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EXISTENCE OF NONTRIVIAL SOLUTIONS FOR SINGULAR
QUASILINEAR EQUATIONS WITH SIGN CHANGING

NONLINEARITY

JAGMOHAN TYAGI

Abstract. By an application of Bonanno’s three critical point theorem, we
establish the existence of a nontrivial solution to the problem

−∆pu = µ
g(x)|u|p−2u

|x|p
+ λa(x)f(u) in Ω,

u = 0 on ∂Ω,

under some restrictions on g, a and f for certain positive values of µ and λ.

1. Introduction

Let us set up a problem which is used to give a brief introduction about previous
research

−∆pu = µ
g(x)|u|p−2u

|x|p
+ a(x)f1(λ, u) in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω be a bounded domain in RN with smooth boundary ∂Ω, 0 ∈ Ω and
f1 : (0,∞) × R → R is a continuous function. Suppose there exists M > 0 such
that −M ≤ g(x) ≤ 1, a ∈ L∞(Ω) and 0 ≤ µ < (N−p

p )p. Let λ be a positive
parameter.

In the last few years, problem (1.1) with µ = 0 and a(x) ≡ 1 has been extensively
investigated for the case p = 2, (see, [8, 9, 16] and the references cited therein),
where f1(λ, u) = λf(u). In case p = 2, there are many publications dealing with
the existence of solution to the problem (1.1) with g = 1 and a = 1. For convenience
of the reader, we give a brief summary of these results. Ferrero and Gazzola [6]
considered the problem (1.1), where f1(λ, u) = |u|2∗−2u+λu. They established the
existence of nontrivial solution by variational method for certain values of µ and λ.
Ruiz and Willem [15] considered the aforesaid problem, where f1(λ, u) = |u|2∗−1u+
λu and established the existence of positive solutions under various assumptions on
the domain Ω. Chen [2, 3] also studied the same problem and obtained multiple
solutions by analyzing the exact growth order of the positive solutions near origin,
where f1(λ, u) = u2∗−1

+ + λuq
+, 0 < q < 1, λ > 0, 0 ≤ µ < (N − 2)2/4. Recently,
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Kristály and Varga [10] obtained the existence of three solutions to the problem
(1.1) with g = 1 and a = 1, by an application of Bonanno’s three critical point
theorem [1], where f1(λ, u) = λf(u).

For a good amount of work concerning quasilinear equations with singularities,
we refer the book of Drabek et al. [4] and for existence and multiplicity results
concerning singular p-Laplacian, we refer the reader to [5, 13, 17] and reference
cited therein. Montefusco [13] considered the problem (1.1) with g = 1 and a = 1,
where f1(λ, u) = |u|q−2u, 1 < p < q < p∗, 1 < p < N . He established the existence
of a nontrivial solution whenever µ ∈ (0, ( (N−p)

p )p) is fixed. Faraci and Livrea
[5] utilized Montefusco’s result and gave some bifurcation results for singular p-
Laplacian. By an application of Bonanno’s three critical point theorem, Yang et al.
[17] established the existence of three weak solutions to singular p–Laplacian type
equation, which has singularity in the principal part of the operator.

In this study, our main purpose inspired by [10], is to see that the conditions
introduced by [10] on f can be extended for singular p-Laplacian with sign-changing
nonlinearity also. It is worth noting that to establish the existence of solutions to
the problem (1.1) is of more interest due to the presence of singular potential as
well as sign changing nonlinearity. In this note, we establish the existence of two
solutions to the problem (1.1) by Bonanno’s theorem, where f1(λ, u) = λf(u).
More precisely, we give the existence of two solutions to the problem

−∆pu = µ
g(x)|u|p−2u

|x|p
+ λa(x)f(u) in Ω,

u = 0 on ∂Ω,

(1.2)

where f ∈ C(R, R) and satisfies the following hypotheses:

(H1) lims→0
f(s)
sp−1 = 0.

(H2) lim|s|→∞
f(s)
|s|p−1 = 0.

(H3) Let F (s) =
∫ s

0
f(t)dt, we assume sups∈R F (s) > 0.

We state now the theorem we will prove in Section 4.

Theorem 1.1. Let f ∈ C(R, R) which satisfies the hypotheses (H1)–(H3). Let there
exists M > 0 such that −M ≤ g(x) ≤ 1, a ∈ L∞(Ω). Then for every µ ∈ [0, (N−p

p )p)
there exist an open interval Λµ ⊂ (0,∞) and a real number ηµ > 0 such that for
every λ ∈ Λµ, the problem (1.2) has one non-trivial weak solution u ∈ W 1,p

0 (Ω)
such that ‖u‖W 1,p

0 (Ω) ≤ ηµ.

