τ)} is pullback
D-asymptotically compact.

Existence of pullback D-attractors. Because S1
0(Ω) ↪→ L2(Ω) compactly, we

immediately get the following result.

Theorem 3.5. Assume that f and g satisfy (1.2)-(1.4). Then the process corre-
sponding to (1.1) has a pullback D-attractor in L2(Ω).

To prove that the process {U(t, τ)} is pullback D-asymptotically compact in
Lp(Ω), we need the following lemma.

Lemma 3.6. Let {U(t, τ)} be a norm-to-weak continuous process in L2(Ω) and
Lp(Ω), and {U(t, τ)} satisfy the following two conditions:

(i) {U(t, τ)} is pullback D-asymptotically compact in L2(Ω);
(ii) for any ε > 0, B̂ ∈ D, there exist constants M(ε, B̂) and τ0(ε, B̂) ≤ t such

that:( ∫
Ω(|U(t,τ)uτ |≥M)

|U(t, τ)uτ |p
) 1

p

< ε, for any uτ ∈ B(τ), and τ ≤ τ0.

Then {U(t, τ)} is pullback D-asymptotically compact in Lp(Ω).

Proof. For any fixed ε > 0, and B̂ ∈ D, it follows from condition (i) and Lemma
2.5 that there exists τ1 = τ1(B̂, ε) ≤ τ0 such that

α(∪τ≤τ1U(t, τ)B(τ)) ≤ (3M)
2−p
2 (

ε

2
)

p
2 in L2(Ω);
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i.e., ∪τ≤τ1U(t, τ)B(τ) has a finite (3M)
2−p
2 ( ε

2 )
p
2 -net in L2(Ω). From the above, and

by (ii), using [22, Lemma 5.3], ∪τ≤τ1U(t, τ)B(τ) has a finite ε-net in Lp(Ω). By
the definition of the measure of noncompactness, we obtain

α
(
∪τ≤τ1 U(t, τ)B(τ)

)
≤ ε in Lp(Ω);

i.e., {U(t, τ)} is pullback ω-D-limit compact in Lp(Ω). Hence {U(t, τ)} is pullback
D-asymptotically compact in Lp(Ω) thanks to Lemma 2.5 again. �

Theorem 3.7. Assume that f and g satisfy conditions (1.2)-(1.4). Then the pro-
cess corresponding to problem (1.1) has a pullback D-attractor in Lp(Ω).

Proof. It is sufficient to show that the process {U(t, τ)} satisfies the condition (ii)
in Lemma 3.6. We will give some formal calculations, a rigorous proof is done by
use of Galerkin approximations and Lemma 11.2 in [15].

Take M large enough such that there exists a constant C ′
1 in (0, C1) such that

C ′
1|u|p−1 ≤ f(u) in

Ω1 = Ω(u(t) ≥ M) = {x ∈ Ω : u(x, t) ≥ M},

and denote

(u−M)+ =

{
u−M, u ≥ M,

0, u < M.

In Ω1 we see that

g(t)((u−M)+)p−1 ≤ C ′
1

2
((u−M)+)2p−2 +

1
2C ′

1

|g(t)|2

≤ C ′
1

2
((u−M)+)p−1|u|p−1 +

1
2C ′

1

|g(t)|2,
(3.13)

and

f(u)((u−M)+)p−1 ≥ C ′
1|u|p−1((u−M)+)p−1

≥ C ′
1

2
((u−M)+)p−1|u|p−1 +

C ′
1M

p−2

2
((u−M)+)p.

(3.14)

Multiplying (1.1) by |(u−M)+|p−1 and using (3.13), (3.14), we deduce that

1
p

d

dt
|(u−M)+|pp + (p− 1)

∫
Ω1

(
|∇x1(u−M)+|2

+ |x1|2s|∇x2(u−M)+|2
)
|(u−M)+|p−2dx + C ′

1M
p−2

∫
Ω1

|(u−M)+|pdx

≤
∫

Ω1

1
C ′

1

|g(t)|2dx.

Therefore,
d

dt
|(u−M)+|pp + CMp−2|(u−M)+|pp ≤ C|g(t)|22,

which implies

d

dt
(t− τ)eCMp−2t|(u−M)+|pp ≤ eCMp−2t|(u−M)+|pp + C(t− τ)eCMp−2t|g(t)|22.
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Integrating the above inequality, from τ to t, we get

(t− τ)eCMp−2t|(u−M)+|pp

≤
∫ t

τ

eCMp−2t|(u−M)+|pp + C(t− τ)
∫ t

τ

eCMp−2t|g(t)|22ds

≤ e(CMp−2−λ1)t

∫ t

τ

eλ1s|u|ppds +
C(t− τ)e(CMp−2−γ)t

CMp−2 − γ
.

