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EXISTENCE OF THREE POSITIVE PERIODIC SOLUTIONS FOR
DIFFERENTIAL SYSTEMS WITH FEEDBACK CONTROLS ON

TIME SCALES

YONGKUN LI, TIANWEI ZHANG, JIANFENG SUO

Abstract. Using the Leggett-Williams multiple fixed point theorem, we es-
tablish criteria for the existence of three positive periodic solutions of a class
of differential systems with feedback controls on time scales.

1. Introduction

Recently, by using the Krasnosel’skii’s fixed point theorem for cones, Li and Zhu
[12] studied the existence of positive periodic solutions of the following functional
differential systems with feedback controls:

ẋ(t) = −A(t)x(t) + f(t, xt, x(t− τ(t, x(t))), u(t− α(t))),

u̇(t) = −B(t)u(t) + C(t)x(h(t, x(t))).
(1.1)

Zeng and Zhou [21] considered a class of more general functional differential systems
with feedback controls of the form

ẋ(t) = −A(t, x(t))x(t) + f(t, xt, x(t− τ(t, x(t))), u(t− α(t))),

u̇(t) = −B(t, x(t))u(t) + C(t, x(t))x(h(t, x(t))).
(1.2)

By means of the Krasnosel’skii’s fixed point theorem, they obtained some criteria
for the existence of two positive periodic solutions of (1.2).

Also, by applying the continuation theorem of coincidence degree theory, Li
and Zhu [13] studied the existence of positive periodic solutions to the difference
equations with feedback control of the form

N(n+ 1) = N(n) exp
[
r(n)

(
1− N(n−m)

k(n)
− c(n)µ(n)

)]
,

∆µ(n) = −a(n)µ(n) + b(n)N(n−m),
(1.3)

where a : Z → (0, 1), c, k, r, b : Z → R+ are all ω-periodic functions and m is a
positive integer.

In the previous ten years, many authors [7, 11, 14, 18] have argued that the
discrete time model governed by difference equations are more appropriate than the
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continuous ones when the populations have non-overlapping generations. Discrete
time models can also provide efficient computational models of continuous models
for numerical simulations. Consequently, the studies of dynamic systems governed
by difference equations have received great attention from more scholars.

In fact, continuous and discrete systems are very important in implementing and
applications. It is well known that the theory of time scales [4, 5] has received a lot
of attention which was introduced by Stefan Hilger [8] in order to unify continuous
and discrete analysis. Therefore, it is meaningful to study dynamic systems on time
scales which can unify differential and difference systems. For the work concerning
with the existence of periodic solutions for dynamic systems on time scales, we refer
the reader to [2, 3, 6, 15, 16, 17, 19, 20, 22].

Motivated by above statement, in this paper, we will study the following differ-
ential systems with feedback controls on time scales:

x∆(t) = −A(t, x(t))x(σ(t)) + λf(t, xt, x(t− τ(t, x(t))), u(t− α(t, x(t)))),

u∆(t) = −B(t, x(t))u(σ(t)) + g(t, xt, x(h(t, x(t)))), t ∈ T,
(1.4)

in which T is a periodic time scales which has the subspace topology inherited from
the standard topology on R, λ > 0 is parameter,

A(t, x(t)) = diag[a1(t, x(t)), a2(t, x(t)), . . . , an(t, x(t))],

B(t, x(t)) = diag[b1(t, x(t)), b2(t, x(t)), . . . , bn(t, x(t))],

ai(t, y), bi(t, y),∈ C(T× Rn,R) satisfy ai(t+ ω, y) = ai(t, y), bi(t+ ω, y) = bi(t, y)
for all t ∈ T, y ∈ Rn, i = 1, 2, . . . , n, t − τ(t, y), t − α(t, y), h(t, y) ∈ C(T × Rn,T)
satisfy τ(t+ ω, y) = τ(t, y), α(t+ ω, y) = α(t, y), h(t+ ω, y) = h(t, y) for all t ∈ T,
y ∈ Rn, ω > 0 is a constant, f is a function defined on T×BC×Rn×Rn, satisfying
f(t+ω, xt+ω, y, z) = f(t, xt, y, z) for all t ∈ T, x ∈ BC, y, z ∈ Rn, where BC denotes
the Banach space of all bounded continuous functions η : T → Rn with the norm
‖η‖ =

∑n
i=1 maxθ∈T |ηi(θ)|, where η = (η1, η2, . . . , ηn)T , and g is a function defined

on T×BC×Rn, satisfying g(t+ω, xt+ω, y) = g(t, xt, y) for all t ∈ T, x ∈ BC, y ∈ Rn.
If x ∈ BC, then xt ∈ BC for any t ∈ T is defined by xt(θ) = xt(t + θ) for
θ ∈ T. In the sequel, we denote f = (f1, f2, . . . , fn)T , g = (g1, g2, . . . , gn)T . Let
R = (−∞,+∞),R+ = [0,+∞),Rn

+ = {(x1, x2, . . . , xn)T : xi ≥ 0, 1 ≤ i ≤ n},
respectively. For each x = (x1, x2, . . . , xn)T ∈ Rn, the norm of x is defined as
|x|0 =

∑n
i=1 |xi|.

The main purpose of this paper is to study the existence of at least three non-
negative periodic solutions of (1.4) by using the Leggett-Williams multiple fixed
point theorem.

The organization of this paper is as follows. In Section 2, we make some prepa-
rations. In Section 3, by using the Leggett-Williams multiple fixed point theorem,
we obtain the existence of at least three nonnegative periodic solutions of (1.4). In
Section 4, an example is also provided to illustrate the effectiveness of the main
results obtained in Section 3.

