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SOLUTIONS TO A MODEL FOR COMPRESSIBLE IMMISCIBLE
TWO PHASE FLOW IN POROUS MEDIA

ZIAD KHALIL, MAZEN SAAD

ABSTRACT. In this article, we study the existence of solutions to a nonlin-
ear degenerate system modelling the displacement of two-phase compressible
immiscible flow in a three dimensional porous media. The aim of this work
is to treat the model with its general form with the whole nonlinear terms.
Especially, we consider the case where the density of each phase depends on
its corresponding pressure. We derive new energy estimates on velocities, sat-
urations and pressures to treat the degeneracy of the system. A compactness
result is shown for degenerate systems.

1. INTRODUCTION, ASSUMPTIONS AND MAIN RESULTS

The mathematical and numerical study of the miscible flow models has been
investigated in [5] [6, [16] and recently in [4} 11, 12} [13]. The immiscible and incom-
pressible flows have been treated by many authors [5, [7} [0 15} T4} 17 18]. For two
immiscible compressible flows, we refer to [20] 23], and recently [2I] and [9].

The immiscible flow models developed by [20, 2], 23] use the feature of global
pressure even if the density of each phase depends on its own pressure, then the
context was to assume small capillary pressure so that the densities are assumed
to depend on the global pressure, recently and under that context Galusinski, Saad
[21] obtained an existence result of solutions. The employed global pressure is that
defined by Chavent et al. [I0] for incompressible immiscible two phases, there is
no assumptions to define this pressure. In [3], a new notion of global pressure is
introduced especially for two compressible immiscible fluids, the new global pressure
is defined implicitly and depends on state law of density.

In this work, we consider the two compressible immiscible flows model studied in
[2I]. The model is treated in its general form under the physical assumption that
the density of each phase depends on its own pressure. The mathematical study
of this model is based on new energy estimates on the velocity of each phase. The
main idea consists in deriving from degenerate estimates on pressure of each phase,
which not allowed straight bound on pressures, an estimate on global pressure
and degenerate capillary term. An appropriate compactness lemma is shown with
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the help of the feature of global pressure to pass from non-degenerate case to the
degenerate case.
We give below the basic model written in variables pressures and saturations.
The equations describing the immiscible displacement of two compressible fluids
are given by the following mass conservation of each phase (i = 1,2):

¢ ()84 (pi(pi)si)(t, ) + div(pi(pi) Vi) (8, 2) + pi(pi)sifp(t, z) = pi(pi)si f1(t, @),
(1.1)
where ¢ is the porosity of the medium, p; and s; are respectively the density and
the saturation of the ¥ fluid. The velocity of each fluid V; is given by the Darcy
law:
ki(si(t,x .
Vi(t,xz) = —K(w)W(Vpi(t,x) —pi(pi)g), i=1,2. (1.2)
K3
where K(z) is the permeability tensor of the porous medium at point « to the fluid
under consideration, k; the relative permeability of the i*" phase, y; the constant
i-phase’s viscosity, p; the i-phase’s pressure and g is the gravity term. Here the
functions f; and fp are respectively the injection and production terms. Note that
in equation (1.1)) the injection term is multiplied by a known saturation s! corre-
sponding to the known injected fluid, whereas the production term is multiplied by
the unknown saturation s; corresponding to the produced fluid. By definition of
saturations, one has

s1(t, @) + s2(t,x) = 1. (1.3)

The curvature of the contact surface between the two fluids links the jump of
pressure of the two phases to the saturation by the capillary pressure law in order

to close the system ((1.1)-(1.3),
f(s1(t,2)) = pi(t @) — p2(t, 2). (1.4)

the application s; — f(s1) is non-decreasing, (%(51) > 0, for all s; € [0,1]), and
usually f(s; = 1) = 0, in the case of two phases, when the wetting fluid is at its
maximum saturation. In this study we consider that the index i = 1 represents
the wetting fluid, and for this choice capillary pressure vanishes when s; = 1. This
point is crucial in determining the spaces that the saturation of each phase belongs
to. We take the capillary pressure function f as considered in [I0], defined on [0, 1],
increasing and f(1) = 0.
In section [d] we will use the feature of global pressure. For that let us denote,

M;(s;) = ki(si)/p: i — phase’s mobility,
M(s1) = My(s1) + Ma(1 — s1) the total mobility,
V =V; 4+ V, the total velocity.

