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EXISTENCE OF SOLUTIONS TO SINGULAR ELLIPTIC
EQUATIONS WITH CONVECTION TERMS VIA THE

GALERKIN METHOD

CLAUDIANOR O. ALVES, PAULO C. CARRIÃO, LUIZ F. O. FARIA

Abstract. In this article, we use the Galerkin method to show the existence

of solutions for the following elliptic equation with convection term

−∆u = h(x, u) + λg(x,∇u) u(x) > 0 in Ω, u = 0 on ∂Ω,

where Ω is a bounded domain, λ ≥ 0 is a parameter, h has sublinear and

singular terms, and g is a continuous function.

1. Introduction

In this article, we study the existence of solution the problem
−∆u = h(x, u) + λg(x,∇u) in Ω,

u(x) > 0 in Ω
u = 0 on ∂Ω

(1.1)

where Ω is a bounded smooth domain in RN , N ≥ 1, λ is a positive parameter, the
function h has sublinear and singular terms and g is a continuous function. By a
solution to (1.1), we mean a u function if u ∈ C2(Ω)∩H1

0 (Ω) which is positive and
satisfies the equation in the classical sense in Ω.

Nonlinear singular boundary value problem arise in several physical situations
such as fluid mechanics, pseudoplastics flow, chemical heterogeneous catalysts, non-
Newtonian fluids, biological pattern formation, for more details about this subject,
we cite the papers of Fulks and Maybe [15], Callegari and Nashman [7, 8] and the
references therein.

When the nonlinearity has not a convection term, that is g = 0, there exist a lot
of work related to this subject; see for example, Crandall, Rabinowitz and Tartar
[9], Dávila and Montenegro [13], Choi and McKenna [6], Coclite and Palmieri [10],
Ĉırstea, Ghergu and Radulescu [11], Diaz, Morel and Oswald [12], Alves and Corrêa
[2], Alves, Corrêa and Gonçalves [3]. The main tools used in the above papers are
Sub and Supersolution, Fixed Point Theorems, Bifurcation Theory and Galerkin
Method. When the nonlinearity has a convection term, that is g 6= 0, we would
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2 C. O. ALVES, P. C. CARRIÃO, L. F. O. FARIA EJDE-2010/12

like to cite the papers of Ghergu and Radulescu [17, 18], Zhang [22], Giarrusso and
Porru [16], Wood [21] and references therein. In all these papers, the main tools
used are again Sub and Supersolution and Fixed Point Theorem. On the other
hand, using variational technique, recently, de Figueiredo, Girardi and Matzeu [14]
studied elliptic problems, where the nonlinearity depends of the gradient of the
solution.

In general the above papers assume that h is monotone and g is homogeneous.
Here, we show that the Galerkin method can be used to find solutions to (1.1) for
nonlinearities where h is not monotone and g is not homogeneous. This way, we
believe that our main results can be see as a complement of the study made in
the above papers. Moreover, the method used in the present paper can be used to
study singular elliptic equations in RN and elliptic systems with convection terms,
see examples 3 and 4 below.

The basic hypotheses on functions h and g are the following:
(H1) The functions h : Ω × R → R and g : Ω × RN → R are locally Hölder

continuous.
(H2) There exist constants b > 0, 0 < ri < 1(i = 1, 2, 3) with r1 < r2, and

positive continuous functions ai : Ω → R (i = 1, 2, 3) such that

b|µ|r1 ≤ h(x, µ) ≤ a1(x) + a2(x)|µ|r2 +
a3(x)
|µ|r3

, ∀(x, µ) ∈ Ω× R.

(H3) There exist a constant 0 < r4 < 1, and continuous functions a4 and a5 such
that

0 ≤ g(x, η) ≤ a5(x) + a4(x)|η|r4 , ∀(x, η) ∈ Ω× RN .

Note that the function h can have a singularity in µ. Thus, our approach consists
of associating to problem (1.1) a family of elliptic problems without such singular-
ities. Namely, for each ε > 0, we consider the problem

−∆u = h(x, |u|+ ε) + λg(x,∇u) in Ω
u > 0 in Ω

u = 0 on ∂Ω
(1.2)

Now, problem (1.2) can be treated by Galerkin method. We will show that taking
ε = 1/n, it is possible to obtain a family of bounded solutions {un} in H1

0 (Ω). By
passing to the limit in (1.2) with ε = 1/n. As n →∞, we will obtain a solution of
(1.1), strictly positive by a result due to Ambrosetti, Brézis and Cerami [5].

