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NONLINEAR BOUNDARY DISSIPATION FOR A COUPLED
SYSTEM OF KLEIN-GORDON EQUATIONS

ALDO T. LOURÊDO, M. MILLA MIRANDA

Abstract. This article concerns the existence of solutions and the decay of the

energy of the mixed problem for the coupled system of Klein-Gordon equations

u′′ −∆u + αv2u = 0 in Ω× (0,∞),

v′′ −∆v + αu2v = 0 in Ω× (0,∞),

with the nonlinear boundary conditions,

∂u

∂ν
+ h1(., u′) = 0 on Γ1 × (0,∞),

∂v

∂ν
+ h2(., v′) = 0 on Γ1 × (0,∞),

and boundary conditions u = v = 0 on (Γ\Γ1)× (0,∞), where Ω is a bounded

open set of Rn (n ≤ 3), α > 0 a real number, Γ1 a subset of the boundary Γ
of Ω and hi a real function defined on Γ1 × (0,∞).

Assuming that each hi is strongly monotone in the second variable, the

existence of global solutions of the mixed problem is obtained. For that it is
used the Galerkin method, the Strauss’ approximations of real functions and

trace theorems for non-smooth functions. The exponential decay of the energy

for a particular stabilizer is derived by application of a Lyapunov functional.

1. Introduction

A mathematical model that describes the interaction of two electromagnetic
fields u and v with masses a and b, respectively, and with interaction constant
α > 0 is given by the following Klein-Gordon system

utt(x, t)−∆u(x, t) + a2u(x, t) + αv2(x, t)u(x, t) = 0, x ∈ Ω, t > 0,

vtt(x, t)−∆v(x, t) + b2v(x, t) + αu2(x, t)v(x, t) = 0, x ∈ Ω, t > 0,
(1.1)

where Ω is a bounded open set of R3. This model was proposed by Segal [18].
As the interest of this paper is to make the mathematical analysis of the model

(1.1), we can assume, without loss of generality, that a = b = 0.
Let Ω be a bounded open set of the Rn with boundary Γ. The existence

and uniqueness of solutions of the mixed problem with null Dirichlet boundary
conditions on Γ for system (1.1) with coupled nonlinear terms α|v|σ+2|u|σu and
α|u|σ+2|v|σv was studied by Medeiros and second author, in the cases α > 0 and
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α < 0, in [14] and [15], respectively. Here σ ≥ 0 is related with the dimension n of
the Rn and the embedding of Sobolev spaces.

Let {u, v} be a solution of system (1.1) with null Dirichlet boundary conditions
on Γ and

E(t) = ‖u′(t)‖2
L2(Ω) + ‖v′(t)‖2

L2(Ω) + ‖∇u(t)‖2
(L2(Ω))n

+ ‖∇v(t)‖2
(L2(Ω))n + α‖u(t)v(t)‖2

L2(Ω)

the energy associated to the problem. Then

E(t) = E(0), ∀t ≥ 0.

Thus, to obtain a decay of the energy, we need to introduce a dissipation in the
problem, on the boundary Γ, for instance. In what follows we describe this problem.

Let Ω be a bounded open domain of Rn where n ≤ 3 with boundary Γ of class
C2. Assume that Γ is constituted by two disjoint closed parts Γ0 and Γ1 both with
positive Lebesgue measures (Thus Γ is not connected). By ν(x) is represented the
unit outward normal at x ∈ Γ1. Consider two real valued functions h1(x, s) and
h2(x, s) defined in x ∈ Γ1 and s ∈ R. With these notations we have the problem

u′′ −∆u+ αv2u = 0 in Ω× (0,∞),

v′′ −∆v + αu2v = 0 in Ω× (0,∞),

u = 0 on Γ0 × (0,∞),

v = 0 on Γ0 × (0,∞),
∂u

∂ν
+ h1(., u′) = 0 on Γ1 × (0,∞),

∂v

∂ν
+ h2(., v′) = 0 on Γ1 × (0,∞),

u(0) = u0, v(0) = v0 in Ω,

u′(0) = u1 v′(0) = v1 in Ω.

(1.2)

In the case of one equation (that is, when α = 0), Ω a bounded open set of
Rn, h(x, s) = δ(x)s, Komornik and Zuazua [8], using the semigroup theory, showed
the existence of solutions. Under the same hypotheses, but applying the Galerkin
method with a special basis, the second author and Medeiros [16], obtained a similar
result. The second method, furthermore to be constructive, has the advantage of
showing the Sobolev space where lies ∂u

∂ν . Applying this second method to a wave
equation with a nonlinear term, Araruna and Maciel [1], derived an analogous
result.

The existence of solutions of the wave equation with a nonlinear dissipation on
Γ1 has been obtained, using the theory of monotone operators, among others, by
Zuazua [21], Lasiecka and Tataru [9], Komornik [6], and applying the method of
Galerkin, by Vitillaro [20] and Cavalcanti et al. [4].

In Alabau-Boussouira [2], as in all above works, the exponential decay of the
energy associated to the wave equation is obtained by applying functionals of Lya-
punov and the technique of multipliers.

It is worth emphasizing that the known results on the exponential decay of the
energy associated to the wave equation with a nonlinear boundary dissipation were
obtained by supposing that h(s) has a linear behavior in the infinite; that is,

d0|s| ≤ |h(s)| ≤ d1|s|, ∀|s| ≥ R, (1.3)



EJDE-2010/120 NONLINEAR BOUNDARY DISSIPATION 3

where R sufficiently large (d0 and d1 positiveconstants). See Komornik [6] and the
references therein.

Returning to system (1.2) we can mention the work of Cousin et al. [5] where the
conditions on the boundary are linear. We will also mention the work of Komornik
and Rao [7] where the coupled terms are the form α(u − v) and α(v − u) and the
boundary conditions are similar to (1.2). More precisely, in this work under the
hypotheses

α ∈ L∞(Ω), α ≥ 0
h is continuous, nondecreasing, h(s) = 0 if s = 0;
|h(s)| ≤ 1 + c|s|, for all s ∈ R where c is a positive constant;

and using results of maximum monotone operators, they showed the existence of
solutions. With h satisfying (1.3) for all s ∈ R and applying the technique of the
multipliers, they obtained the exponential decay of the energy associated to the
problem.