2. Preliminaries

In this section, we shall first recall some basic definitions, lemmas which are used
in what follows.

Definition 2.1 ([4]). A time scale T is an arbitrary nonempty closed subset of
the real set R with the topology and ordering inherited from R. The forward and
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backward jump operators σ, ρ : T → T and the graininess µ : T → R+ are defined,
respectively, by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, µ(t) := σ(t)− t.

The point t ∈ T is called left-dense, left-scattered, right-dense or right-scattered if
ρ(t) = t, ρ(t) < t, σ(t) = t or σ(t) > t, respectively. Points that are right-dense and
left-dense at the same time are called dense. If T has a left-scattered maximum m,
defined Tk = T− {m}; otherwise, set Tk = T.

Definition 2.2 ([9]). We say that a time scale T is periodic if there exists p > 0
such that if t ∈ T, then t± p ∈ T. For T 6= R, the smallest positive p is called the
period of the time scale. Let T 6= R be a periodic time scale with period p. We
say that the function f : T → R is periodic with period T if there exists a natural
number n such that T = np, f(t + T ) = f(t) for all t ∈ T and T is the smallest
number such that f(t+ T ) = f(t). If T = R, we say that f is periodic with period
T > 0 if T is the smallest positive number such that f(t+ T ) = f(t) for all t ∈ T.

Definition 2.3 ([4]). For f : T → R and t ∈ Tk, the delta derivative of f at t,
denoted by f∆(t), is the number (provided it exists) with the property that given
any ε > 0, there is a neighborhood U ⊂ T of t such that

|f(σ(t))− f(s)− f∆(t)[σ(t)− t]| ≤ ε|σ(t)− s|, ∀s ∈ U.

Definition 2.4 ([4]). A function f : T → R is called regulated provided its right-
sided limits exist (finite) at all right-dense points in T and its left-sided limits exist
(finite) at all left-dense points in T.

Definition 2.5 ([4]). A continuous function F : T → R is called pre-differentiable
with (region of differentiation)D, providedD ⊂ Tk, Tk\D is countable and contains
no right-scattered elements of T, and F is differentiable at each t ∈ D.

Definition 2.6 ([4]). Assume that f : T → R is a regulated function. Suppose
further that there exists a function F which is pre-differentiable with region of
differentiation D such that

F∆(t) = f(t) holds for all t ∈ D.
We define the Cauchy integral by∫ b

a

f(s)∆s = F (b)− F (a) for all a, b ∈ T.

Definition 2.7 ([4]). A function p : T → R is said to be regressive provided
1 + µ(t)p(t) 6= 0 for all t ∈ Tk, where µ(t) = σ(t) − t is the graininess function.
The set of all regressive rd-continuous functions f : T → R is denoted by R while
the set R+ is given by {f ∈ R : 1 + µ(t)f(t) > 0} for all t ∈ T. Let p ∈ R. The
exponential function is defined by

ep(t, s) = exp
( ∫ t

s

ξµ(τ)(p(τ))∆τ
)
,

where ξh(z) is the so-called cylinder transformation.

Lemma 2.8 ([4]). Let p, q ∈ R. Then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
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(iii) 1
ep(t,s) = e	p(t, s), where 	p(t) = − p(t)

1+µ(t)p(t) ;
(iv) ep(t, s) = 1

ep(s,t) = e	p(s, t);
(v) ep(t, s)ep(s, r) = ep(t, r);
(vi) ep(t,s)

eq(t,s) = ep	q(t, s), where p	 q = p⊕ (	q);
(vii) e∆p (·, s) = pep(·, s).

For convenience, we introduce the following notation:

ri
1 = sup

t∈[0,ω]T

1
|1− e	ai

(t, t− ω)|
, ri

2 = inf
t∈[0,ω]T

1
|1− e	ai

(t, t− ω)|
,

ηi
1 = sup

u∈[t−ω,t]T

e	ai(t, u), ηi
2 = inf

u∈[t−ω,t]T
e	ai(t, u),

rM = max
1≤i≤n

{ri
1}, rl = min

1≤i≤n
{ri

2},

ηM = max
1≤i≤n

{ηi
1}, ηl = min

1≤i≤n
{ηi

2},

γi = sup
t∈[0,ω]T

| 	 ai|, κi = sup
t∈[0,ω]T

e	ai(σ(t), t),

γ = max
1≤i≤n

{γi}, κ = max
1≤i≤n

{κi}.

Lemma 2.9. (x(t), u(t))T is an ω-periodic solution of (1.4) if and only if it is an
ω-periodic solution of the system

x∆(t) = −A(t, x(t))x(σ(t))+λf(t, xt, x(t− τ(t, x(t))), u(t− α(t, x(t)))),

u(t) =
∫ t

t−ω

G(t, s)g(s, xs, x(h(s, x(s))))∆s := (Φx)(t),
(2.1)

where
G(t, s) = diag[G1(t, s), G2(t, s), . . . , Gn(t, s)]

and

Gi(t, s) =
e	bi(t, s)

1− e	bi(t, t− ω)
, s ∈ [t− ω, t]T, i = 1, 2, . . . , n.