The first result of this paper is the following.

Theorem 1.1. If (H1)-(H3) hold, then (1.1) has a solution for all λ ≥ 0.

The second result is related with the following hypotheses on g:
(H4) The conditions of (H2) hold with r2 < min{ 4

N−2 , 1} when N ≥ 3 and

a3

φr3
1

∈ Lp(Ω) for some p >
N

2
where φ1 is a positive eigenfunction corresponding to the first eigenvalue of
(−∆,H1

0 (Ω)).
(H5) There exists a local Hölder continuous function g : [0,+∞) → [0,+∞) such

that
g(x, η) = g(|η|) ∀η ∈ RN
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with g(0) = 0 and g(t) > 0 for all t > 0.
(H6) There exists M∗ > 0 and β ∈ (0, 2

N ) such that

sup
t∈(0,M)

g(t)
tβ

=
g(M)
Mβ

, ∀M ≥ M∗.

Theorem 1.2. Assume that (H1),(H4), (H5), (H6) hold. Then there exists λ∗ > 0
such that (1.1) has a solution for all 0 ≤ λ ≤ λ∗.

In the sequel, we show some class of problems where our main theorems can be
applied to get a positive solution. These problems were not considered in the above
references.

Example 1.3. Theorem 1.1 establishes the existence of solutions for the problem

−∆u = h(u) + λg(|∇u|) in Ω
u > 0 in Ω, u = 0 on ∂

for all λ > 0, where the functions g, f and h are of the type

g(t) =


tβ1 , 0 ≤ t ≤ 2

2β1 + (5β2−2β1 )
5−2β1

(t− 2β1), 2 ≤ t ≤ 5
tβ2 , t ≥ 5

h(t) = tα1 +
m∑

i=2

(cos(it) + 1)tαi +
j∑

i=1

t−γi

where 0 < β1 < β2 < 1, j,m ∈ N and αi, γi ∈ (0, 1).

Example 1.4. Theorem 1.2 can be used to prove the existence of solution for the
problem

−∆u = h(u) + λg(|∇u|) in Ω
u > 0 in Ω, u = 0 on ∂Ω

has a solution when λ > 0 is small enough, if g and h are of the form

g(t) =
j∑

i=1

tβi h(t) = tα1 +
m∑

k=2

(cos(it) + 1)tαi ,

for some j, m ∈ N, 0 < βi, for i = 1, . . . , j, and αk ∈ (0, 1) for k = 1, . . . ,m.

Remark 1.5. Note that we can not apply the Theorem 1.1 to show the existence
of solution for the Example 2, because in this example we do not assume that
βi ∈ (0, 1).

The method used in this paper can be applied to prove the existence of solutions
for some class of elliptic systems or elliptic problems in whole RN ; for example,
Theorem 1.1 can be used to establish the existence of solutions in the following two
examples.
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Example 1.6.

−∆u =
1
uα

+ h1(x, u, v) + g1(x,∇u,∇v) in Ω

−∆v =
1
vβ

+ h2(x, u, v) + g2(x,∇u,∇v) in Ω

u(x), v(x) > 0 ∀x ∈ Ω
u = v = 0 on ∂Ω

where h1 and h2 are positive functions, which have a subcritical growth at the
variables u and v, that is, they are bounded from above by |u|α1 |v|α2 with α1, α2 > 0
and α1 + α2 < 1. Related to functions g1 and g2, we can assume that they are
positive and bounded from above by |∇u|β1 |∇v|β2 with β1, β2 > 0 and β1 +β2 < 1.

Example 1.7.
−∆u = p(x)(h(x, u) + g(x,∇u)), RN

where p is a positive weight satisfying some suitable conditions growth at infinite,
while that functions h and g satisfy assumptions of the type (H1)–(H3). Moreover,
in this class of problems we use the Sobolev space D1,2(RN ).