As in [10, 28| 2I] we can express the total velocity in terms of pa and f(s1). We
have

Ml(Sl)
M (s1)

V= —KM(sl)(Vpg + Vf(81)> + K(Mi(s1)p1(p1) + Ma(s2)p2(p2))8-

Defining the functions p(s1), p(s1) such that

Pl = e psn, o) =~ 22 o), (1)
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the global pressure is then defined as in [10]
p=p2+p(s1) =p1 +p(s1) (1.6)

Thus, the total velocity can be expressed as
V = —KM(51)Vp + K(Mi(s1)p1(p1) + Ma(s2)p2(p2))8,
Vi=—-KM;(s;)Vp — Ka(s1)Vs; + KM;(s:)pi(p:)g-

where a(s1) = %%(sl) > 0. Define

B(s) = / " a(e)de. (L7)

In this paper we do not use this concept of writing the total and each velocity in
terms of the global pressure and one saturation, but just to show the source of
definitions of some functions.

We detail the physical context by introducing the boundary conditions, the initial
conditions and some assumptions on the data of the problem. Let T > 0, fixed and
let Q be a bounded open set of R? (d > 1), with Lipschitz boundary. We set
Qr =(0,T) x Q, X7 = (0,T) x 99. To the system (LI)-(L3)-(T.4) (i = 1,2), we
add the following mixed boundary conditions and initial conditions. We consider
the boundary 92 = I'y UTi,p, where I'y # () denotes the injection boundary of the
first phase and I'iymp, the impervious one.

pl(t7x) = 07 pQ(t7x) =0 on Fl

1.
Vi -n=Vy-n=0 on iy, (1.8)

where n is the outward normal to the boundary I'iy,,. The initial conditions are
defined on pressures

pi(0,2) =pd(z) inQ, i=1,2 (1.9)

?

Next, we introduce some physically relevant assumptions on the coefficients of
the system.
(H1) The porosity ¢ € L°(£2) and there is two positive constants ¢¢ and ¢; such
that ¢o < ¢(x) < ¢1 almost everywhere x € .
(H2) The tensor K belongs to (L>(02))4*¢. Moreover, there exist two positive
constants kg and k., such that

1K |z (@)yaxd < kooy  (K(2)E,£) > kol¢?, forall £ € RY, ae. z € Q.

(H3) The functions M; and My belong to C°([0,1];RT), Mi(s; = 0) = 0 and
Ms(sg = 0) = 0. In addition, there is a positive constant mg, such that,
for all s € [0,1],

M1(81)+M2(82) Zmo; with S9 = 1—81.

(H4) (fp, f1) € (L3(Q7))?%, fp(t, ), f1(t,x) > 0 almost everywhere (t,7) € Qr,
sl(t,z) > 0 (i = 1,2) and si(t,2) + sk(t,z) = 1 almost everywhere in
(t, $) € Qr.

(H5) The densities p; (i = 1,2) are C?(R), increasing and there exist two positive
constants p,, and pps such that 0 < p,, < p;(pi) < par, for i = 1,2.

(H6) The capillary pressure function f € C'([0,1];R7) and 0 < f < %.

(H7) The function a € C*([0,1];R™) satisfies a(s) > 0 for 0 < s < 1, and
a(0) = a(l) =0.
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We assume that 37!, inverse of 3(s fo z)dz, is an Holder function of order
0, with 0 < 6 <1, on [0,5(1)]. Whlch means there exists a positive ¢ such that for
all 51,52 € [0,8(1)], one has |37 (s1) — 87 (s1)| < cfs1 — s2.

Assumptions (H1)—-(HT) are classical for porous media.

The main existence result of this paper is given below, for that let us define the
following Sobolev space

H{ (Q)={ue H (Q);u=0onT},

this is an Hilbert space when equipped with the norm |[lul[1 (o) = [[Vull(z2(q))a-
1
Let us state the main results of this paper.