In this work we are interested in studying the existence of solutions of Problem
(1.2) under very general conditions on hi, i = 1, 2. In fact, assuming that

hi ∈ C0(R;L∞(Γ1)), hi(x, 0) = 0, a.e. x ∈ Γ1

and hi is strongly monotone in the second variable; that is,

[hi(x, s)− hi(x, r)](s− r) ≥ di(s− r)2, ∀s, r ∈ R,

where di are positive constant for i = 1, 2. We obtain the existence of global
solutions for (1.2). In our approach, we apply the Galerkin method with a special
basis, an appropriate Strauss’ Lipschitz approximation of hi and results on the trace
of non-smooth functions. In the passage to the limit in the nonlinear boundary term
hil(., u′l) ((hil) are the Strauss’ approximations of hi and (ul), approximate solutions
of (1.2)), we use the compactness method (In what follows i = 1, 2). For that we
need to obtain estimates for (u′l) and (u′′l ). It is possible thanks to the strong
monotonicity of hi. These estimates allow us to obtain the strong convergence

u′l → u′ in L2(0, T ;L2(Γ1)),∀T > 0.

This, Strauss’ Theorem [19] and results on trace of non-smooth functions (Lemma
3.2) give

hil(., u′l) → hi(., u′) in L1(0, T ;L1(Γ1)), ∀T > 0.

As consequence of the mentioned estimates, we are driven to obtain global strong
solutions of (1.2). The existence of global weak solution for (1.2) with the general
hypotheses on hi is an open problem.

The exponential decay of the energy of (1.2) is derived for the particular case

hi(x, s) = m(x).ν(x)gi(s),

gi ∈ C0(R), gi satisfying (1.3) and m(x) = x − x0, x0 ∈ Rn. In this part we
use a functional of Lyapunov (see Komornik and Zuazua [8]) and the technique of
multipliers (see [17]). The exponential decay for more general stabilizers is an open
problem.

In Section 2 we state our main results and in Section 3, we prove these results.
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2. Notation and main results

Let Ω be a bounded open set of Rn with boundary Γ of class C2 and Γ0,Γ1, ν(x)
as in the Introduction. The scalar product and norm of L2(Ω) are represented,
respectively, by (u, v) and |u|. By V is denoted the Hilbert space

V = {v ∈ H1(Ω); v = 0 on Γ0}
equipped with the scalar product

((u, v)) =
n∑

i=1

( ∂u
∂xi

,
∂v

∂xi

)
and norm ‖u‖2 =

n∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣2.
To state our results, we introduce some hypotheses. Consider real functions h1(x, s)
and h2(x, s) defined on Γ1 × R satisfying the following hypotheses:

(H1) hi ∈ C0(R;L∞(Γ1));
hi(x, s) is nondecreasing in s for a.e. x in Γ1;
hi(x, 0) = 0 a.e. x ∈ Γ1;
[hi(x, s)− hi(x, r)](s− r) ≥ di(s− r)2, for all s, r ∈ R and a.e. x in Γ1,
where i = 1, 2. Here d1 and d2 are positive constants and we use the
notation (hi(s))(x) = hi(x, s).

(H2) n ≤ 3 and α ≥ 0;
(H3) {u0, v0} ∈ [D(−∆)]2 and {u1, v1} ∈ [H1

0 (Ω)]2 where

D(−∆) = {u ∈ V ∩H2(Ω);
∂u

∂ν
= 0 on Γ1}

Theorem 2.1. Assume (H1)–(H3). Then there exist a pair of functions {u, v} in
the class

(C) {u, v} ∈ [L∞(0,∞;V )]2, {u′, v′} ∈ [L∞loc(0,∞;V )]2,
{u′′, v′′} ∈ [L∞loc(0,∞;L2(Ω))]2,

satisfying the equations

u′′ −∆u+ αuv2 = 0 in L∞loc(0,∞;L2(Ω)),

v′′ −∆v + αvu2 = 0 in L∞loc(0,∞;L2(Ω)),
(2.1)

the boundary conditions
∂u

∂ν
+ h1(., u′) = 0 in L1

loc(0,∞;L1(Γ1)),

∂v

∂ν
+ h2(., v′) = 0 in L1

loc(0,∞;L1(Γ1)),
(2.2)

and the initial conditions
u(0) = u0, v(0) = v0 in Ω,

u′(0) = u1, v′(0) = v1 in Ω.
(2.3)

Theorem 2.2. If in addition to the hypotheses of Theorem 2.1 we have
(H4) there are positive constant k1, k2 such that

|h1(x, s)| ≤ k1|s|, |h2(x, s)| ≤ k2|s|
for all s ∈ R and a.e. x in Γ1.

Then the solution {u, v} given by Theorem 2.1 belongs to the class

(C*) {u, v} ∈ [L∞(0,∞;V ) ∩ L2
loc(0,∞;H

3
2 (Ω))]2;
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this solution is unique in the classes (C), (C*), and satisfies the boundary conditions

∂u

∂ν
+ h1(., u′) = 0 in L2(0,∞;L2(Γ1)),

∂v

∂ν
+ h2(., v′) = 0 in L2(0,∞;L2(Γ1)).

Remark 2.3. By (H3), we have ∂u0

∂ν = 0, ∂v0

∂ν = 0 on Γ1, and u1 = 0, v1 = 0 on
Γ1. Therefore, since hi(., 0) = 0,

∂u0

∂ν
+ h1(., u1) = 0 on Γ1,

∂v0

∂ν
+ h2(., v1) = 0 on Γ1.

In the general case, that is, when {u0, v0} ∈ [V ∩ H2(Ω)]2 and {u1, v1} ∈ V 2

satisfying the compatibility conditions

∂u0

∂ν
+ h1(., u1) = 0 on Γ1,

∂v0

∂ν
+ h2(., v1) = 0 on Γ1,

the existence of global solutions of (1.2) with initial data {u0, v0} and {u1, v1} is
an open problem. In our approach, when u0, u1 ∈ V ∩H2(Ω), the condition

∂u0

∂ν
+ h1(., u1) = 0 on Γ1,

does not imply necessarily

∂u0

∂ν
+ h1l(., u1) = 0 on Γ1, ∀l.

Thus in this case, we cannot to construct a special basis of V ∩H2(Ω) in order to
apply the Galerkin method.