To conclude this introduction, we would like to mention that the class of problems
cited in examples 3 and 4 complete the study made in the papers [2], [3] and [18],
in the following sense : In [2] and [3] the nonlinearities have not convection term,
and in [18] the convection term is homogeneous, while in the present paper this
hypothesis is not assumed.

2. Preliminary Results

In this section, we will present some results already known and that will be used
in the next section. The lemma below is a consequence of Brouwer’s Fixed Point
Theorem and its proof can be found in Kesavan [20].

Lemma 2.1. Let F : RK → RK a continuous function with 〈F (x), x〉 ≥ 0, for x
satisfying |x| = R > 0, where 〈x, y〉 is the usual inner product of RK . So, there
exists z0 ∈ BR(0) such that F (z0) = 0.

Next, we state a result of sub and supersolution due to Ambrosetti, Brézis and
Cerami [5]. Consider the following problem

−∆v = f(v), in Ω
v > 0, in Ω

v(x) = 0, on ∂Ω
(2.1)

We say that v1 ∈ C2(Ω) ∩ C(Ω) is a subsolution of (2.1) if
−∆v1 ≤ f(v1) in Ω

v1 > 0 in Ω

v1(x) = 0 on ∂Ω .

(2.2)

Similarly, v2 ∈ C2(Ω) ∩ C(Ω) is a supersolution of (2.1) if
−∆v2 ≥ f(v2) in Ω

v2 > 0 in Ω

v2(x) = 0 on ∂Ω .

(2.3)
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Theorem 2.2. Let f : R → R such that t−1f(t) is decreasing for t > 0. Let v1

and v2 satisfying (2.2) and (2.3), respectively. So, v2 ≥ v1 in Ω.

3. Existence of solutions to (1.2)

The first lemma of this section is related with the regularity of the weak solutions
to (1.2).

Lemma 3.1 (Regularity). Assume that (H1)–(H3) hold and let u ∈ H1
0 (Ω) be a

weak solution of (1.2). Then u belongs to C2(Ω) ∩ C1(Ω).

Proof. Define Φ(x) = h(x, |u| + ε) + λg(x,∇u). Since u ∈ H1
0 (Ω), by (H2)–(H3),

Φ ∈ L2/r(Ω), where r = max{ri, i = 2, 4}. Thus, by Agmon [1, Theorem 8.2], all
solution of

−∆u(x) = Φ(x) in Ω

u(x) = 0 on ∂Ω

belong to W 2,s1(Ω), where s1 = 2/r and therefore u,∇u ∈ Ls1(Ω) and Φ ∈
Ls1/r(Ω). Using again [1], we obtain u ∈ W 2,s2(Ω) with s2 = 2/r2. Since r ∈ (0, 1),
repeating this argument k times, such that sk = 2/rk > N/2, it follows from the
Sobolev embedding that u in C1,α(Ω), for some 0 < α < 1. Thus, by Schauder
regularity theorem and (H1), we conclude that u ∈ C2(Ω). �

To obtain a solution to (1.2), we will apply Galerkin method. Note that, under
assumptions (H2)–(H3) and the Maximum Principle, any classical solution uε of
(1.2) is positive; that is, uε(x) > 0 for all x ∈ Ω.

Theorem 3.2. Assume (H1)–(H3). Then (1.2) has a solution uε in C2(Ω)∩C1(Ω).

Proof. Let Σ = {e1, . . . , em, . . . } be a orthonormal bases of the Hilbert space
H1

0 (Ω). For each m ∈ N, define the subspace Vm = [e1, . . . , em]; that is, Vm is
a m−dimensional space generated by the orthonormal set {e1, . . . , em}. It is well
known that (Vm, ‖ · ‖) and (Rm, | · |) are isomorphic by the natural linear transfor-
mation T : Vm → Rm given by

v =
m∑

i=1

ξiei → T (v) = ξ = (ξ1, . . . , ξm)

which also satisfies

‖v‖ = |T (v)| = |ξ|

where | · | and ‖ · ‖ denote the usual norms in Rm and H1
0 (Ω), respectively. In the

next, we will use the identification

ξ 7→
m∑

i=1

ξiei = v.