We remark that in proving the above theorem ideas from [10] are used. We
organize this paper as follows: Section 2 deals with the preliminaries. Section 3
deals with some lemmas which have been used in the main theorem. The main
result is proved in Section 4. In the last section, we construct some examples for
the illustration of main result.

2. preliminaries

Let Ω be a bounded domain in RN with a smooth boundary ∂Ω and 0 ∈ Ω. The
space W 1,p

0 (Ω) is endowed by the norm

‖u‖W 1,p
0

=
( ∫

Ω

|∇u|p
)1/p

.
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Let 1 < p < N , we recall classical Hardy’s inequality, which says that∫
Ω

|u(x)|p

|x|p
dx ≤ 1

CN,p

∫
Ω

|∇u|p, u ∈ W 1,p
0 (Ω), (2.1)

where CN,p = (N−p
p )p. For a detail about Hardy inequality and related problem,

we refer the reader to [7]. The Hardy inequality proves that embedding of W 1,p
0 (Ω)

in Lp(Ω, 1
|x|p ) is continuous but is not compact as for the Sobolev embeddding.

The Sobolev embedding constant of the compact embedding W 1,p
0 (Ω) 	 Lq(Ω), q ∈

[1, p∗), will be denoted by c(N, p) > 0; i.e.,‖u‖W 1,p
0

≥ c(N, p)‖u‖Lp , for every u ∈
W 1,p

0 . Let us define F (s) =
∫ s

0
f(t)dt. We introduce the energy functional Eµ,λ :

W 1,p
0 (Ω) → R associated with (1.2),

Eµ,λ = Φµ(u)− λJ(u), u ∈ W 1,p
0 (Ω),

where

Φµ(u) =
1
p

∫
Ω

|∇u|pdx− µ

p

∫
Ω

g(x)|u(x)|p

|x|p
dx, J(u) =

∫
Ω

a(x)F (u(x))dx.

It is easy to see that the critical points of Eµ,λ are exactly the weak solutions of
(1.2). Therefore, it is sufficient to give the existence of multiple critical points of
Eµ,λ : W 1,p

0 (Ω) → R for certain values of µ and λ. To establish the existence
of critical points of Eµ,λ, we use Bonanno’s three critical point theorem. Since
Bonanno’s result [1] is a special case of Ricceri’s three critical point theorem [14],
so for the reader’s convenience we give a brief sketch.

Ricceri [14] proved the following result.

Theorem 2.1. Let X be a separable and reflexive real Banach space, I ⊂ R an in-
terval, and g : X×I → R a continuous function satisfying the following conditions:

(i) for each x ∈ X, g(x, .) is continuous and concave;
(ii) for each λ ∈ I, g(., λ) is sequentially weakly lower semicontinuous and

Gâteaux differentiable and

lim
‖x‖→∞

g(x, λ) = +∞;

(iii) there exists a continuous concave function h : I → R such that

sup
λ∈I

inf
x∈X

(g(x, λ) + h(λ)) < inf
x∈X

sup
λ∈I

(g(x, λ) + h(λ)).

Then there exist an open interval Λ ⊂ I and a positive real number η, such that for
each λ ∈ Λ, the equation

g′x(x, λ) = 0
admits at least two solutions in X whose norms are less than η.

If, in addition, the function g is continuous in X × I, and for each λ ∈ I,
the function g(., λ) is C1 and satisfies the Palais-Smale condition, then the above
conclusion holds with “three solutions” instead of “two solutions”.

As a special case of the above theorem, Bonanno [1] gave the following

Theorem 2.2. Let X be a separable and reflexive real Banach space and Φ, J :
X → R be two continuously Gâteau differentiable functionals. Assume that there
exists x0 ∈ X such that Φ(x0) = 0 = J(x0) and Φ(x) ≥ 0 for every x ∈ X and
suppose there exist x1 ∈ X and r > 0 such that
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(i) r < Φ(x1);
(ii) supΦ(x)<r J(x) < r J(x1)

Φ(x1)
.

Further, put

ā =
hr

r J(x1)
Φ(x1)

− supΦ(x)<r J(x)
,

with h > 1, and assume that the functional Φ − λJ is sequentially weakly lower
semicontinuous, satisfies Palais-Smale condition and

(iii) lim‖x‖→+∞(Φ(x)− λJ(x)) = +∞ for every λ ∈ [0, ā].