Proof. First, assume that (x(t), u(t))T is an ω-periodic solution of (1.4). From the
second equation of (1.4), it follows that

u∆
i (t) + bi(t, x(t))ui(σ(t)) = gi(t, xt, x(h(t, x(t)))), i = 1, 2, . . . , n. (2.2)

Multiply both sides of this equation by ebi(t, 0) and then integrate them from t−ω
to t to obtain∫ t

t−ω

[ebi
(s, 0)ui(s)]∆∆s =

∫ t

t−ω

ebi(s, 0)gi(s, xs, x(h(s, x(s))))∆s,

for i = 1, 2, . . . , n, and then

ebi
(t, 0)ui(t)− ebi

(t− ω, 0)ui(t− ω) =
∫ t

t−ω

ebi
(s, 0)gi(s, xs, x(h(s, x(s))))∆s,

for i = 1, 2, . . . , n. Dividing both sides of the above equation by ebi(t, 0), we have

ui(t) =
∫ t

t−ω

e	bi(t, s)
1− e	bi(t, t− ω)

gi(s, xs, x(h(s, x(s))))∆s, i = 1, 2, . . . , n.

So (x(t), u(t))T is an ω-periodic solution of (2.1).
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Conversely, assume that (x(t), u(t))T is an ω-periodic solution of (2.1). Then we
have

ebi(t, 0)ui(t)− ebi(t− ω, 0)ui(t− ω) =
∫ t

t−ω

ebi(s, 0)gi(s, xs, x(h(s, x(s))))∆s,

for i = 1, 2, . . . , n; that is,(
1 + ebi(ω, 0)

)
ebi(t, 0)ui(t) =

∫ t

t−ω

ebi(s, 0)gi(s, xs, x(h(s, x(s))))∆s,

for i = 1, 2, . . . , n. Then[(
1 + ebi

(ω, 0)
)
ebi(t, 0)ui(t)

]∆
= ebi(t, 0)

(
1 + ebi(ω, 0)

)[
u∆

i (t) + biui(σ(t))
]

=
( ∫ t

t−ω

ebi(s, 0)gi(s, xs, x(h(s, x(s))))∆s
)∆

= ebi(t, 0)gi(t, xt, x(h(t, x(t))))− ebi(t− ω, 0)gi(t− ω, xt−ω, x(h(t− ω, x(t− ω))))

= ebi(t, 0)
(
1 + ebi(ω, 0)

)
gi(t, xt, x(h(t, x(t)))),

which implies

u∆
i (t) + bi(t, x(t))ui(σ(t)) = gi(t, xt, x(h(t, x(t)))), i = 1, 2, . . . , n.

So (x(t), u(t))T is an ω-periodic solution of (1.4). The proof of the lemma is com-
plete. �

At the same time, from the definition of ep(t, s) and the periodicity of bi, we
have e	bi(t + ω, s + ω) = e	bi(t, s), i = 1, 2, . . . , n, so it is clear that G(t, s) =
G(t+ω, s+ω) for all (t, s) ∈ T2 and u(t+ω) = u(t) when x is ω-periodic solution.

Now, (2.1) can be reformulated as

x∆(t) = −A(t, x(t))x(σ(t)) + λf(t, xt, x(t− τ(t, x(t))), (Φx)(t− α(t, x(t)))). (2.3)

We proceed from (2.3) and obtain

x(t) = λ

∫ t

t−ω

G(t, s)f(s, xs, x(s− τ(s, x(s))), (Φx)(s− α(s, x(s))))∆s, (2.4)

where
G(t, s) = diag[G1(t, s), G2(t, s), . . . , Gn(t, s)]

and

Gi(t, s) =
e	ai(t, s)

1− e	ai
(t, t− ω)

, s ∈ [t− ω, t]T, i = 1, 2, . . . , n.

By the periodicity of ai, i = 1, 2, . . . , n, it is also obvious thatG(t, s) = G(t+ω, s+ω)
for all (t, s) ∈ T2.

To obtain our main results, we make the following assumptions throughout this
paper.

(H1) ai(t, x(t)) > 0 or ai(t, x(t)) < 0 for all t ∈ T, i = 1, 2, . . . , n;
(H2) fi(t, ζ, ξ,Φ(η))ai(t, x(t)) ≥ 0 for all (t, ζ, ξ, η) ∈ T × BC(T × Rn

+) × Rn
+ ×

Rn
+, i = 1, 2, . . . , n;

(H3) f(t, φt, φ(t − τ(t, φ(t))), (Φφ)(t − α(t, φ(t)))) is a continuous function of t
for each φ ∈ BC(T× Rn

+);
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(H4) for any L > 0 and ε > 0, there exists a real number δ > 0 such that
φ, ψ ∈ BC, ‖φ‖ ≤ L, ‖ψ‖ ≤ L, ‖φ− ψ‖ < δ, 0 ≤ s ≤ ω imply

‖f(s, φs, φ(s− τ(s, φ(s))), (Φφ)(s− α(s, φ(s))))

− f(s, ψs, ψ(s− τ(s, ψ(s))), (Φψ)(s− α(s, ψ(s))))‖ < ε.

Moreover, for the sake of simplicity, let

f(t, φ,Φ) = f(t, φt, φ(t− τ(t, φ(t))), (Φφ)(t− α(t, φ(t))))

and
f(t, x,Φ) = f(t, xt, x(t− τ(t, x(t))), (Φx)(t− α(t, x(t)))).

Then by (H2),

Gi(t, s)fi(t, x,Φ) ≥ 0 for (t, s) ∈ T2, i = 1, 2, . . . , n. (2.5)

Let X be a Banach space and K be a cone in X. A mapping ψ is said to be a
concave nonnegative continuous functional on K if ψ : K → R+ is continuous and

ψ(µx+ (1− µ)y) ≥ µψ(x) + (1− µ)ψ(y), x, y ∈ K, µ ∈ [0, 1].