Considering the function F = (F1, . . . ., Fm) : Rm → Rm given by

Fi(ξ) =
∫

Ω

∇v∇eidx−
∫

Ω

(
h(x, |v|+ ε) + λg(x,∇v)

)
eidx,
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we have

〈F (ξ), ξ〉 =
∫

Ω

|∇v|2dx−
∫

Ω

(h(x, |v|+ ε)v + λg(x,∇v)v) dx

≥ ‖v‖2 − |a1|2|v|2 − |a2| 2
1−r2

|v|r2+1
2 − εr2 |a2|2|v|2

− 1
εr3

|a3|2|v|2 − λ|a5|2|v|2 − λ
( ∫

Ω

a2
4|∇v|2r4dx

)1/2

|v|2

≥ ‖v‖2 − c1|a1|2‖v‖ − c2|a2| 2
1−r2

‖v‖r2+1 − c3|a2|2‖v‖

− c4|a3|2‖v‖ − c6λ|a5|2‖v‖ − λc5|a4| 2
1−r4

‖v‖r4+1,

(3.1)

where c3, c4 depend of ε, and cj are independent of m for j = 1, . . . , 6. Therefore,

〈F (ξ), ξ〉 ≥ |ξ|2 − c1|a1|2|ξ| − c2|a2| 2
1−r2

|ξ|r2+1 − c3|a2|2|ξ| − c4|a3|2|ξ|

− λc6|a5|2|ξ| − λc5|a4| 2
1−r4

|ξ|r4+1,

from where follows that there exist ρ, r > 0, which are independent of m, such that

〈F (ξ), ξ〉 ≥ r > 0 on |ξ| = ρ.

Since F is a continuous functions, from Lemma 2.1, for each m ∈ N there exists
ξm ∈ Rm satisfying

F (ξm) = 0 |ξm| ≤ ρ. (3.2)
Next, we fix vm ∈ H1

0 (Ω) such that T (vm) = ξm. Hence, ‖vm‖ ≤ ρ for all n ∈ N
and ∫

Ω

∇vm∇ωdx =
∫

Ω

(
h(x, |vm|+ ε)ω + λg(x,∇vm)ω

)
dx ∀ω ∈ Vm.

Moreover, passing to a subsequence if necessary, we can assume that there exists
v ∈ H1

0 (Ω) such that

vm ⇀ v in H1
0 (Ω) and vm(x) → v(x) a.e in Ω.

The next claim is a key point to conclude the proof of the theorem.

Claim 3.3. The sequence {vm} is strongly convergent to v in H1
0 (Ω).

Assuming for a moment the claim, and recalling that for ω ∈ Vk and m ≥ k, we
have the equality∫

Ω

∇vm∇ωdx =
∫

Ω

(
h(x, |vm|+ ε)ω + λg(x,∇vm)ω

)
dx. (3.3)

It follows that ∫
Ω

∇v∇ωdx =
∫

Ω

(h(x, |v|+ ε)ω + λg(x,∇v)ω) dx. (3.4)

Since, for each φ ∈ H1
0 (Ω), there exist {γi} ⊂ R satisfying φ =

∑∞
i=1 γiei, the

sequence

φk =
k∑

i=1

γiei ∈ Vk,

is strongly convergent to φ in H1
0 (Ω). Putting w = φk in (3.4) and taking the limit

as k →∞ we obtain∫
Ω

∇v∇φdx =
∫

Ω

(h(x, |v|+ ε)φ + λg(x,∇v)φ) dx. (3.5)
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Thus v is a weak solution of (1.2), and by Lemma 3.1, v ∈ C2(Ω)∩C1(Ω). Therefore,
(1.2) has a classical solution and the proof of Theorem 3.2 is complete. �

Proof of Claim 3.3. Using the weak convergence and the Theorem of the Domi-
nated Convergence, it follows that∫

Ω

∇vm∇ω →
∫

Ω

∇v∇ω, (3.6)∫
Ω

h(x, |vm|+ ε)ω →
∫

Ω

h(x, |v|+ ε)ω, (3.7)∫
Ω

h(x, |vm|+ ε)(vm − v) → 0, (3.8)∫
Ω

h(x, |v|+ ε)(vm − v) → 0. (3.9)

From now on, for each m ∈ N, we consider the function Gm(x) := g(x,∇vm(x)).
From (H3),

|Gm|
L

2N
(N+2)r4 (Ω)