Then there exist an open interval Λ ⊆ [0, ā] and a positive real number η such that
for each λ ∈ Λ, the equation

Φ′(x)− λJ ′(x) = 0

admits at least three solutions in X whose norms are less than η.

We remark that in view of Ricceri’s theorem [14], if we drop the Palais-Smale
condition and continuous Gâteau differentiability of the functional g(., λ) = Φ(.)−
λJ(.) from Theorems 2.1 and 2.2, we have the existence of two solutions. This fact
is carried out in Theorem 2.1.

3. Auxiliary lemmas

In this section, we sate some lemmas to be used in the proof of main theorem.

Lemma 3.1. For every µ ∈ [0, CN,p) and λ ∈ R, the functional Eµ,λ is coercive.

Proof. Let us fix µ ∈ [0, CN,p) and λ ∈ R be arbitrary. By (H2), for any given
λ ∈ R, there exists δ = δ(µ, λ) > 0 such that

|f(s)| <
(
1− µ

CN,p

) c(N, p)−p

(1 + ‖a‖L∞)
(1 + |λ|)−1|s|p−1,

whenever |s| > δ. This implies

|f(s)| <
(
1− µ

CN,p

) c(N, p)−p

(1 + ‖a‖L∞)
(1 + |λ|)−1|s|p−1 + max

|t|≤δ
|f(t)|,∀ s ∈ R.

An integration yields,

|F (s)| < 1
p

(
1− µ

CN,p

) c(N, p)−p

(1 + ‖a‖L∞)
(1 + |λ|)−1|s|p + max

|t|≤δ
|f(t)||s|,∀s ∈ R. (3.1)

Since we have

Eµ,λ(u) =
1
p

∫
Ω

|∇u|pdx− µ

p

∫
Ω

g(x)|u(x)|p

|x|p
dx− λ

∫
Ω

a(x)F (u(x))dx,
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so by Hardy inequality, for every u ∈ W 1,p
0 and using the fact that −M ≤ g(x) ≤ 1,

we have

Eµ,λ(u) ≥ 1
p

∫
Ω

|∇u|pdx− µ

p

∫
Ω

|u(x)|p

|x|p
|dx− λ

∫
Ω

a(x)F (u(x))dx

≥ 1
p

∫
Ω

|∇u|pdx− µ

CN,p p

∫
Ω

|∇u|pdx− λ

∫
Ω

a(x)F (u(x))dx

≥ 1
p

(
1− µ

CN,p

) ∫
Ω

|∇u|pdx− |λ|
∫

Ω

|a(x)‖F (u(x))|dx

≥ 1
p

(
1− µ

CN,p

) ∫
Ω

|∇u|pdx

− |λ|
(1 + |λ|)p

c(N, p)−p

∫
Ω

|u|pdx− |λ|c(N, 1)max
|t|≤δ

|f(t)‖|u‖W 1,p
0

≥ 1
p

(
1− µ

CN,p

)( 1
1 + |λ|

) ∫
Ω

|∇u|pdx− |λ|c(N, 1)max
|t|≤δ

|f(t)‖|u‖W 1,p
0

≥ 1
p

(
1− µ

CN,p

)( 1
1 + |λ|

)
‖u‖p

W 1,p
0
− |λ|c(N, 1) max

|t|≤δ
|f(t)‖|u‖W 1,p

0
,

(3.2)

where we have used (3.1). Now if ‖u‖W 1,p
0

→∞, one can conclude that Eµ,λ →∞
and hence Eµ,λ is coercive. �

Lemma 3.2. Assume that µ ∈ [0, CN,p], then Φµ(u) is a sequentially weakly lower
semicontinuous functional on W 1,p

0 (Ω).

Proof. Montefusco [13], proved the sequentially weakly lower semicontinuity of the
functional

Φ(u) =
1
p

∫
Ω

|∇u|pdx− µ

p

∫
Ω

|u(x)|p

|x|p
dx,

using the ideas from Lions [11, 12]. Since for −M ≤ g(x) ≤ 1, the proof of this
lemma is similar to the proof of [13, Theorem 3.2], so we omit the details. �

Lemma 3.3. For every µ ∈ [0, CN,p) and λ ∈ R, the functional Eµ,λ is sequentially
weakly lower semicontinuous functional on W 1,p

0 (Ω).