Let a, b, c > 0 be constants with K and X as defined above. Define

Ka = {x ∈ K : ‖x‖ < a}, K(ψ, b, c) = {x ∈ K : ψ(y) ≥ b, ‖x‖ ≤ c}.

Theorem 2.10 (Leggett-Williams multiple fixed point theorem [10]). Let X =
(X, ‖ · ‖) be a Banach space and K ⊂ X a cone, and c4 > 0 a constant. Suppose
there exists a concave nonnegative continuous function ψ on K with ψ(u) ≤ u for
u ∈ Kc4 and let T : Kc4 → Kc4 be a continuous compact map. Assume that there
are numbers c1, c2 and c3 with 0 < c1 < c2 < c3 ≤ c4 such that

(i) {u ∈ K(ψ, c2, c3) : ψ(u) > c2} 6= ∅ and ψ(Tu) > c2 for all u ∈ K(ψ, c2, c3);
(ii) ‖Tu‖ < c1 for all u ∈ Kc1 ;
(iii) ψ(Tu) > c2 for all u ∈ K(ψ, c2, c4) with ‖Tu‖ > c3.

Then T has at least three fixed points u1, u2 and u3 in Kc4 . Furthermore, e have
u1 ∈ Kc1 , u2 ∈ {u ∈ K(ψ, c2, c4) : ψ(u) > c2}, u3 ∈ Kc4\{K(ψ, c2, c4) ∪Kc1}.

Let X = {x(t) = (x1, x2, . . . , xn)T ∈ C(T,Rn) : x(t) = x(t+ ω)} with the norm
‖x‖ =

∑n
i=1 maxt∈[0,ω]T |xi(t)|, then X is a Banach space with the norm ‖·‖. Define

a cone K in X by

K = {x(t) = (x1, x2, . . . , xn)T ∈ X : xi(t) ≥ 0,∀t ∈ [0, ω]T, i = 1, 2, . . . , n}

and an operator Tλ on X by

(Tλx)(t) = λ

∫ t

t−ω

G(t, s)f(s, x,Φ)∆s.

And let
Tλx = (T 1

λx, T
2
λx, . . . , T

n
λ x)

T .

Lemma 2.11. Tλ(K) ⊂ K and Tλ : K → K is well-defined.

Proof. For each x ∈ K, by (H3), we have Tλx ∈ C(T,Rn), with the periodicity of
G(t, s) and (Φx)(t), then

(Tλx)(t+ ω) = λ

∫ t+ω

t

G(t+ ω, s)f(s, x,Φ)∆s
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= λ

∫ t

t−ω

G(t+ ω, s+ ω)f(s+ ω, x,Φ)∆s

= λ

∫ t

t−ω

G(t, s)f(s, x,Φ)∆s

= (Tλx)(t),

and by (2.5), Tλx ∈ K. The proof is complete. �

Lemma 2.12. Tλ : K → K is completely continuous.

Proof. We first show that Tλ is continuous. By (H4), for any L > 0 and ε > 0, there
exists a δ > 0 such that φ, ψ ∈ BC, ‖φ‖ ≤ L, ‖ψ‖ ≤ L, ‖φ − ψ‖ < δ, 0 ≤ s ≤ ω
imply

‖f(s, φs, φ(s− τ(s, φ(s))), (Φφ)(s− α(s, φ(s))))

− f(s, ψs, ψ(s− τ(s, ψ(s))), (Φψ)(s− α(s, ψ(s))))‖ < ε

λrMηM
.

If x, y ∈ K with ‖x‖ ≤ L, ‖y‖ ≤ L, and ‖x− y‖ < δ, then

‖(Tλx)(t)− (Tλy)(t)‖

≤ λ

∫ t

t−ω

max
1≤i≤n

|Gi(t, s)|‖f(s, xs, x(s− τ(s, x(s))), (Φx)(s− α(s, x(s))))

− f(s, ys, y(s− τ(s, y(s))), (Φy)(s− α(s, y(s))))‖∆s

≤ λrMηM

∫ ω

0

‖f(s, xs, x(s− τ(s, x(s))), (Φx)(s− α(s, x(s))))

− f(s, ys, y(s− τ(s, y(s))), (Φy)(s− α(s, y(s))))‖∆s

< λrMηM ε

λrMηM
= ε

for all t ∈ [0, ω]T. This yields ‖Tλx− Tλy‖ < ε. Thus, Tλ is continuous.
Next, we show that Tλ maps any bounded sets in K into relatively compact sets.

Now, we first prove that f maps bounded sets into bounded sets. Indeed, let ε = 1.
By (H4), for any µ > 0, there exists δ > 0 such that x, y ∈ BC, ‖x‖ ≤ µ, ‖y‖ ≤ µ,
‖x− y‖ < δ, 0 ≤ s ≤ ω imply

‖f(s, xs, x(s− τ(s, x(s))), (Φx)(s− α(s, x(s))))

− f(s, ys, y(s− τ(s, y(s))), (Φy)(s− α(s, y(s))))‖ < 1.

Choose a positive integer N such that µ
N < δ. Let x ∈ BC and define xk(t) = k

N x(t)
for k = 0, 1, 2, . . . , N . If ‖x‖ ≤ µ, then

‖xk − xk−1‖ = ‖ k
N
x(t)− k − 1

N
x(t)‖ ≤ 1

N
‖x‖ ≤ µ

N
< δ.