Next we state the result on the decay of solutions of Problem (1.2). We assume
that there exists a point x0 ∈ Rn such that

Γ0 = {x ∈ Γ : m(x).ν(x) ≤ 0}, Γ1 = {x ∈ Γ : m(x).ν(x) > 0},

where m(x) = x − x0, x ∈ Rn, and η.ξ denotes the scalar product of Rn of the
vectors η, ξ ∈ Rn. Consider the particular functions

h1(x, s) = m(x).ν(x)g1(s), h2(x, s) = m(x).ν(x)g2(s), x ∈ Γ1, s ∈ R, (2.4)

where g1(s) and g2(s) are continuous real functions with gi(0) = 0, i = 1, 2 and
satisfy

(H5) [gi(s)− gi(r)](s− r) ≥ d∗i (s− r)2, for all s, r ∈ R, i = 1, 2;
(H6) |gi(s)| ≤ k∗i |s|, for all s ∈ R, where d∗i and k∗i are positive constants, i = 1, 2.
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Introduce the following constants (K,K∗ positive) such that

‖w‖L6(Ω) ≤ K‖w‖, ‖w‖2
L2(Γ1)

≤ K∗‖w‖2, ∀w ∈ V ; (2.5)

R = max
x∈Ω

‖m(x)‖; (2.6)

N(α, u0, v0, u1, v1) = N = |u1|2 + |v1|2 + ‖u0‖2 + ‖v0‖2 + α‖u0‖2‖v0‖2 + 1,

with α ≥ 0; (2.7)

Li =
3
4
(n− 1)2k∗iR(K∗)2, i = 1, 2; (2.8)

L = max
{
R2

(3
2
k∗1

)2 + L1 + 1, R2
(3
2
k∗2

)2 + L2 + 1
}
; (2.9)

M = 2
(
R+

n− 1
2

+
n− 1
2λ1

)
(2.10)

where λ1 is the first eigenvalue of the Laplacian operator associated to the triplet
{V,L2(Ω), ((u, v))} (see [10]). Define the energy

E(t) =
1
2

[
|u′(t)|2 + |v′(t)|2 + ‖u(t)‖2 + ‖v(t)‖2 + α|u(t)v(t)|2

]
, t ≥ 0,

where | · | is the L2 norm.

Theorem 2.4. Consider

{u0, v0} ∈ [D(−∆)]2 and {u1, v1} ∈ [H1
0 (Ω)]2

and a positive real number α0 such that

(H7) α0N ≤ 1/(8RK3).

Let {u, v} be the solution obtained in Theorem 2.1 with hypotheses (H4)–(H6) and
0 ≤ α ≤ α0. Then

E(t) ≤ 3E(0)e−2ωt/3, ∀t ≥ 0. (2.11)

where

ω = min
{d∗1
L
,
d∗2
L
,

1
2M

}
.

We make some comments. The open sets Ω of Rn satisfying the geometrical
condition given above (existence of x0 ∈ Rn which permits to determine Γ0 and
Γ1 satisfying conditions of Theorem 2.1) were introduced by Lions [12]. The decay
of solutions of Problem (1.2) for more general Ω, for example, when Ω satisfy the
geometrical control condition of Bardos, Lebeau and Rauch (see [12]), is an open
problem.

Hypothesis (H6) says that our feedback is between two linear feedbacks. This,
hypothesis (H5) and α0 small state that Problem (1.2) of Theorem 2.4 is a small
perturbation of the linear problems associated to (1.2), that is, α = 0 and hi(x, s)
linear in s.

When α = 0, all our results can be applied to the equation given by (1.2). In
this case Ω is an open bounded domain of Rn.

Consider the equation

u′′(x, t)−∆u(x, t) + f(u(x, t)) = 0, x ∈ Ω, t > 0
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with

f ∈W 1,∞
loc (R), f(s)s ≥ 0, ∀s ∈ R,

(f(s)− f(r)) ≤ a(1 + |s|p−1 + |r|p−1)(s− r), ∀s, r ∈ R, a > 0,

where 1 < p ≤ n
n−2 if n ≥ 3, and p > 1 if n = 1, 2; and the nonlinear dissipation of

(1.2). Then our results can be applied to obtain the existence of solutions of this
problem. This result is a nonlinear boundary version of the work of Araruna and
Maciel [1].

3. Proof of Results

To prove Theorem 2.1 we need the following two lemmas.

Lemma 3.1. Let h(x, s) be a real function defined on Γ1 ×R satisfying (H1) with
strongly monotone constant d0. Then there exists a sequence (hl) in C0(R;L∞(Γ1))
satisfying

(i) hl(x, 0) = 0 for a.e. x in Γ1;
(ii) [hl(x, s)− hl(x, r)](s− r) ≥ d0(s− r)2, for all s, r ∈ R, for a.e. x in Γ1;
(iii) there exists a function cl ∈ L∞(Γ1) such that

|hl(x, s)− hl(x, r)| ≤ cl(x)|s− r|, ∀s, r ∈ R, for a.e. x in Γ1;

(iv) (hl) converges to h uniformly on bounded sets of R, for a.e.x in Γ1.

Proof. For each l ∈ N we define

hl(x, s) =



C1l(x)s, if 0 ≤ s ≤ 1
l ,

l
∫ s+ 1

l

s
h(x, τ)dτ, if 1

l ≤ s ≤ l,

C2l(x)s, if s > l,

C3l(x)s, if − 1
l ≤ s ≤ 0,

−l
∫ s

s− 1
l
h(x, τ)dτ, if − l ≤ s ≤ − 1

l ,

C4l(x)s, if s < −l,

where

C1l(x) = l2
∫ 2

l

1
l

h(x, τ)dτ, C2l =
∫ l+ 1

l

l

h(x, τ)dτ,

C3l(x) = −l2
∫ − 1

l

− 2
l

h(x, τ)dτ, C4l(x) = −
∫ −l

−l− 1
l

h(x, τ)dτ.

The sequence (hl) satisfies the conditions of the lemma. �

Lemma 3.2. Let T > 0 be a real number. Consider a sequence (wl) of vectors of
L2(0, T ;H−1/2(Γ1)) ∩ L1(0, T ;L1(Γ1)) and vectors w ∈ L2(0, T ;H−1/2(Γ1)), χ ∈
L1(0, T ;L1(Γ1)) such that

(i) wl → w weak in L2(0, T ;H−1/2(Γ1)),
(ii) wl → χ in L1(0, T ;L1(Γ1)).

Then w = χ.
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Proof. The preceding lemma follows by noting that convergence (i) and (ii) imply

wl → w in D′(0, T ;D′(Γ1)),

wl → χ in D′(0, T ;D′(Γ1)).

Therefore, w = χ. �

Proof of Theorem 2.1. Let (h1l) and (h2l) be two sequences of real functions in the
conditions of Lemma 3.1 that approximate h1 and h2, respectively. Also let (u1

l )
and (v1

l ) be two sequences of vectors of D(Ω) such that

u1
l → u1 in H1

0 (Ω) and v1
l → v1 in H1

0 (Ω). (3.1)

Note that
∂u0

∂ν
+ h1l(., u1

l ) = 0 on Γ1, ∀l,

since u1
l = 0 and ∂u0

∂ν = 0 on Γ1. Analogously

∂v0

∂ν
+ h2l(., v1

l ) = 0 on Γ1, ∀l.