Proof. By Lemma 3.2, Φµ(u) is a sequentially weakly lower semicontinuous func-
tional on W 1,p

0 (Ω), for all µ ∈ [0, CN,p). By (H2), there exists C > 0 such that

|f(s)| ≤ C(1 + |s|p−1), s ∈ R. (3.3)

Now the sequentially weak continuity of J is obtained by a classical way. So, this
proves the lemma. �

Lemma 3.4. For every µ ∈ [0, CN,p),

lim
ξ→0+

sup{J(u) : Φµ(u) < ξ}
ξ

= 0.

Proof. We fix µ ∈ [0, CN,p). By (H1), for any given ε > 0 there exists a δ(ε) such
that

|f(s)| < ε

2
(
1− µ

CN,p

) c(N, p)−p

(1 + ‖a‖L∞)
|s|p−1, whenever |s| < δ. (3.4)
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We fix a γ1 ∈ (p, p∗) and combining (3.3) and (3.4) yields

|F (s)| ≤ ε

2p

(
1− µ

CN,p

) c(N, p)−p

(1 + ‖a‖L∞)
|s|p + C

(1 + δ)
(1 + ‖a‖L∞)

δ1−γ1 |s|γ1 , (3.5)

for all s ∈ R. For ξ > 0, we define the sets

Aξ = {u ∈ W 1,p
0 : Φµ(u) < ξ}; Bξ = {u ∈ W 1,p

0 :
(
1− µ

CN,p

)
‖u‖p

W 1,p
0

< ξ p}.

By an application of (2.1), one can observe that Aξ ⊆ Bξ. By (3.5),for every u ∈ Aξ

and hence u ∈ Bξ we have

J(u)

≤ ε

2p

(
1− µ

CN,p

)
c(N, p)−p

∫
Ω

|u|pdx + C(1 + δ)δ1−γ1

∫
Ω

|u(x)|γ1dx

≤ ε

2p

(
1− µ

CN,p

) ∫
Ω

|∇u|pdx + C(1 + δ)1−γ1c(N, γ1)γ1pγ1/pξγ1/p
(
1− µ

CN,p

)−γ1/p

≤ ε

2
ξ + C(1 + δ)1−γ1c(N, γ1)γ1pγ1/pξγ1/p

(
1− µ

CN,p

)−γ1/p

≤ ε

2
ξ + C1ξ

γ1/p,

(3.6)
where

C1 = C(1 + δ)1−γ1c(N, γ1)γ1pγ1/p
(
1− µ

CN,p

)−γ1/p

.

Thus there exists ξ(ε) > 0 such that for every 0 < ξ < ξ(ε),

0 ≤
supu∈Aξ

J(u)
ξ

≤
supu∈Bξ

J(u)
ξ

≤ ε

2
+ C1ξ

γ1−p
p < ε,

which proves the lemma. �

Now we are ready to sketch the proof of the main result.

4. Proof of Theorem 1.1

Proof. Let t0 ∈ R such that F (t0) > 0, by (H3). We choose R0 > 0 such that
R0 < dist(0, ∂Ω). For η ∈ (0, 1) as already defined in [10], we also define

uη(x) =


0, if x ∈ RN \BN (0, R0);
t0, if x ∈ BN (0, ηR0);

t0
R0(1−η) (R0 − |x|), if x ∈ BN (0, R0) \BN (0, ηR0),

where BN (0, r) denotes the N -dimensional open ball with center 0 and radius r > 0.
It is easy to see that uη ∈ W 1,p

0 . Let VN denote the volume of the N -dimensional
unit ball in RN , one can compute

‖uη‖p

W 1,p
0

= tp0R
N−p
0 (1− η)−pVN (1− ηN ) (4.1)

and
J(uη) ≥ [F (t0)ηN − max

|t|≤|t0|
|F (t)|(1− ηN )]VNRN

0 . (4.2)
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For η close enough to 1, the right hand side of the last inequality becomes strictly
positive, so we choose such a number, say η0. We fix µ ∈ [0, CN,p). By Lemma 3.4
and in view of (4.1), we may choose ξ0 such that

pξ0 <
(
1− µ

CN,p

)
‖uη0‖

p

W 1,p
0

,

sup{J(u) : Φµ(u) < ξ0} <
p[F (t0)ηN −max|t|≤|t0| |F (t)|(1− ηN )]VNRN

0

‖uη0‖
p

W 1,p
0

.