Then

|(u−M)+|pp ≤
1

t− τ
e−λ1t

∫ t

τ

eλ1s|u|ppds +
Ce−γt

CMp−2 − γ
. (3.15)

By (3.15) and (3.9), we obtain

|(u−M)+|pp ≤ C
((

1 +
1

t− τ

)
e−λ1(t−τ)|uτ |22 +

1
t− τ

+
e−λ1t

t− τ

∫ t

−∞
eλ1s|g(s)|22ds

+
e−λ1t

t− τ

∫ t

−∞

∫ s

−∞
eλ1r|g(r)|22 dr ds

)
+

Ce−γt

CMp−2 − γ
.

Hence, for any ε > 0, there exist M1 > 0 and τ1 < t such that for any τ < τ1 and
any M ≥ M1, we have ∫

Ω(u(t)≥M)

|(u−M)+|pdx ≤ ε. (3.16)

Repeating the same step above, just taking (u + M)− instead of (u − M)+, we
deduce that there exist M2 > 0 and τ2 < t such that for any τ < τ2 and any
M ≥ M2, ∫

Ω(u(t)≤−M)

|(u + M)−|pdx ≤ ε, (3.17)

where

(u + M)− =

{
u + M, u ≤ −M,

0, u ≥ −M.

Let M0 = max{M1,M2} and τ0 = min{τ1, τ2}, we obtain∫
Ω(|u|≥M)

(|u| −M)pdx ≤ ε for τ ≤ τ0 and M ≥ M0.

Using (3.16) and (3.17), we have∫
Ω(|u|≥2M)

|u|pdx =
∫

Ω(|u|≥2M)

((|u| −M) + M)pdx

≤ 2p−1
( ∫

Ω(|u|≥2M)

(|u| −M)pdx +
∫

Ω(|u|≥2M)

Mpdx
)

≤ 2p−1
( ∫

Ω(|u|≥M)

(|u| −M)pdx +
∫

Ω(|u|≥M)

(|u| −M)pdx
)

≤ 2pε.

(3.18)
This completes the proof. �

To prove the existence of a pullbach D-attractor in S1
0(Ω) ∩ Lp(Ω), we need the

following lemma.
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Lemma 3.8. Suppose that f and g satisfy (1.2)-(1.5). Then for any t ∈ R and
any bounded subset B ⊂ L2(Ω), there exists a positive constant T = T (B, t) ≤ t
such that

|ut(t)|22 ≤ C
(
1 + e−λ1t

∫ t

−∞
eλ1s(|g(s)|22 + |g′(s)|22)ds

)
, (3.19)

for all τ ≤ T (B, t) and all uτ ∈ B, where C > 0 is independent of t and B.

Proof. We give some formal calculations, a rigorous proof is done by use of Galerkin
approximations. By differentiating (1.1) in time and setting v = ut, we get

vt −Gsv + f ′(u)v = g′(r).

Multiplying the above equality by eλ1rv, we get
1
2

d

dr
(eλ1r|v|22) + eλ1r‖v‖2 + eλ1r(f ′(u)v, v) =

λ1

2
eλ1r|v|22 +

1
2
eλ1r(g′(r), v).

Using (1.3) and the Cauchy inequality, we obtain that

d

dr
(eλ1r|v|22) ≤ C

(
eλ1r|g′(r)|22 + eλ1r|v|22

)
. (3.20)

We set τ ≤ r ≤ t− 1 and F (s) =
∫ s

0
f(ξ)dξ, then by (1.2), we deduce that

C̃1‖u‖p
Lp(Ω) − k̃1|Ω| ≤

∫
Ω

F (u) ≤ C̃2‖u‖p
Lp(Ω) + k̃2|Ω|. (3.21)

Multiplying the first equation by u, then using (1.3) and the Cauchy inequality
(1.1), we get

d

dr
(eλ1r|u|22) = λ1e

λ1r|u|22 + eλ1r d

dr
|u|22

≤ λ1e
λ1r|u|22 − eλ1r‖u‖2 − 2C1e

λ1r|u|pp +
1
λ1

eλ1s|g(r)|22 + eλ1rk1|Ω|

≤ −2C1e
λ1r|u|pp +

1
λ1

eλ1r|g(r)|22 + eλ1rk1|Ω|,
(3.22)

where we have used the fact that ‖u‖2 ≥ λ1|u|22. By integrating over the interval
[τ, t], we obtain

eλ1t|u|22 ≤ eλ1τ |uτ |2 + C
( ∫ t

−∞
eλ1s|g(s)|2ds + eλ1t

)
. (3.23)