Fix l ∈ N. We apply the Faedo-Galerkin’s method with a special basis. In fact,
consider the basis

{wl
1, w

l
2, w

l
3, w

l
4, . . .},

of V ∩H2(Ω) where u0, v0, u1
l and v1

l belong to the subspace generated by wl
1, w

l
2, w

l
3

and wl
4. Note that u1

l and v1
l belong to V ∩H2(Ω). With this basis we determine

approximate solutions ulm(t) and vlm(t) of Problem (1.2); that is,

ulm(t) =
m∑

j=1

gjlm(t)wl
j and vlm(t) =

m∑
j=1

hjlm(t)wl
j ,

when gjlm(t) and hjlm(t) are defined by the system:

(u′′lm(t), wk) + ((ulm(t), wk)) + α(ulm(t)v2
lm(t), wk) +

∫
Γ1

h1l(., u′lm(t))wkdΓ = 0,

(v′′lm(t), wp) + ((vlm(t), wp)) + α(vlm(t)u2
lm(t), wp) +

∫
Γ1

h2(., v′lm(t))wpdΓ = 0,

ulm(0) = u0, vlm(0) = v0 in Ω;

u′lm(0) = u1
l , v′lm(0) = v1

l in Ω.
(3.2)

for all k = 1, 2, . . . ,m and all p = 1, 2, . . . ,m.
The above finite-dimensional system has a solution {ulm(t), vlm(t)} defined on

[0, tlm[. The following estimate allows us to extend this solution to the interval
[0,∞[.
First Estimate. Considering 2u′lm(t) instead of wk in (3.2)1 and 2v′lm(t) instead
of wp in (3.2)2 and adding these results, we obtain

d

dt

[
|u′lm(t)|2 + ‖ulm(t)‖2 + |v′lm(t)|2 + ‖vlm(t)‖2

]
+ α

∫
Ω

v2
lm(t)

d

dt
(u2

lm(t))dx+ α

∫
Ω

u2
lm(t)

d

dt
(v2

lm(t))dx

+ 2
∫

Γ1

h1l(., u′lm(t))u′lm(t)dΓ + 2
∫

Γ1

h2l(., v′lm(t))v′lm(t)dΓ = 0.
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Noting that∫
Ω

v2
lm(t)

d

dt
u2

lm(t)dx+
∫

Ω

u2
lm(t)

d

dt
v2

lm(t)dx =
∫

Ω

d

dt
[ulm(t)vlm(t)]2 dx,

By the two preceding expressions, after integrate on [0, t[, 0 < t ≤ tlm, we obtain

|u′lm(t)|2 + ‖ulm(t)‖2 + |v′lm(t)|2 + ‖vlm(t)‖2 + α|ulm(t)vlm(t)|2

+ 2
∫ t

0

∫
Γ1

h1l(., u′lm(s))u′lm(s)dΓds+ 2
∫ t

0

∫
Γ1

h2l(., v′lm(s))v′lm(s)dΓds

= |u1
l |2 + ‖u0‖2 + |v1

l |2 + ‖v0‖2 + α|u0v0|2.

(3.3)

By Part (ii) of Lemma 3.1, we have

hil(x, s)s ≥ dis
2, ∀s ∈ R and a.e. x in Γ1, ∀l, i = 1, 2.

Note that |u0v0| < ∞ because n ≤ 3 and u0, v0 ∈ H1
0 (Ω). Taking into account

these two considerations and convergence (3.1), in (3.3), we obtain

|u′lm(t)|2 + ‖ulm(t)‖2 + |v′lm(t)|2 + ‖vlm(t)‖2 + α|ulm(t)vlm(t)|2

+ 2d1

∫ t

0

∫
Γ1

[u′lm(s)]2dΓds+ 2d2

∫ t

0

∫
Γ1

[v′lm(s)]2dΓds

≤
[
|u1|2 + ‖u0‖2 + |v1|2 + ‖v0‖2 + α|u0v0|2 + 1

]
= N1, ∀l ≥ l0,

where the constant N1 is independent of t, m and l ≥ l0. Thus

(ulm)is bounded in L∞(0,∞;V ), ∀l ≥ l0, ∀m
(u′lm)is bounded in L∞(0,∞;L2(Ω)), ∀l ≥ l0, ∀m
(u′lm)is bounded in L2(0,∞;L2(Γ1)), ∀l ≥ l0, ∀m

(3.4)

Analogous boundedness holds for (vlm) and (v′lm). Also

(ulmvlm)is bounded in L∞(0,∞;L2(Ω)), ∀l ≥ l0, ∀m

As we are in a finite dimensional setting, the above estimates allows us to prolong
the approximate solutions {ulm(t), vlm(t)} to the interval [0,∞[.
Second Estimate. Derive with respect to t equations (3.2)1 and (3.2)2 and con-
sider 2u′′lm(t) and 2v′′lm(t) instead wk and wp in (3.2)1 and (3.2)2, respectively. We
obtain

d

dt
|u′′lm(t)|2 +

d

dt
‖u′lm(t)‖2 + 2α(u′lm(t)v2

lm(t), u′′lm(t))

+ 4α(ulm(t)vlm(t)v′lm(t), u′′lm(t)) + 2
∫

Γ1

(u′′lm(t))2h′1l(., u
′
lm(t))dΓ = 0,

(3.5)

d

dt
|v′′lm(t)|2 +

d

dt
‖v′lm(t)‖2 + 2α(v′lm(t)u2

lm(t), v′′lm(t))

+ 4α(vlm(t)ulm(t)u′lm(t), v′′lm(t)) + 2
∫

Γ1

(v′′lm(t))2h′2l(., v
′
lm(t))dΓ = 0.

(3.6)
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• Analysis of the term: (u′lm(t)v2
lm(t), u′′lm(t)). Using the Holder inequality, the

Sobolev embedding V ↪→ L6(Ω) (note that n ≤ 3) and estimates (3.4), we obtain

|(u′lm(t)v2
lm(t), u′′lm(t))| ≤

∫
Ω

|u′lm(t)|R|v2
lm(t)|R|u′′lm(t)|Rdx

≤ ‖u′lm(t)‖L6(Ω)‖vlm(t)‖2
L6(Ω)|u

′′
lm(t)|

≤ C‖u′lm(t)‖|u′′lm(t)|
≤ C(‖u′lm(t)‖2 + |u′′lm(t)|2),

(3.7)

where C denotes the several constants independent of l and m.
• Analysis of the term (ulm(t)vlm(t)v′lm(t), u′′lm(t)). Applying the same argu-

ments used fo (3.7), we obtain

|(ulm(t)vlm(t)v′lm(t), u′′lm(t))| ≤ C(‖v′lm(t)‖|u′′lm(t)|) ≤ C(‖v′lm(t)‖2 + |u′′lm(t)|2).
(3.8)