≤ |a5|
L

2N
(N+2)r4 (Ω)

+
( ∫

Ω

a4(x)
2N

(N+2)r4 |∇vm|
2N

N+2 dx
) (N+2)r4

2N

. (3.10)

Using (3.2) and Hölder’s inequality with exponents q = N+2
N and p = N+2

2 , we get
the estimate

|Gm|
L

2N
(N+2)r4 (Ω)

≤ |a5|
L

2N
(N+2)r4 (Ω)

+ |a4|
L

N
r4 (Ω)

|∇vm|r4
L2(Ω) ≤ c1 + c2ρ

r4 . (3.11)

Since L
2N

(N+2)r4 (Ω) is reflexive, up to subsequence, there exists G ∈ L
2N

(N+2)r4 (Ω) such
that Gm ⇀ G in L

2N
(N+2)r4 (Ω); that is,∫

Ω

Gmϕdx →
∫

Ω

Gϕdx ∀ϕ ∈ Lθ(Ω) (3.12)

where 1
θ + (N+2)r4

2N = 1. Recalling that the embedding H1
0 (Ω) ↪→ Lθ(Ω) is continu-

ous, (3.3) leads to∫
Ω

|∇v|2dx−
∫

Ω

h(x, |v|+ ε)vdx− λ

∫
Ω

G(x)vdx = 0.

On the other hand,

‖vm − v‖2 = ‖vm‖2 − 〈vm, v〉+ 〈v, vm − v〉 = ‖vm‖2 − ‖v‖2 + om(1),∫
Ω

h(x, |vm|+ ε)v =
∫

Ω

h(x, |v|+ ε)v + om(1),∫
Ω

G(x)vmdx =
∫

Ω

G(x)vdx + om(1).

From this

‖vm−v‖2 =
∫

Ω

(h(x, |vm|+ε)−h(x, |v|+ε))vmdx+λ

∫
Ω

(Gm(x)−G(x))vmdx+om(1),
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or equivalently,

‖vm − v‖2

=
∫

Ω

(h(x, |vm|+ ε)− h(x, |v|+ ε))(vm − v)dx + λ

∫
Ω

(Gm(x)−G(x))(vm − v)dx

+
∫

Ω

(h(x, |vm|+ ε)− h(x, |v|+ ε))vdx + λ

∫
Ω

(Gm(x)−G(x))vdx + om(1).

Using the weak convergence vm ⇀ v in H1
0 (Ω), (3.7)-(3.9) and (3.12), we derive

that
‖vm − v‖2 → 0.

This implies that vm → v in H1
0 (Ω), and the proof of Claim 3.3 is complete. �

4. Proof of Theorem 1.1

In this section, we will show firstly the existence of solutions and then its regu-
larity.

Existence. Taking εn = 1/n and uεn
= un, it follows that

−∆un = h(x, un + 1/n) + λg(x,∇un) in Ω
un > 0 in Ω

un(x) = 0 on ∂Ω.

(4.1)

By the definition of weak solution, taking φ = un as a test function in (4.1), we
have

‖un‖2 ≤
( ∫

Ω

a2
1dx

)1/2( ∫
Ω

u2
ndx

)1/2

+
( ∫

Ω

a
2

1−r2
2 dx

) 1−r2
2

( ∫
Ω

u2
ndx

) r2+1
2

+
( ∫

Ω

a2
2dx

)1/2( ∫
Ω

u2
ndx

)1/2

+
( ∫

Ω

a
2

1+r3
3 dx

) 1+r3
2

( ∫
Ω

u2
ndx

) 1−r3
2

+ λ

(∫
Ω

a2
5dx

)1/2 ( ∫
Ω

u2
ndx

)1/2

+ λ
( ∫

Ω

a2
4|∇un|2r4dx

)1/2( ∫
Ω

u2
ndx

)1/2

≤ c1|a1|2‖un‖+ c2|a2| 2
1−r2

‖un‖r2+1 + c3|a2|2‖un‖

+ c4|a3| 2
1+r3

‖un‖1−r3 + λc6|a5|2‖un‖+ λc5|a4| 2
1−r4

‖un‖r4+1

≤ C̃(‖un‖+ ‖un‖r2+1 + ‖un‖1−r3 + ‖un‖r4+1).
(4.2)

So there exists K > 0 such that ‖un‖ ≤ K. Up to subsequence, if necessary, we
can assume that

un ⇀ u in H1
0 (Ω), un(x) → u(x) a.e. in Ω.