By (1.3) and (3.21), we infer from (3.22) that

d

ds
(eλ1s|u|22) + C

(
eλ1s‖u‖2 + 2eλ1s

∫
Ω

F (u)dx
)
≤ C(eλ1s|g(s)|22 + eλ1s). (3.24)

Integrating this inequality from r to r + 1 and using (3.23), we obtain∫ r+1

r

(
eλ1s‖u‖2 + 2eλ1s

∫
Ω

F (u)dx

)
ds

≤ C
(
eλ1r|u(r)|22 +

∫ r+1

r

(eλ1s|g(s)|2 + eλ1s)ds
)

≤ C
(
eλ1τ |uτ |22 +

∫ t

−∞
eλ1s|g(s)|2ds + eλ1t

)
< ∞, ∀r ∈ [τ, t− 1].

(3.25)
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Now multiplying the first equation in (1.1) by eλ1rut = eλ1rv, we have

eλ1r|v|22 +
d

dr

(
eλ1r‖u‖2 + 2eλ1r

∫
Ω

F (u)dx
)

≤ λ1

(
eλ1r‖u‖2 + 2eλ1r

∫
Ω

F (u)dx
)

+ eλ1r|g(r)|22.
(3.26)

By (3.25), (3.26), and the uniform Gronwall inequality [17, p. 91], we obtain

eλ1r‖u(r)‖2 + 2eλ1r

∫
Ω

F (u)dx ≤ C
(
eλ1τ |uτ |22 +

∫ t

−∞
eλ1s|g(s)|22ds + eλ1t

)
. (3.27)

On the other hand, integrating (3.26) from r to r + 1, by (3.22), (3.25) and (3.27),
we have ∫ r+1

r

eλ1s|v|22ds ≤ C
(
eλ1τ |uτ |22 +

∫ t

−∞
eλ1s(|g(s)|22 + eλ1t

)
.

Then, by (3.20), using the uniform Gronwall lemma once again, we get

eλ1t|v|22 ≤ C
(
eλ1τ |uτ |22 +

∫ t

−∞
eλ1s(|g(s)|22 + |g′(s)|22)ds + eλ1t

)
;

that is,

|v(t)|22 ≤ C
(
e−λ1(t−τ)|uτ |22 + e−λ1t

∫ t

−∞
eλ1s(|g(s)|22 + |g′(s)|22)ds + 1

)
.

This completes the proof. �

We are now in a position to complete the proof of the main theorem.

Proof of Theorem 1.1. By Lemma 3.4, {U(t, τ)} has a family of bounded pullback
D-absorbing sets in S1

0(Ω) ∩ Lp(Ω). It remains to show that {U(t, τ)} is pullback
D-asymptotically compact in S1

0(Ω) ∩ Lp(Ω), i.e., for any t ∈ R, any B̂ ∈ D, and
any sequence τn → −∞, any sequence uτn

∈ B(τn), the sequence {U(t, τn)uτn
} is

precompact in S1
0(Ω) ∩ Lp(Ω). Thanks to Theorem 3.7, we need only to show that

the sequence {U(t, τn)uτn} is precompact in S1
0(Ω).

Let un(t) = U(t, τn)uτn . By Theorem 3.5, we can assume that {un(t)} is a
Cauchy sequence in L2(Ω). We have

‖un(t)− um(t)‖2

= −〈Gsun(t)−Gsum(t), un(t)− um(t)〉

= −〈dun

dt
(t)− dum

dt
(t), un(t)− um(t)〉 − 〈f(un(t))− f(um(t)), un(t)− um(t)〉

≤ | d
dt

un(t)− d

dt
um(t)|22|un(t)− um(t)|22 + `|un(t)− um(t)|22,

where we have used condition (1.3). Because {un(t)} is a Cauchy sequence in L2(Ω)
and by Lemma 3.6, one gets

‖un(t)− um(t)‖ → 0, as m,n →∞.

The proof is complete. �
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Remark 3.9. The pullback attractor in Theorems 3.5, 3.7 and 1.1 is the same
object. Because of the tempered condition in the definition of D, as a corollary of
the results in the paper [14], one may establish the existence of a global pullback
attractor for a different universe, that of fixed bounded set of L2(Ω); this attractor
works in the norms L2(Ω), Lp(Ω) and S1

0(Ω)∩Lp(Ω) (unique, the same in the three
frame works) and is a subset of the attractor obtained in Theorems 1.1, 3.5 and
3.7.
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