In a similar way, we obtain estimates for

(v′lm(t)u2
lm(t), v′′lm(t)) and (vlm(t)ulm(t)u′lm(t), v′′lm(t)). (3.9)

Integrating (3.5) and (3.6) on [0, t], adding these results, using estimates (3.7)-(3.9)
and noting that

∂

∂s
h1l(x, s) ≥ d1 > 0,

∂

∂s
h2l(x, s) ≥ d2 > 0

for a.e. x in Γ1 and a.e s in R, we derive

|u′′lm(t)|2 + |v′′lm(t)|2 + ‖u′lm(t)‖2 + ‖v′lm(t)‖2

+ 2d1

∫ t

0

∫
Γ1

(u′′lm(s))2dΓds+ 2d2

∫ t

0

∫
Γ1

(v′′lm(s))2dΓds

≤ |u′′lm(0)|2 + |v′′lm(0)|2 + ‖u′lm(0)‖2 + ‖v′lm(0)‖2

+
∫ t

0

C[|u′′lm(s)|2 + |v′′lm(s)|2 + ‖u′lm(s)‖2 + ‖v′lm(s)‖2]ds.

(3.10)

The Gronwall’s Lemma implies that there exists C(t), t > 0, such that

|u′′lm(t)|2 + |v′′lm(t)|2 + ‖u′lm(t)‖2 + ‖v′lm(t)‖2

+ 2d1

∫ t

0

∫
Γ1

(u′′lm(s))2dΓds+ 2d2

∫ t

0

∫
Γ1

(v′′lm(s))2dΓds

≤ C(t)(|u′′lm(0)|2 + |v′′lm(0)|2 + ‖u′lm(0)‖2 + ‖v′lm(0)‖2).

We need to bound |u′′lm(0)|2 and |v′′lm(0)|2 by a constant independent of l and m.
This is one of the key points of the proof. These bounds are obtained thanks to
the choice of the special basis of V ∩H2(Ω). It is showed in the next estimate.
Third Estimate. Note that ulm(0) = u0 e vlm(0) = v0, respectively, for all l,m,
and ∂u0

∂ν + h1l(., u1
l ) = 0 on Γ1. Take t = 0 in (3.2)1. Then these two results and

Green formulae, give

(u′′lm(0), ϕ) + (−∆u0, ϕ) + α(u0(v0)2, ϕ) = 0

Taking ϕ = u′′lm(0) in this equality, we derive

|u′′lm(0)| ≤ |∆u0|+ α|u0(v0)2| ≤ C, ∀l,m



EJDE-2010/120 NONLINEAR BOUNDARY DISSIPATION 11

Thus (u′′lm(0)) is bounded in L2(Ω), for all l,m. Analogously (v′′lm(0)) is bounded
in L2(Ω), for all l,m. Taking into account these last two boundness in (3.10), we
obtain

(u′lm) is bounded in L∞loc(0,∞;V ), ∀l ≥ l0, m;

(u′′lm) is bounded in L∞loc(0,∞;L2(Ω)), ∀l ≥ l0, ∀m;

(u′′lm) is bounded in L2
loc(0,∞;L2(Γ1)), ∀l ≥ l0, ∀m.

(3.11)

Analogous boundedness hold for (v′lm) and (v′′lm).
Fourth Estimate. By the Holder inequality, the embedding V ↪→ L6(Ω) and
estimate (3.4), we obtain

|ulm(t)v2
lm(t)|2 ≤ ‖ulm(t)‖2

L6(Ω)‖vlm(t)‖4
L6(Ω) ≤ C.

Thus

(ulmv
2
lm) is bounded in L∞(0,∞;L2(Ω)), ∀l ≥ l0, ∀m. (3.12)

Analogously,

(vlmu
2
lm) is bounded in L∞(0,∞;L2(Ω)), ∀l ≥ l0, ∀m. (3.13)

As the estimates obtained are independent of l and m, it is natural to take the
limit in l and m in (3.2), but there are a difficulty in the passage to the limit in the
nonlinear term on the boundary Γ1. For that, first we take the limit in m in (3.2)
and then in l.

Passage to the Limit in m. The index l is fixed. Estimates (3.4) and (3.11)
allow us, by induction and diagonal process (in order to have sequences converging
on all [0,∞)), to obtain a subsequences of (ulm) and (vlm), still denoted by (ulm)
and (vlm), and functions ul, vl : Ω×]0,∞[→ R satisfying:

ulm → ul,m→∞, weak star in L∞(0,∞;V ),

u′lm → u′l,m→∞, weak star in L∞loc(0,∞;V ),

u′′lm → u′′l ,m→∞, weak star in L∞loc(0,∞;L2(Ω)),

u′lm → u′l,m→∞, weak in L2(0,∞;L2(Γ1)),

u′′lm → u′′l ,m→∞, weak in L2
loc(0,∞;L2(Γ1)).

(3.14)

Analogous convergence holds for (vlm), (v′lm) and (v′′lm) to vl, v
′
l and v′′l , respectively.

In what follows we work with subsequence of (ulm), always denoted by (ulm),
obtained by induction and diagonal process. We analyze the nonlinear terms. By
(3.14)2 we have

u′lm → u′l weak star in L∞loc(0,∞;H1/2(Γ1)) as m→∞.

This convergence, (3.14)5 and Compactness Aubin-Lions’ Theorem give

u′lm → u′l in L2
loc(0,∞;L2(Γ1)) as m→∞. (3.15)

By part (iii) of Lemma 3.1, we have∫ T

0

∫
Γ1

[h1l(x, u′lm(x, t))− h1l(x, u′l(x, t)]
2
dΓdt

≤ ‖c1l‖2
L∞(Γ1)

‖u′lm − u′l‖2
L2(0,T ;L2(Γ1))

.

Applying the above convergence in this inequality, we obtain

h1l(., u′lm) → h1l(., u′l) in L2
loc(0,∞;L2(Γ1)) as m→∞. (3.16)
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Analogously,

h2l(., v′lm) → h2l(., v′l) in L2
loc(0,∞;L2(Γ1))as ,m→∞. (3.17)

Convergence (3.14)1, (3.14)2, and Compactness Aubin-Lions’ Theorem imply

ulm → ul, in L2
loc(0,∞;L2(Ω)) as m→∞,

vlm → vl in L2
loc(0,∞;L2(Ω)) as m→∞,

which implies

ulmv
2
lm → ulv

2
l a.e. in Q = Ω×]0, T [ as m→∞,

vlmu
2
lm → vlu

2
l a. e. in Q = Ω×]0, T [ as m→∞.