Thus,

‖f(s, xk
s , x

k(s− τ(s, xk(s))), (Φxk)(s− α(s, xk(s))))

− f(s, xk−1
s , xk−1(s− τ(s, xk−1(s))), (Φxk−1)(s− α(s, xk−1(s))))‖ < 1

for all s ∈ [0, ω]T. This yields

‖f(s, xs, x(s− τ(s, x(s))), (Φx)(s− α(s, x(s))))‖
= ‖f(s, xN

s , x
N (s− τ(s, xN (s))), (ΦxN )(s− α(s, xN (s))))‖
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≤
N∑

k=1

‖f(s, xk
s , x

k(s− τ(s, xk(s))), (Φxk)(s− α(s, xk(s))))

− f(s, xk−1
s , xk−1(s− τ(s, xk−1(s))), (Φxk−1)(s− α(s, xk−1(s))))‖

+ ‖f(s, 0, 0, 0‖
< N + ‖f(s, 0, 0, 0‖ =: Q.

For t ∈ [0, ω]T, we have

‖Tλx‖ =
n∑

i=1

max
t∈[0,ω]T

|(T i
λx)(t)|

≤ λrMηM
n∑

i=1

∫ ω

0

|fi(s, xs, x(s− τ(s, x(s))), (Φx)(s− α(s, x(s))))|∆s

≤ λrMηMωQ.

Finally, for t ∈ T,

(T i
λx)

∆(t) = [λ
∫ t

t−ω

Gi(t, s)fi(s, x,Φ)∆s]∆

= [λ
∫ t

t−ω

e	ai
(t, s)

1− e	ai(t, t− ω)
fi(s, x,Φ)∆s]∆

= λ
e	ai(σ(t), t)− e	ai(σ(t), t− ω)

1− e	ai(t, t− ω)
fi(t, x,Φ)

+ λ
1

1− e	ai
(t, t− ω)

	 ai

∫ t

ã

e	ai
(t, s)fi(s, x,Φ)∆s

− λ
1

1− e	ai(t, t− ω)
	 ai

∫ t−ω

ã

e	ai
(t, s)fi(s, x,Φ)∆s

= 	ai(T i
λx)(t) + λe	ai(σ(t), t)fi(t, x,Φ),

where ã ∈ [0, ω]T is an arbitrary constant, i = 1, 2, . . . , n. So we obtain

|(T i
λx)

∆(t)| ≤ γi|T i
λx|+ λκi|fi(t, x,Φ)|, i = 1, 2, . . . , n.

Then

‖(Tλx)∆(t)‖ =
n∑

i=1

max
t∈[0,ω]T

|(T i
λx)

∆(t)|

≤ γ

n∑
i=1

max
t∈[0,ω]T

|T i
λx|+ λκ

n∑
i=1

max
t∈[0,ω]T

|fi(t, x,Φ)|

≤ γ‖Tλx‖+ λκ‖f(t, x,Φ)‖
≤ λγrMηMωQ+ λκQ.

Hence {Tλx : x ∈ K, ‖x‖ ≤ µ} is a family of uniformly bounded and equicontinuous
functions on [0, ω]T. Applying Arzela-Ascoli theorem on time scales [1], the function
Tλ is completely continuous. The proof is complete. �

Lemma 2.13. Existence of nonnegative periodic solutions of (1.4) is equivalent to
the existence of fixed point problem of Tλ in K.
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The proof of the above lemma is straight forward and we will omit it.

3. Main results

Let

fh
i = lim sup

φi→h
max

t∈[0,ω]T

|fi(t, φ,Φ)|
|ai(t, φ)|φi

, i = 1, 2, . . . , n,

where φ(t) = (φ1(t), φ2(t), . . . , φn(t))T ∈ C(T,Rn), |φ|1 =
∑n

i=1 mint∈[0,ω]T |φi(t)|
and δ = rM ηM

rlηl .
From the definitions of ηM and ηl, it is obvious that δ > 1.

Theorem 3.1. Assume that (H1)-(H4) hold, there are constants 0 < c1 < c2 such
that the following conditions hold:

(H5) rMηM > 1;
(H6) f∞i < ω, i = 1, 2, . . . , n;
(H7)

∫ ω

0
|f(s, x,Φ)|0∆s ≥ δc2ω for c2 ≤ |x|1 ≤ ‖x‖ ≤ δc2;

(H8)
∫ ω

0
|f(s, x,Φ)|0∆s ≤ c1ω

rM ηM for 0 ≤ |x|1 ≤ ‖x‖ ≤ c1

Then (1.4) has at least three nonnegative ω-periodic solutions for

1
rMηMω

< λ <
1
ω
.

Proof. Since f∞i < ω holds for 1 ≤ i ≤ n, there exist ε ∈ (0, ω) and θ > 0 such that
|fi(t, x,Φ)| ≤ ε|ai(t, x)|xi for xi ≥ θ, t ∈ [0, ω]T, i = 1, 2, . . . , n. Let

ξi = max
0≤xi≤θ,0≤t≤ω

|fi(t, x,Φ)|, i = 1, 2, . . . , n, ξ =
n∑

i=1

ξi.

Then |fi(t, x,Φ)| ≤ ε|ai(t, x)|xi + ξi for xi ≥ 0, t ∈ [0, ω]T, i = 1, 2, . . . , n. Choose

c4 > max
{rMηMξω

ω − ε
, δc2

}
.