Theorem 1.1. Let (H1)-(HT7) hold. Let (p{, p9) belongs to L*(Q) x L*(2). Then
there exists (p1,p2) satisfying

pi € LQ(OvT; Hfl‘l (Q)), ¢8t(pz(pz)sz) € LQ(O’T; (Hfl‘l (Q))/)’ =12, (1'10)
0<si(t,z) <1 ae inQp, i=1,2,;8(s1) € L*0,T; H(Q)) (1.11)

such that for all ¢; € C1(0,T; HE () with ¢;(T) =0,
- [ onosoidrai— | 6@ R0 0,2)dr

+ KM;(s;)pi(p2)Vp; - Vi, dx dt — KMi(si)p?(pi)g -V, dzdt
QT Qr
(1.12)
+ / pi(pi)sifpyidedt

= / pi(pi)sit frei da dt,
T

and finally the initial conditions are satisfied in a weak sense as follows: For all
¢ € HE (Q) the function

t— [ onipsiv da € °(0,7)), (1.13)
Q
furthermore,

/¢pz pz ﬂﬁdﬂ? /¢pz pz O'(/Jdm (1-14)

As we can see, the above notion of weak solutions is very natural provided that
we explain the origin of the requirements ((1.10| ). Obviously, they correspond
to a priori estimates. Indeed, the equatlonb nsure that s; > 0 (i = 1,2)
which is equivalent to 0 < s; < 1 (the proof is detalled in lemma The key point
is to obtain the estimates on Vp and V3(s1). For that, define

gi(pi) 1= /Opi ﬁdf, i=1,2, (1.15)
Hi(pi) == pi(pi)gi(pi) —piy  1=1,2, (1.16)

then Hj(p;) = p}(p:i)gi(pi), Hi(0) = 0, Hi(p;) > 0 for all p;, and H; is sublinear
with respect to p;. Multiplying (1.1)) by g1(p1) for ¢ = 1 and (L.1) by g2(p2) for
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i = 2 then integrate the equations with respect to x and adding them, we deduce
at least formally,

s Q¢(81H1(p1)+52H2(p2)+/0lf(ﬁ)dﬁ)dm

+/ KMl(Sl)vpl -Vp1 dl’+/ KMg(Sg)sz'szd:c

Q 0

~ [ Kot (o) Tprde — [ Ki(sahpa(plg: Vinde  (117)
Q Q

+/Qpl(Pl)Slfpgl(Pl)dxﬂL/sz(Pz)52fpg2(P2)d$

= /Qpl(pl)S{ffgl (p1) dz + /Q p2(p2)sh frg(p2) da.

A key point is to obtain formally the first term in the above equality, for that let
D = 0i(p1(p1)s1)g1(p1) + Oc(p2(p2)s2)g2(p2)
= 0¢(p1(p1)s191(p1)) + Ot (p2(p2)s2g2(p2)) — 510:p1 — 520¢p2.
We have s1 + 5o = 1, then s10;p1 + 520ip2 = 510:f(51) + Op2 = 0;G(51) + O4p2,
where G is a primitive of s1 f'(s1). We can write D as D = §;F where E is defined
by
E = p1(p1)s191(p1) + p2(p2)s292(p2) — G(s1) — p2
= 51(p1(p1)g1(p1) — p1) + 52(p2(p2)s292(p2) — p2) — G(s1) + s1.f(s1),

from the definition of the functions H; (i = 1,2) and G, the expression of E is
equivalent to:

s1
E = s1H1(p1) + saHz2(p2) +/ f(€) de.
0
Using the assumptions (H1)—(H6) and the fact that H; > 0, g;(p;) is sublinear
with respect to p; we deduce from (1.17)) that

M;i(s1)Vp1 - Vpr de + M5(s2)Vpg - Vpe dx < o0, (1.18)
Qr Qr

M M.
Vp = Vpa + ﬁlVf(sﬂ = Vpy — MQW(SI), (1.19)
then, we deduce a magic equality

M
M|Vp|? dx + /
Qr

M.
a1V (s de

Qr

= M1(51)|Vp1|2dx+/ M>(s2)|Vpo|? da,
Qr Qr

thus, the equality and the assumption (H3) ensure that p € L?(0, T} H%l Q)

and B(s1) € L*(0,T; H'(Q)).