This convergence, the fourth estimate and Lions’ Lemma [11], give

ulmv
2
lm → ulv

2
l weak in L2

loc(0,∞;L2(Ω)) as m→∞,

vlmu
2
lm → vlu

2
l weak in L2

loc(0,∞;L2(Ω)) as m→∞.
(3.18)

Convergence (3.14), (3.16)-(3.18) allow us to take the limit inm in (3.2)1 and (3.2)2.
Thus by these convergence and the density of V ∩H2(Ω) in V , we obtain∫ ∞

0

(u′′l (s), ϕ)θ(s)ds+
∫ ∞

0

((ul(s), ϕ))θ(s)ds+ α

∫ ∞

0

(ul(s)v2
l (s), ϕ)θ(s)ds

+
∫ ∞

0

∫
Γ1

h1l(., u′l(s))ϕθ(s)dΓds = 0, ∀ϕ ∈ V, ∀θ ∈ D(0,∞)

(3.19)
and ∫ ∞

0

(v′′l (s), ψ)θ(s)ds+
∫ ∞

0

((vl(s), ψ))θ(s)ds+ α

∫ ∞

0

(vl(s)u2
l (s), ψ)θ(s)ds

+
∫ ∞

0

∫
Γ1

h2l(., v′l(s))ψθ(s)dΓds = 0, ∀ψ ∈ V, ∀θ ∈ D(0,∞).

(3.20)
Now considering ϕ,ψ ∈ D(Ω) and θ ∈ D(0,∞) in the last two equalities and taking
into account that u′′l , v

′′
l , ulv

2
l and vlu

2
l belong to L2

loc(0,∞;L2(Ω)), we get

u′′l −∆ul + αulv
2
l = 0 in L2

loc(0,∞;L2(Ω)),

v′′l −∆vl + αvlu
2
l = 0 in L2

loc(0,∞;L2(Ω)).
(3.21)

The above equalities give ∆ul,∆vl ∈ L2
loc(0,∞;L2(Ω)). As ul, vl ∈ L2

loc(0,∞;V ),
we obtain

∂ul

∂ν
,
∂vl

∂ν
∈ L2

loc(0,∞;H−1/2(Γ1)). (3.22)

(see [13] and [10]).
Multiplying both sides of equation (3.21)1 by ϕθ with ϕ ∈ V and θ ∈ D(0,∞),

integrating on [0,∞[, using Green formulae and regularity (3.22), we obtain∫ ∞

0

(u′′l (s), ϕ)θ(s)ds+
∫ ∞

0

((ul(s), ϕ))θ(s)ds+ α

∫ ∞

0

(ul(s)v2
l (s), ϕ)θ(s)ds

−
∫ ∞

0

〈∂ul(s)
∂ν

, ϕ〉θ(s)ds = 0,
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where 〈; 〉 represents the duality pairing between H−1/2(Γ1) and H1/2(Γ1). Com-
paring this result with equation (3.19), we deduce

∂ul

∂ν
+ h1l(., u′l) = 0 in L2

loc(0,∞;L2(Γ1)). (3.23)

By similar arguments, we obtain
∂vl

∂ν
+ h2l(., v′l) = 0 in L2

loc(0,∞;L2(Γ1)). (3.24)

Passage to the Limit in l. As estimates (3.4), (3.11), (3.12) and (3.13) are
independent of l and m, we obtain with (ul) and (vl) similar convergence to (3.14)
and (3.18), that is, we have functions u, v : Ω×]0,∞[→ R such that

ul → u weak star in L∞(0,∞;V ),

u′l → u′ weak star in L∞loc(0,∞;V ),

u′′l → u′′ weak star in L∞loc(0,∞;L2(Ω)),

u′l → u′ weak in L2(0,∞;L2(Γ1)),

u′′l → u′′ weak in L2
loc(0,∞;L2(Γ1)),

(3.25)

analogous convergence holds for (vl), (v′l) and (v′′l ) to v, v′ and v′′ respectively. Also

ulv
2
l → uv2 weak in L2

loc(0,∞;L2(Ω)),

vlu
2
l → vu2 weak in L2

loc(0,∞;L2(Ω)).
(3.26)

Considering ϕ ∈ D(Ω) and θ ∈ D(0,∞) in (3.19), using convergence (3.25), (3.26)
and applying similar arguments as in (3.21), we obtain

u′′ −∆u+ αuv2 = 0 in L2
loc(0,∞;L2(Ω)) (3.27)

Similarly
v′′ −∆v + αvu2 = 0 in L2

loc(0,∞;L2(Ω)) (3.28)
We analyze the convergence in (3.23). As in (3.15), we get the convergence

u′l → u′ in L2
loc(0,∞;L2(Γ1))

Fix T > 0. The preceding convergence implies

u′l(x, t) → u′(x, t) a.e. in Σ1 = Γ1×]0, T [ (3.29)

Fix (x, t) ∈ Σ1. Then by (3.29) the set {u′l(x, t); l ∈ N} is bounded. Part (iv) of
Lemma 3.1 says that (h1l) converges to h1 uniformly on bounded sets of R, a.e. x
in Γ1. These two results and (3.29) imply

h1l(x, u′l(x, t)) → h1(x, u′(x, t)) a.e.in Σ1. (3.30)

Analogously,
h2l(x, v′l(x, t)) → h2(x, v′(x, t)) a.e. in Σ1. (3.31)

On the other hand, by (3.21)1 we obtain

(u′′l (t), u′l(t)) + ((ul(t), u′l(t))) + α(ul(t)v2
l (t)), u′l(t)) +

∫
Γ1

h1l(., u′l(t))u
′
l(t)dΓ = 0,

or ∫
Γ1

h1l(., u′l(t))u
′
l(t)dΓ = −1

2
d

dt
|u′l(t)|2 −

1
2
d

dt
‖ul(t)‖2 − α(ul(t)v2

l (t), u′l(t)).
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By analogous arguments used to obtain (3.7), we deduce

|(ul(t)v2
l (t), u′l(t))| ≤ C[‖ul(t)‖2 + |u′l(t)|2].