Then for x ∈ Kc4 , we have

‖Tλx‖ =
n∑

i=1

max
t∈[0,ω]T

|T i
λx|

=
n∑

i=1

max
t∈[0,ω]T

λ

∫ t

t−ω

Gi(t, s)fi(s, x,Φ)∆s

=
n∑

i=1

max
t∈[0,ω]T

λ

∫ t

t−ω

|Gi(t, s)||fi(s, x,Φ)|∆s

≤
n∑

i=1

max
t∈[0,ω]T

λ

∫ t

t−ω

|Gi(t, s)|(ε|ai(s, x)|xi + ξi)∆s

≤
n∑

i=1

max
t∈[0,ω]T

λ

∫ t

t−ω

|Gi(t, s)|(ε|ai(s, x)||xi|+ ξi)∆s

≤ λ[ε max
0≤i≤n

{
∫ t

t−ω

Gi(t, s)ai(s, x)∆s}
n∑

i=1

max
s∈[0,ω]T

|xi(s)|
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+
n∑

i=1

max
t∈[0,ω]T

∫ t

t−ω

|Gi(t, s)|ξi∆s]

≤ λ[ε‖x‖+
n∑

i=1

ri
1η

i
1ξiω]

≤ λ[εc4 + rMηMξω]

<
1
ω

[εc4 + rMηMξω] < c4.

Hence Tλ : Kc4 → Kc4 .
Next, we define a concave nonnegative continuous function ψ on K by ψ(x) =∑n
i=1 mint∈[0,ω]T

|xi(t)|, then ψ(x) ≤ ‖x‖. Let c3 = δc2 = rM ηM

rlηl c2 and φ0(t) = {φ0, 0, . . . , 0}T , φ0 is
any given number satisfying c2 < φ0 < c3. Then φ0(t) ∈ {x ∈ K(ψ, c2, c3) : ψ(x) >
c2} 6= ∅. Further, for x ∈ K(ψ, c2, c3), by (H7)

ψ(Tλx) =
n∑

i=1

min
t∈[0,ω]T

|(T i
λx)(t)|

=
n∑

i=1

min
t∈[0,ω]T

λ

∫ t

t−ω

Gi(t, s)fi(s, x,Φ)∆s

≥ λrlηl
n∑

i=1

∫ ω

0

|fi(s, x,Φ)|∆s

= λrlηl

∫ ω

0

|f(s, x,Φ)|0∆s

≥ λrlηlδc2ω

= λrlηl r
MηM

rlηl
c2ω

≥ λrMηMc2ω > c2,

(3.1)

so condition (i) of Theorem 2.10 holds.
Now, let x ∈ Kc1 , by (H8)

‖Tλx‖ =
n∑

i=1

max
t∈[0,ω]T

λ

∫ t

t−ω

Gi(t, s)fi(s, x,Φ)∆s

≤ λrMηM
n∑

i=1

∫ ω

0

|fi(s, x,Φ)|∆s

≤ λrMηM

∫ ω

0

|f(s, x,Φ)|0∆s

<
1
ω
rMηM c1ω

rMηM
= c1,

then Tλx ∈ Kc1 .
Finally, for x ∈ K(ψ, c2, c4) and ‖Tλx‖ > c3, so

c3 < ‖Tλx‖ ≤ λrMηM
n∑

i=1

max
t∈[0,ω]T

∫ t

t−ω

|fi(s, x,Φ)|∆s
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= λrMηM
n∑

i=1

∫ ω

0

|fi(s, x,Φ)|∆s

= λrMηM

∫ ω

0

|f(s, x,Φ)|0∆s,

which implies

ψ(Tλx) =
n∑

i=1

min
t∈[0,ω]T

λ

∫ t

t−ω

Gi(t, s)fi(s, x,Φ)∆s

≥ λrlηl
n∑

i=1

∫ ω

0

|fi(s, x,Φ)|∆s

= λrlηl

∫ ω

0

|f(s, x,Φ)|0∆s

> λrlηl c3
λrMηM

=
c3
δ

= c2.

(3.2)

So all the conditions of Theorem 2.10 are satisfied. Consequently, (1.4) has at least
three nonnegative ω-periodic solutions. This completes the proof. �

Theorem 3.2. Let f0
i < ω, i = 1, 2, . . . , n. Assume that there exists a constant

c2 > 0 such that (H1)-(H7) holds, then (1.4) has at least three nonnegative ω-
periodic solutions for

1
rMηMω

< λ <
1
ω
.

Proof. Since f0
i < ω holds for 1 ≤ i ≤ n, there exist ρ, ζ, 0 < ρ < ω and 0 < ζ < c2

such that

|fi(t, x,Φ)| ≤ ρ|ai(t, x)|xi, 0 ≤ xi ≤
ζ

n
, t ∈ [0, ω]T, i = 1, 2, . . . , n.

Set c1 = ζ. For x ∈ Kc1 ,

‖Tλx‖ =
n∑

i=1

max
t∈[0,ω]T

λ

∫ t

t−ω

Gi(t, s)fi(s, x,Φ)∆s

≤ λρ

n∑
i=1

max
t∈[0,ω]T

∫ t

t−ω

Gi(t, s)ai(s, x)xi∆s

≤ λρ max
0≤i≤n

{
∫ t

t−ω

Gi(t, s)ai(s, x)∆s}
n∑

i=1

max
s∈[0,ω]T

|xi(s)|

≤ λρ‖x(t)‖

<
1
ω
ρc1 < c1.