By choosing x1 = uη0 , hypotheses of Theorem 2.2 are satisfied. Define

Ā = Āµ =
1 + ξ0

J(uη0 )

Φµ(uη0 ) −
sup{J(u):Φµ(u)<ξ0}

ξ0

. (4.3)

In view of Lemmas 3.1, 3.3, all the hypotheses of Theorem 2.2 are satisfied after
putting x0 = 0. An application of Theorem 2.2 implies that there exist an open
interval Λµ ⊂ [0, Āµ] and a number ηµ > 0 such that for each λ ∈ Λµ, the equation
E′

µ,λ ≡ Φ′
µ(u)−λJ ′(u) = 0, admits at least two solutions in W 1,p

0 which have W 1,p
0 -

norm less than ηµ. Since (H1) implies that f(0) = 0, so (H1) admits one trivial
solution and hence there exists a nontrivial solution to (1.2), which completes the
proof. �

Remark 4.1. Let g(x) ≡ 1 ≡ a(x) and p = 2 in (1.2), then the proof of this
corollary is given by Kristály and Varga [10]. In fact, they obtained the existence
of three solutions. Since in the present study, Eµ,λ fails to satisfy the Palais-Smale
condition, so we get the existence of two solutions.

Remark 4.2. As in [10], we also give the explicit estimation of the interval Λµ, µ ∈
[0, CN,p). We fix t0, R0, η0 as in the previous section. In view of Lemma 3.4, we
have

sup{J(u) : Φµ(u) < ξ0}
ξ0

<
J(uη0)

2Φµ(uη0)
.

Then by (4.3), one can see that

Λµ ⊂
[
0,

4
p

(
1− µ

CN,p

)( t0
R0

)p (1− η0)−p(1− ηN
0 )

[F (t0)ηN
0 −max|t|≤|t0| |F (t)|(1− ηN

0 )]
]
.

5. Examples

In this section, we construct some examples for the illustrations of main theorem.

Example 5.1. Consider (1.2) with g(x) = 1 − e−|x|
2
, a(x) = sin |x| and µ ∈

[0, (N−p
p )p). Suppose there exist c > p− 1 and S > 0 such that

f(s) =


0, s ≤ 0;
sc, 0 < s ≤ S;
e−s − e−S + Sc, S < s.

Then it is easy to see that g, a and f satisfy the hypotheses of Theorem 1.1. An
application of Theorem 1.1 gives the existence of an open interval Λµ ⊂ (0,∞)
and a real number ηµ > 0 such that for every λ ∈ Λµ, the problem (1.2) has one
non-trivial weak solution u ∈ W 1,p

0 (Ω) such that ‖u‖W 1,p
0 (Ω) ≤ ηµ.
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Example 5.2. Consider (1.2) with g(x) = 1+sin |x|
2 , a(x) = (1+|x|)−α cos |x|, where

α > 0 and µ ∈ [0, (N−p
p )p). Suppose there exist β > 0, c > 0 such that β < p−1 < c

and S > 0 such that

f(s) =


0, s ≤ 0;
e(sc) − 1, 0 < s ≤ S;
e(Sc) − Sβ + sβ − 1, S < s.

Then it is not difficult to see that g, a and f satisfy the hypotheses of Theorem 1.1.
By Theorem 1.1, (1.2) has one non-trivial weak solution u ∈ W 1,p

0 (Ω) such that
‖u‖W 1,p

0 (Ω) ≤ ηµ for every λ ∈ Λµ, where the existence of Λµ ⊂ (0,∞) and a real
number ηµ > 0 are guaranteed by Theorem 1.1.

Example 5.3. Consider (1.2) with g(x) = 1, a(x) = esin |x| and µ ∈ [0, (N−p
p )p).

Suppose there exist β > 0, c > 0 such that β < p− 1 < c and S > 0 such that

f(s) =


|s|β − |S|β , s < −S;
0, −S ≤ s ≤ 0;
sc(sin s + e−s), 0 < s ≤ S;
Sc(sinS + e−S), S < s.

Then it is easy to see that g, a and f satisfy the hypotheses of Theorem 1.1 and hence
(1.2) has one non-trivial weak solution u ∈ W 1,p

0 (Ω) such that ‖u‖W 1,p
0 (Ω) ≤ ηµ for

every λ ∈ Λµ, where the existence of Λµ ⊂ (0,∞) and a real number ηµ > 0 are
guaranteed by Theorem 1.1.
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