Note that ul ∈ C0([0, T ];V ), u′l ∈ C0([0, T ];L2(Ω)) and that (ul(T )) and (u′l(T ))
are bounded in V and L2(Ω), respectively (see similar estimates (3.4) and (3.11)
for (ul)). By the last two expressions and preceding considerations, we have∫ T

0

∫
Γ1

h1l(., u′l(t))u
′
l(t)dΓdt

≤ −1
2
|u′l(T )|2 +

1
2
|u1

l | −
1
2
‖ul(T )‖2 +

1
2
‖u0‖2 + αC

∫ T

0

[‖ul(t)‖2 + |u′l(t)|2]dt ≤ C

for all t ∈ [0, T ] for all l ≥ l0. As h1l(x, s)s ≥ 0, we obtain∫ T

0

∫
Γ1

h1l(., u′l(t))u
′
l(t)dΓdt ≤ C, ∀t ∈ [0, T ], ∀l ≥ l0. (3.32)

where C > 0 is a constant independent of l ≥ l0 and t ∈ [0, T ]. By (3.30), (3.32)
and Strauss’ Theorem [19], we have

h1l(., u′l) → h1(., u′) in L1(Γ1×]0, T [). (3.33)

By similar considerations,

h2l(., v′l) → h2(., v′) in L1(Γ1×]0, T [). (3.34)

On the other hand, by convergence (3.25), we find ul → u weak in L2(0, T ;V ) and
by (3.21) and convergence (3.25),

∆ul → ∆u weak in L2(0, T : L2(Ω)).

These two convergences imply

∂ul

∂ν
→ ∂u

∂ν
weak in L2(0, T ;H−1/2(Γ1))

(see [13]). As ∂ul

∂ν = −h1l(., u′l) in L2(0, T : L2(Γ1)) (see 3.23) we have that ∂ul

∂ν ∈
L1(0, T : L1(Γ1)). Then convergence (3.33) gives

∂ul

∂ν
→ h1(., u1) in L1(0, T ;L1(Γ1)).

These two last convergences and Lemma 3.2 provide

∂u

∂ν
+ h1(., u′) = 0 in L1(0, T ;L1(Γ1)).

By induction and diagonal process we obtain

∂u

∂ν
+ h1(., u′) = 0 in L1

loc(0,∞;L1(Γ1)). (3.35)

Similarly,
∂v

∂ν
+ h2(., v′) = 0 in L1

loc(0,∞;L1(Γ1)). (3.36)

Convergence (3.25) shows that {u, v} belongs to class (C), expressions (3.27) and
(3.28) are equations (2.1) and (3.35), (3.36) are the boundary conditions (2.2) of
the theorem. The verification of the initial conditions (2.3) follows by convergence
(3.19)l. �
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Proof of Theorem 2.2. Hypothesis (H4)1 and estimate (3.4)3 give

(h1l(., u′l)) is bounded in L2(0,∞;L2(Γ1)).

Hence there exists χ in L2(0,∞;L2(Ω)) such that

h1l(., u′l) → χ weak in L2(0,∞;L2(Γ1)).

By (3.33), we have

h1l(., u′l) → h1(., u′) in L1
loc(0,∞;L1(Γ1)).

Writing these two convergences in D′(0,∞;L1(Γ1)), we obtain by the uniqueness
of limits,

h1l(., u′l) → h1(., u′) weak in L2(0,∞;L2(Γ1)).
This and (3.35) provides

∂u

∂ν
+ h1(., u′) = 0 in L2(0,∞;L2(Γ1)).

In a similar way,
∂v

∂ν
+ h2(., v′) = 0 in L2(0,∞;L2(Γ1)).

The facts

u ∈ L∞(0,∞;V ), ∆u ∈ L∞loc(0,∞;L2(Ω)),
∂u

∂ν
∈ L2(0,∞;L2(Γ1))

give u ∈ L2
loc(0,∞;H3/2(Ω)) (see [13] and [10]).

Regularity of solutions {u, v} given by class (C) allows us to apply the energy
method in equations (2.1) and to obtain the uniqueness of solutions (see [11]) �

Proof of Theorem 2.4. Let (g1l) and (g2l) be the sequences obtained in Lemma 3.1
for the functions g1 and g2, respectively. By direct computations, we show

|g1l(s)| ≤
3
2
k∗1 |s|, |g2l(s)| ≤

3
2
k∗2 |s|, ∀s ∈ R. (3.37)

Consider the approximate solutions {ul, vl} of {u, v} satisfying (3.21) and boundary
conditions (3.23) and (3.24) constructed with

h1l(., u′l) = (m.ν)g1l(u′l), h2l(., u′l) = (m.ν)g2l(u′l).

Introduce the energy

El(t) =
1
2

[
|u′l(t)|2 + |v′l(t)|2 + ‖ul(t)‖2 + ‖vl(t)‖2 + α|ul(t)vl(t)|2

]
, t ≥ 0.

(3.38)
We prove inequality (2.11) for El(t). The theorem will follow by taking the lim inf
of both sides of this inequality. First of all, we note that

ul, vl ∈ L∞loc(0,∞;V ∩H2(Ω)), ∀l ≥ l0. (3.39)

In fact, fix l ∈ N. Let (ulm) be the sequences obtained in Theorem 2.1 that
approximates ul. As g1l is Lipschitzian and g1l(0) = 0, by [3], we have g1l(u′lm) ∈ V .
This fact, (3.37) and estimate (3.11)1 give

(g1l(u′lm)) is bounded in L∞loc(0,∞;H1/2(Γ1)).

So
g1l(u′lm) → χl weak star in L∞loc(0,∞;H1/2(Γ1)).
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As in (3.16) we obtain

g1l(u′lm) → g1l(u′l) in L2
loc(0,∞;L2(Γ1)).

These two convergences imply

(m.ν)g1l(u′l) ∈ L∞loc(0,∞;H1/2(Γ1)).

This result and boundary condition (3.23) give

∂ul

∂ν
∈ L∞loc(0,∞;H1/2(Γ1)).

Also, noting that u′′l and αulv
2
l belong to L∞loc(0,∞;L2(Ω)) (see proof of Theorem

2.1), we obtain

−∆ul = −u′′l − αulv
2
l ∈ L∞loc(0,∞;L2(Ω)).

Applying results of regularity of elliptic problems to there two expressions, we
obtain (3.39) for ul. Analogously for vl.

Regularity (3.39) allows us to obtain Rellich’s identity for ul, that is,

2(∆ul(t),m.∇ul(t))

= (n− 2)‖ul(t)‖2 −
∫

Γ1

(m.ν)|∇ul(t)|2 + 2
∫

Γ

∂ul(t)
∂ν

[m.∇ul(t)] dΓ
(3.40)

(see [8] and [17]).
By (3.21) and boundary conditions (3.23), (3.24), we obtain

d

dt
El(t) = −

∫
Γ1

(m.ν)g1l(u′l(t))u
′
l(t)dΓ−

∫
Γ1

(m.ν)g2l(v′l(t))v
′
l(t)dΓ

and by hypothesis (H5),

d

dt
El(t) ≤ −d∗1

∫
Γ1

(m.ν)u′2l (t)dΓ− d∗2

∫
Γ1

(m.ν)v′2l (t)dΓ. (3.41)

Introduce the perturbed energy

Elε(t) = El(t) + εψl(t), ε > 0 (3.42)

where

ψl(t) = ρl(t) + θl(t), (3.43)