Then condition (ii) of Theorem 2.10 is satisfied. In view of conditions (H6)-(H7),
using a similar proof to Theorem 3.1, it can be shown that (3.1) and (3.2) hold. That
is, conditions (i) and (iii) of Theorem 2.10 are satisfied. By Theorem 2.10, there
exist at least three nonnegative ω-periodic solutions of (1.4). Thus the theorem is
proved. �
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Theorem 3.3. Assume that there are constants 0 < c1 < c2 such that (H1)-(H6)
and the following two conditions hold:

(H9)
∫ ω

0
|f(s, x,Φ)|0∆s ≥ 2δc2ω for c2 ≤ |x|1 ≤ ‖x‖ ≤ δc2;

(H10) ‖f(t, x,Φ)‖ ≤ ‖x‖ for 0 ≤ |x|1 ≤ ‖x‖ ≤ c1

Then (1.4) has at least three nonnegative ω-periodic solutions for

1
2rMηMω

< λ <
1

rMηMω
.

Proof. From (H10), for x ∈ Kc1 , we have

‖Tλx‖ = ‖λ
∫ t

t−ω

G(t, s)f(s, x,Φ)∆s‖

≤ λrMηM

∫ ω

0

‖f(s, x,Φ)‖∆s

≤ λrMηMc1ω

<
1

rMηMω
rMηMc1ω = c1.

Then condition (ii) of Theorem 2.10 is satisfied. With (H9) and Theorem 3.1, the
proof of conditions (i) and (iii) of Theorem 2.10 is easy and hence we will omit it.
This completes the proof. �

4. Examples

Example 4.1. When T = R, the following system has at least three nonnegative
2π-periodic solutions:

ẋ1(t) = − 1
10π

(2 + sin t)x1(t) +
e8

24π
[x1(t+ 1) + x2(t)]2e−x1(t−1)x2(t)|2 + sinu1(t)|,

u̇1(t) = −(0.85− 0.05 sin t)u1(t) + 0.001x1(t),

ẋ2(t) = − 1
20π

(2− cos t)x2(t) +
e8

36π
[x1(t) + x2(t+ 1)]2e−x1(t)x2(t−1)|2 + cosu2(t)|,

u̇2(t) = −(0.85− 0.05 sin t)u2(t) + 0.001x2(t)
(4.1)

Proof. Corresponding to system (1.4), we have a1(t) = 1
10π (2 + sin t), a2(t) =

1
20π (2 − cos t), b1(t) = b2(t) = 0.85 − 0.05 sin t, gi(t) = 0.001xi(t), i = 1, 2,
f1(t, x,Φ) = e8

2π [x1(t+θ)+x2(t)]2e−x1(t−θ)x2(t)|2+sinu1(t)|, f2(t, x,Φ) = e8

3π [x1(t)+
x2(t+ θ)]2e−x1(t)x2(t−θ)|2 + cosu2(t)|, λ = 1

12 and ω = 2π. So we obtain

e	a1(t, t− ω) = exp
{
−

∫ t

t−2π

1
10π

(2 + sin s) ds
}

= e−0.4,

e	a2(t, t− ω) = exp
{
−

∫ t

t−2π

1
20π

(2− cos t) ds
}

= e−0.2,

r11 = sup
t∈[0,ω]T

1
|1− e	a1(t, t− ω)|

=
e−0.4

e−0.4 − 1
= 3.033244,

r21 = sup
t∈[0,ω]T

1
|1− e	a2(t, t− ω)|

=
e−0.2

e−0.2 − 1
= 5.516650,
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rM = max{3.033244, 5.516650} = 5.516650,

rl = min{3.033244, 50516650} = 3.033244,

η1
1 = sup

u∈[t−ω,t]T

e	a1(t, u) = sup
u∈[t−ω,t]T

exp
{
−

∫ t

u

1
10π

(2 + sin s) ds
}

= 1,

η2
1 = sup

u∈[t−ω,t]T

e	a2(t, u) = sup
u∈[t−ω,t]T

exp
{
−

∫ t

u

1
20π

(2− cos s) ds
}

= 1,

ηM = max{1, 1} = 1,

η1
2 = inf

u∈[t−ω,t]T
e	a1(t, u) = inf

u∈[t−ω,t]T
exp

{
−

∫ t

u

1
10π

(2 + sin s) ds
}

= e−0.4 = 0.670320,

η2
2 = inf

u∈[t−ω,t]T
e	a2(t, u) = inf

u∈[t−ω,t]T
exp

{
−

∫ t

u

1
20π

(2− cos s) ds
}

= e−0.2 = 0.818731,

ηl = min{0.670320, 0.818731} = 0.670320.

Then rMηM = 5.516650, δ = 5.516650×1
3.033244×0.670320 = 2.713226, it is easy to verify

that 1
rM ηM ω

< λ < 1
ω ; that is, 1

6.132488π < 1
12 < 1

2π . Furthermore, f∞i < 2π
holds for i = 1, 2, so conditions (H5) and (H6) of Theorem 3.1 is satisfied. Choose
c1 = 1

100000 , c2 = 1
2 , then c3 = δc2 = 1.356613.

For c2 ≤ |x|1 ≤ ‖x‖ ≤ δc2, we obtain∫ ω

0

|f(s, x,Φ)|0ds =
∫ ω

0

e8

2π
[x1(t+ θ) + x2(t)]2e−x1(t−θ)x2(t)|2 + sinu1(t)|ds

+
∫ ω

0

e8

3π
[x1(t) + x2(t+ θ)]2e−x1(t)x2(t−θ)|2 + cosu2(t)|ds

≥ 2ω
3π
e8−δ2c2

2c22

> 24c2ω > δc2ω;

that is, (H7) holds.
For 0 ≤ |x|1 ≤ ‖x‖ ≤ c1,∫ ω

0

|f(s, x,Φ)|0 ds =
∫ ω

0

e8

2π
[x1(t+ θ) + x2(t)]2e−x1(t−θ)x2(t)|2 + sinu1(t)|ds

+
∫ ω

0

e8

3π
[x1(t) + x2(t+ θ)]2e−x1(t)x2(t−θ)|2 + cosu2(t)|ds

≤ 6e8c21 < 0.0000006

<
c1ω

rMηM
= 0.000006066488π,

hence (H8) holds, it is obvious that (H1)-(H4) hold. By Theorem 3.1, (4.1) has at
least three nonnegative 2π-periodic solutions. �
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Example 4.2. When T = Z, the following system has at least three nonnegative
2-periodic solutions for 1/4 < λ < 1/2:

∆x(n) = (1− esin nπ−ln
√

2
2 )x(n+ 1) + λ

18x2(n)(3 + sin(x(n− 1)) + cos(u(n)))
ex(n)

,

∆u(n) = −(0.85− 0.05 sinnπ)u(n) + 0.001x(n), n ∈ Z
(4.2)

Proof. Corresponding to system (1.4), we have a(n) = esin nπ−log
√

2
2 − 1, b(n) =

0.85 − 0.05 sinnπ, g(n) = 0.001x(n), f(n, x,Φ) = 18x2(n)(3+sin(x(n−1))+cos(u(n)))
ex(n) ,

ω = 2. So we obtain

e	a(n, n− ω) = exp
{∫ n

n−ω

Log
(
1− a(τ)

1 + a(τ)

)
∆τ

}
= exp

{∫ n

n−2

log
( 1

1 + a(τ)

)
∆τ

}
= exp

{
−

∫ n

n−2

(
sin τπ − log

√
2

2

)
∆τ

}
= exp

{
−

n−1∑
τ=n−2

(
sin τπ − log

√
2

2

)}
= exp

{
log

1
2
}

=
1
2
.

Then rM = rl = 1
1− 1

2
= 2. In a similar argument as the above process, it is not

difficult to calculate that ηM = 1, ηl = 1
2 . Then rMηM = 2, δ = rM ηM

rlηl = 2
2× 1

2
= 2.

Furthermore, f∞ = 0 < 2 and f0 = 0 < 2π hold, so conditions (H5) and (H6) are
satisfied. Choose c2 = 1, then c3 = δc2 = 2.

For c2 ≤ ‖x‖ ≤ 2c2, we obtain

∫ ω

0

|f(s, x,Φ)|0 ∆s =
∫ 2

0

∣∣∣18x2(s)(3 + sin(x(s− 1)) + cos(u(s)))
ex(s)

∣∣∣ ∆s

=
1∑

s=0

∣∣∣18x2(s)(3 + sin(x(s− 1)) + cos(u(s)))
ex(s)

∣∣∣
≥

1∑
s=0

∣∣∣18x2(s)
ex(s)

∣∣∣
≥

1∑
s=0

18c22
e2c2

=
36
e2

≥ 4 = c2δω;

that is, (H7) holds.
In addition, it is obvious that (H1)-(H4) hold. By Theorem 3.2, (4.2) has at

least three nonnegative 2-periodic solutions. �
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Example 4.3. When T = Z, the following system has at least three nonnegative
2-periodic solutions for 1

4 < λ < 1
2 :

∆x(n) = (1− ecos nπ−ln
√

2
2 )x(n+ 1) + λ

18x2(n)(3 + cos(x(n− 1)) + sin2(u(n)))
1 + x2(n)

,

∆u(n) = −(0.85− 0.05 cosnπ)u(n) + 0.001x(n), n ∈ Z .
(4.3)

Proof. Corresponding to system (1.4), we have a(n) = ecos nπ−log
√

2
2 − 1, b(n) =

0.85 − 0.05 cosnπ, g(n) = 0.001x(n), f(n, x,Φ) = 18x2(n)(3+cos(x(n−1))+sin2(u(n)))
1+x2(n) ,

ω = 2. So we obtain

e	a(n, n− ω) = exp
{∫ n

n−ω

Log
(
1− a(τ)

1 + a(τ)

)
∆τ

}
= exp

{∫ n

n−2

log
( 1

1 + a(τ)

)
∆τ

}
= exp

{
−

∫ n

n−2

(
cos τπ − log

√
2

2

)
∆τ

}
= exp

{
−

n−1∑
τ=n−2

(
cos τπ − log

√
2

2

)}
= exp

{
log

1
2
}

=
1
2
.

In a similar argument as Example 4.2, it is not difficult to get that rMηM = δ = 2.
Furthermore, f∞ = 0 < 2 holds, so conditions (H5) and (H6) are satisfied.

Choose c2 = 1, then c3 = δc2 = 2. For c2 ≤ ‖x‖ ≤ 2c2, we obtain∫ ω

0

|f(s, x,Φ)|0 ∆s =
∫ 2

0

∣∣∣18x2(s)(3 + cos(x(s− 1)) + sin2(u(s)))
1 + x2(s)

∣∣∣ ∆s

=
1∑

s=0

∣∣∣18x2(s)(3 + cos(x(s− 1)) + sin2(u(s)))
1 + x2(s)

∣∣∣
≥

1∑
s=0

∣∣∣36
5

∣∣∣
≥ 8 = 2c2δω;

that is, (H9) holds.
Choose c1 = 0.01. For 0 ≤ ‖x‖ ≤ c1, we have ‖f(n, x,Φ)‖ ≤ 90‖x‖2 ≤ ‖x‖; that

is, (H10) holds. In addition, it is obvious that (H1)-(H4) hold. By Theorem 3.3,
(4.3) has at least three nonnegative 2-periodic solutions. �
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