Before establishing theorem [I.1} we introduce the existence of solutions to system
under the assumptions (H1)-(H7), with the addition of some terms on each
equation to save a maximum principle on saturations, to conserve the existence of
solutions of a time discretization, and to insure a compactness lemma which is nec-
essary to pass from an elliptic approximation to the original parabolic systemfrom,

(1.20)
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after that we get rid of these terms by a limit process which is also conserved. Thus
we consider the non-degenerate system:

$0; (p1(p)sT) — div(Kp (p]) My (s7)Vp]) + div(Kpi (p]) M (s7)g) (1.21)
—ndiv(p1(P)V (] = p3) + p1 ()81 fp = pr(p])s1 f1,
90y (p2(p3)s3) — div(Kpa(pg) Ma(s3)Vp3) + div(Kps (pg) Ma(s3)g) (1.22)
— ndiv(p2(pd)V(p3 — 7)) + p2(p])s8 fp = p2(p3)sh f1,

completed with the initial conditions (|1.9)), and the following mixed boundary con-
ditions, for i =1, 2,

pi(t,z) =0, py(t,z)=0 onTy,

(K)o = pslo?)e) + () 90— ) m =0 on Typy

where n is the outward normal to the boundary I'inp.
Now, we state existence of solutions of the above system by the following theo-
rem.

Theorem 1.2 (Non-degenerate system). Let (H1)—(H6) hold. Let (p, p3) belongs
to L*(Q) x L2(Q). Then for all n > 0, there exists (p],py) satisfying
pl € L*(0,T; Hp (Q)), s] € L*(0,T;H'(Q)), s§ € L*(0,T; Ht (Q)),
¢0,(pi(p])s]) € L*(0,T; (Hp, (Q))).  pi(p)s]) € C°(0,T; L*(Q)),
0<s!(t,x) <1 ae inQr,i=1,2,

for all p; € L*(0,T; H (Q)), i = 1,2,

(00 (pi(p)si), i) + ; KM;(s])pi(p])Vp)] - Vi, d dt

[ KM(D)2)g - Vs dadt 4+ (~1)7 / (Y (] — p) - Vipda dt
QT T
+/ Pi(p?)s?fPWidxdtZ/ pi(p])s! fr; da dt

(1.24)
where the symbol (-,-) represents the duality product between L*(0,T; (Ht (92))")
and L*(0,T; HE. ().

The first step to establish theorem is based on a time discretization scheme
of (1.21))-(1.22)). For that, let p; and s} be the values of the h-translated in time of
pi(pi) and s;, respectively, i = 1,2, we state the following theorem.

Theorem 1.3 (Non-degenerate elliptic system). Let (H1)—(H6) hold. Let (p?, p9)
belongs to L*(Q) x L2(Q). Then for all h > 0, there exists (p}, pl) = (p", p?™)
satisfying
pi € HE (Q), p3 € HE (), st € H'(Q), s H (Q),
0<st(t,z) <1 ae inQp, i=1,2,
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for all p; € HE (Q), i =1,2,
pi(pl)s! —p
/ LIS ZPIST / KM (s")pi (ol )Vl - Vips da
Q

- / Kst?)p?(p?)g Vo, da
& (1.25)

+(—1)i“77/Q pi(PV (P} —ph) - Ve dw+/ﬂpi(p?)8?fp<pi dzx

= /Q pi(p})s] froda,

The rest of the paper is organized as follows. In the next section we deal with
the time discrete model to prove Theorem in two steps. The first step deals
with an elliptic system with non degenerate mobilities, M; = M; + € with € > 0,
in this step we apply a suitable fixed point theorem, Leray-Schauder, to get weak
solution. The second step is to pass to the limit as € goes to zero depending on
a suitable uniform estimate (w. r. to €), and a maximum principle ensures the
positivity of saturations which achieves the proof of theorem

In the third section we introduce a sequence of solutions solving . This
choice is motivated by the fact that no evolution have to be considered in a first step.
The problem of degeneracy of evolution term is temporarily sat aside. Furthermore,
the maximum principle is conserved on saturation after the passage to the limit on
in the non linear variational elliptic system. The last section is devoted to pass
from non-degenerate case to degenerate case through a compactness lemma which
allow us with the help of some estimates to pass the limit and end the proof of
existence of weak solutions of the system under consideration. The next section is
devoted to the analysis of the elliptic problem.