Now, note that by (H2), un is a supersolution of
−∆v = b vr1 , in Ω

v > 0 in Ω
v = 0 on ∂Ω.

(4.3)

Since this equation has a unique solution in C2(Ω) ∩ C(Ω), which we will denote
by Ψ, from Theorem 2.2,

un(x) ≥ Ψ(x) ∀x ∈ Ω, ∀n ∈ N
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and thus
u(x) ≥ Ψ(x) a.e in Ω (4.4)

from where it follows that u(x) > 0 a.e in Ω.

Claim 4.1. For each ω ∈ H1
0 (Ω), we have∫

Ω

h(x, un + 1/n)ωdx →
∫

Ω

h(x, u)ωdx, (4.5)∫
Ω

h(x, un + 1/n)(un − u)dx → 0, (4.6)∫
Ω

h(x, u)(un − u)dx → 0. (4.7)

Proof. From (H2) and (4.4), we have

|h(x, un + 1/n)w| ≤ c1|w|+ c2|w||un|r2 + c3
|w|
Ψr3

,

|h(x, un + 1/n)(un − u)| ≤ c1|un − u|+ c2|un − u||un|r2 + c3
|un − u|

Ψr3
,

|h(x, u)(un − u)| ≤ c1|un − u|+ c2|un − u||u|r2 + c3
|un − u|

Ψr3

for some positive constants ci for i = 1, 2, 3. From Ambrosetti, Brézis and Cerami
[5], the function Ψ satisfies the following inequality

Ψ(x) ≥ Cφ1(x) ∀x ∈ Ω,

where C is a positive constant and φ1 is a positive eigenfunction related to the first
eingenvalue of (−∆,H1

0 (Ω)). This way,

|h(x, un + 1/n)w| ≤ c1|w|+ c2|w||un|r2 + c4
|w|
φr3

1

, (4.8)

|h(x, un + 1/n)(un − u)| ≤ c1|un − u|+ c2|un − u||un|r2 + c4
|un − u|

φr3
1

, (4.9)

|h(x, u)(un − u)| ≤ c1|un − u|+ c2|un − u||u|r2 + c4
|un − u|

φr3
1

. (4.10)

From the Hardy-Sobolev inequality found in [4] (see also [19] ), we have

|w|
φr3

1

∈ L1(Ω), quad
|un − u|

φr3
1

→ 0 in L1(Ω). (4.11)

Moreover, by using the compact Sobolev embedding, we derive that

lim
n→+∞

∫
Ω

|un − u||u|r2 = lim
n→+∞

∫
Ω

|un − u||un|r2 = lim
n→+∞

∫
Ω

|un − u| = 0. (4.12)

These limits together with Theorem of the Dominated Convergence imply (4.5)-
(4.7). �

Now, the Claim 4.1 combined with arguments explored in the proof of Claim 3.3
imply un → u in H1

0 (Ω); hence,∫
Ω

∇u∇φdx =
∫

Ω

(
h(x, u)φ + λg(x,∇v)φ

)
dx ∀φ ∈ H1

0 (Ω).

from where it follows that u is a weak solution for (1.1).
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Remark 4.2 (Regularity of the solution). From (4.4), it follows that 1/u belongs
to L∞loc(Ω). Thus, repeating the same arguments explored in the proof of Lemma
3.1, it follows that u ∈ C2(Ω) ∩H1

0 (Ω).
To conclude this study of regularity, we would like to mention the following fact:

If the function a3 given by (H2) satisfies a hypothesis of the type
a3

φr3
1

∈ L∞(Ω),

using again Regularity Theory, it follows that u ∈ C2(Ω) ∩ C(Ω).

5. Proof of Theorem 1.2

To prove Theorem 1.2, we will work with an auxiliary problem. For each M >
M∗, we define the function

gM (t) =

{
g(t) if 0 ≤ t ≤ M
g(M)
Mβ tβ , t ≥ M

and the problem
−∆u = h(x, |u|) + λgM (|∇u|) in Ω

u > 0 in Ω
u = 0 on ∂Ω.