ρl(t) = 2(u′l(t),m.∇ul(t)) + (n− 1)(u′l(t), ul(t)), (3.44)

θl(t) = 2(v′l(t),m.∇vl(t)) + (n− 1)(v′l(t), vl(t)). (3.45)

By direct computations, we have |ψl(t)| ≤MEl(t), where M were defined in (2.10).
Then, for ε ∈ (0, 1

2M ),

1
2
El(t) ≤ Elε(t) ≤

3
2
El(t), 0 < ε ≤ 1

2M
. (3.46)

To facilitate the writing we omit the argument t in ρl(t). By identity (3.40),
Green formulae, boundary condition (3.23) and noting that u′′l = ∆ul − αulv

2
l , it
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follows from (3.44)

ρ′l = (n− 2)‖ul‖2 −
∫

Γ

(m.ν)|∇ul|2 + 2
∫

Γ

∂ul

∂ν
(m.∇ul)dΓ

− 2α(ulv
2
l ,m.∇ul) + 2(u′l,m.∇u′l) + (n− 1)|u′l|2

− (n− 1)‖ul‖2 − (n− 1)
∫

Γ1

(m.ν)g1l(u′l)uldΓ− α(n− 1)|ulvl|2

= I1 + I2 + · · ·+ I9.

(3.47)

The idea is to obtain

ρ′l ≤ −ηE1l − η|ulvl|+ C

∫
Γ1

(m.ν)u′2ldΓ,

where η > 0, C > 0 and

E1l(t) =
1
2

[
|u′l(t)|2 + ‖ul(t)‖2

]
.

We have
∂ul

∂xi
= νi

∂ul

∂ν
, |∇ul|2 =

(∂ul

∂ν

)2 on Γ0 (3.48)

By (3.48), we find

I2 = −
∫

Γ

(m.ν)|∇ul|2dΓ = −
∫

Γ0

(m.ν)
(
∂ul

∂ν

)2

dΓ−
∫

Γ1

(m.ν)|∇ul|2dΓ. (3.49)

• Analysis of I3 = 2
∫
Γ

∂ul

∂ν (m.∇ul)dΓ.
By (3.48) and boundary condition (3.23), we derive

I3 = 2
∫

Γ0

(m.ν)
(∂ul

∂ν

)2
dΓ− 2

∫
Γ1

(m.ν)g1l(u′l)(m.∇ul)dΓ.

Recall R defined in (2.6). By (3.37), we have

−2
∫

Γ1

(m.ν)g1l(u′l)(m.∇ul)dΓ ≤ R2

∫
Γ1

(m.ν)[g1l(u′l)]
2dΓ +

∫
Γ1

(m.ν)|∇ul|2dΓ

≤ R2
(3

2
k∗1

)2
∫

Γ1

(m.ν)u′2l dΓ +
∫

Γ1

(m.ν)|∇ul|2dΓ.

So

I3 ≤ 2
∫

Γ0

(m.ν)
(∂ul

∂ν

)2
dΓ +R2

(3
2
k∗1

)2
∫

Γ1

(m.ν)u′2l dΓ +
∫

Γ1

(m.ν)|∇ul|2dΓ. (3.50)

Simplifying similar terms in (3.49), (3.50) and noting that
∫
Γ0

(m.ν)
(

∂ul

∂ν

)2
dΓ ≤ 0,

we obtain

I2 + I3 ≤ R2
(3
2
k∗1

)2
∫

Γ1

(m.ν)u′2l dΓ

• Analysis of I4 = −2α(ulv
2
l ,m.∇ul). We recall N given by (2) and the embed-

ding constant K given by (2.5). By (3.3), we have

‖ul(t)‖2 + ‖vl(t)‖2 ≤ N, ∀t ≥ 0, ∀l ≥ l0. (3.51)

By (3.51) and Holder inequality, we deduce

I4 ≤ 2αRK3N‖ul‖2.
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• Analysis of I5 = 2(u′l,m.∇u′l). By Green formulae and noting that ∂mj

∂xj
= 1

and u′l = 0 on Γ0, we obtain

I5 = −n|u′l|2 +
∫

Γ1

(m.ν)u′2l dΓ.

• Analysis of I8 = −(n − 1)
∫
Γ1

(m.ν)g1l(u′l)uldΓ. Recall the embedding con-
stant K∗ given by (2.5) and the constant L1 given by (2.8). By (3.37) and usual
inequalities, we get

I8 ≤
1
2
(n− 1)2

(3
2
k∗1

)2
R(K∗)2

∫
Γ1

(m.ν)u′2l dΓ +
1
4
‖ul‖2;

that is,

I8 ≤ L1

∫
Γ1

(m.ν)u′2l dΓ +
1
4
‖ul‖2.

By (3.47), using estimates for I2 + I3, I4, I5, I8 and cancelling equal terms with
different sign, we obtain

ρ′l ≤ −|u′l|2 − ‖ul‖2 + 2αRK3N(α)‖ul‖2 +
1
4
‖ul‖2

+
[
R2

(3
2
k∗1

)2 + L1 + 1
] ∫

Γ1

(m.ν)u′2l dΓ− α(n− 1)|ulvl|2.

Recall L defined by (2.9). Hypothesis (H7) implies

ρ′l ≤ −1
2
|u′l|2 −

1
2
‖ul‖2 − α

4
|ulvl|2 + L

∫
Γ1

(m.ν)u′2l dΓ, 0 ≤ α ≤ α0.

Similarly, θl given by (3.45), satisfies

θ′l ≤ −1
2
|v′l|2 −

1
2
‖vl‖2 − α

4
|ulvl|2 + L

∫
Γ1

(m.ν)v′2l dΓ, 0 ≤ α ≤ α0.

Combining these two inequalities with (3.42), (3.43) and using inequality (3.41),
we have

E′lε ≤ −εEl − (d∗1 − εL)
∫

Γ1

(m.ν)u′2l dΓ− (d∗2 − εL)
∫

Γ1

(m.ν)v′2l dΓ.

This implies

E′lε(t) ≤ −εEl(t), ∀t ≥ 0, 0 < ε ≤ min
{d1

∗

L
,
d2
∗

L

}
, 0 ≤ α ≤ α0. (3.52)

Take ω given by the theorem. Then (3.46) and (3.52) hold with ε = ω. By (3.46)
and (3.52), we deduce

E′lε(t) ≤ −2
3
ωElε(t), ∀t ≥ 0, 0 ≤ α ≤ α0.

This inequality and (3.46) give (2.11) with El(t). Inequality (2.11) for the solution
{u, v} follows by taking the lim inf of both sides of the preceding inequality. �
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