(5.1)

Note that if uλ,M is a solution of (5.1) satisfying

|∇uλ,M (x)| ≤ M ∀x ∈ Ω, (5.2)

then uλ,M is a solution for (1.1). From now on, our goal is to prove that there exist
M > 0 and λ∗ = λ∗(M) > 0 such that uλ,M satisfies (5.2) for λ ≤ λ∗.

Since h and gM satisfy the hypotheses of Theorem 1.1, for all λ > 0 and M > M∗,
there exists a solution uλ,M of (5.1) satisfying

uλ,M (x) ≥ Ψ(x) ∀x ∈ Ω.

Taking λ∗ = Mβ

g(M) , (H6) leads to

λgM (|∇uλ,M (x)|) ≤ |∇uλ,M (x)|β ∀x ∈ Ω, ∀λ ≤ λ∗ ;

therefore, there exists C > 0 such that

‖uλ,M‖ ≤ C ∀M > M∗, ∀λ ≤ λ∗ (5.3)

where C is independent of λ and M .

Claim 5.1. There exists k > 0 such that ‖uλ,M‖C1(Ω) ≤ k for all M ≥ M∗ and
λ ≤ λ∗.

Proof. By considering

Φλ,M (x) = h(x, uλ,M (x)) + λgM (|∇uλ,m(x)|)
we have

|Φλ,M (x)| ≤ a1(x) + a2(x)|uλ,M (x)|r2 + c7
a3(x)
φr3

1 (x)
+ |∇uλ,M (x)|β ∀λ ≤ λ∗.

From (H4), (H6) and (5.3), it follows that Φλ,M ∈ Lq(Ω) for q > N
2 , q ≈ N

2 and

|Φλ,M |q ≤ C1, ∀λ ≤ λ∗, M ≥ M∗. (5.4)
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Since uλ,M is a solution of the problem

−∆u(x) = Φλ,M (x) in Ω

u(x) = 0 on ∂Ω

by Agmon [1, Theorem 8.2], uλ,M ∈ W 2,q(Ω) and there exists C3 > 0, which is
independent of uλ,M , such that

‖uλ,M‖W 2,q(Ω) ≤ C3|Φλ,M |q.

Using the continuous embedding W 2,q(Ω) ↪→ C1(Ω), we obtain

‖uλ,M‖C1(Ω) ≤ C4|Φλ,M |q. (5.5)

From (5.4) and (5.5), there exists k > 0 such that

‖uλ,M‖C1(Ω) ≤ k ∀λ ≤ λ∗, M ≥ M∗.

This completes the proof of the claim. �

From Claim 5.1, if M ≥ max{M∗, k} and λ ≤ λ∗, we have

|∇uλ,M (x)| ≤ M ∀x ∈ Ω

from where it follows that

gM (|∇uλ,M (x)|) = g(|∇uλ,M (x)|) ∀x ∈ Ω.

Therefore, for λ ≤ λ∗ and M ≥ max{M∗, k} the function uλ,M is a solution for
(1.1), and the proof of Theorem 1.2 is complete.
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[7] A. Callegari, A. Nashman; Some singular nonlinear equation arising in boundary layer theory,
J. Math. Anal. Appl. 64 (1978) 96-105.

[8] A. Callegari, A. Nashman; A nonlinear singular boundary value problem in the theory of

pseudo-plastic fluids, SIAM J. Appl. Math. 38 (1980) 275-281
[9] M. G. Crandall, P. H. Rabinowitz, L. Tartar; On a Dirichlet problem with singular nonlin-

earity, Comm. Partial Diff. Equat. 2 (1977) 193-222.

[10] M. M. Coclite, G. Palmieri; On a singular nonlinear Dirichlet problem, Comm. Partial Diff.
Equat. 14 (1989) 1315-1327.
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Departamento de Matemática - Instituto de Ciências Exatas, Universidade Federal de

Juiz de Fora, 30161-970, Juiz de Fora - MG, Brazil
E-mail address: luiz.faria@ufjf.edu.br


	1. Introduction
	2. Preliminary Results
	3. Existence of solutions to (??)
	4. Proof of Theorem ??
	Existence

	5. Proof of Theorem ??
	References