2. STUDY OF A NONLINEAR ELLIPTIC SYSTEM (PROOF OF THEOREM |1.3))

Having in mind a time discretization of (|1.21)-(1.22]), we are concerned with the
following system,

i(pi)si — pisy . .
PP P i (K () My (50) V) + v (KM () )

— (=)™ ' div(pi(pi)V(p1 — p2)) + pi(pi)sifp @1)
= pi(p)sl fr in Q.

Before establishing theorem [I.3] which is the main purpose of this section, we intro-
duce the existence of solutions of system (2.1)), when the mobilities M;, (i = 1,2)
are replaced by a non-degenerate positive functions,

Mi=M;+e i=1,2, ande>0,

which reinforce the passage to the limit in another regularization which is the trunk

high frequencies of nonlinear elliptic term in pressure ps in the equation (2.1)). Let

Px be the orthogonal projector of L2(£2) on the first IV eigenvectors of the operator
p— —Ap

with homogeneous Dirichlet boundary conditions. The projector Py appears in
(2.3) to make regular the implied term. The necessity of this regularization appears
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in the coming proposition in order to define the operator which we apply on the
Leray-Schauder fixed point theorem.

The addition of such € to the mobilities lead to the loss of maximum principle
on the saturations s; (i = 1,2). So the functions M; and M are extended on R by
continuous constant functions outside [0,1] and then are bounded on R. For the
same reason we denote,

0 fors; <0
Z(si) =14 s; fors; €0;1] (2.2)
1 for s; > 1.

In the same spirit and in order to write the saturations s; (i = 1,2.) as functions
of the principle unknowns p; and ps of the system, we extend the capillary pressure
function f by continuity and strict monotony outside [0, 1] in to f, this is possible in
the case when the capillary function f is bounded, in other words when | f(0) |< oo,
and denote by s; = f~!(p1 — p2) and sy = 1 — f~(p1 — p2).

Existence of solution to is constructed in three steps. The first one consists
in studying the following problem for fixed parameters ¢ > 0, N > 0 and n > 0.
Then, we are concerned with the regularized elliptic system:

/ ¢m(pi’N)Z(Si’N) —p
Q h

*S* € € €
- 1<pdx+/QKMf(Si’N)m(pl’N)Vpl’N-dea:

- [ K)ot Ve Vo

(2.3)
o /Q ™)V (Pap™ — PpsN) - Vods + /Q @) Z2(55™) fpp da
:/Qpl(pi’N)S{fzsodx,
e, N e, N
") Z(sy — p5S5 € € €
P IZEL DS 0oy [ K55 )0alo Vi - Ve ds
¢ ¢
_ / KMy (s5™) o2 (05N )g - VE dar
@ (2.4)

-7 /Q p2(py"™ )V (Papy™ — Papy™) - VEda + /Q p2(py™)Z(sy™) fp€ da

_ /Q pa(ps™)sh f1€ d,

for all (¢,€) belonging to HE (Q) x HE (€); with sV = s — ps™) and
e,N e,N

sy =1—s7".

The second step concerns the passage to the limit as N goes to infinity in order to

recover the full physical diffusion on pressures p; and ps, while the third one is the

passage to the limit as e approaches zero.

Step 1. We show for fixed N > 0 and e > 0 existence of solutions to (2.3)-(2.4).
We omit for the time being the dependence of solutions on parameter N > 0 and
€.

Proposition 2.1. Assume p}s} belongs to L?(Q) and ptsf > 0. Then there exists
(p1,p2) belonging to HY () x Hp (Q), solution of (2.3)-(2.4).
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Proof. The proof is based on the Leray-Schauder fixed point theorem. Let 7 be a
map from L2(Q) x L?(Q) to L?(2) x L?(Q) defined by

T(phpZ) = (phPQ),
where the pair (p1,p2) is the unique solution of the system (2.5))-(2.6]

D1)Z(51) — pisy
/¢pl(p1) (1) = i 1sodx+/KMf(El)pl(ﬁl)Vpl-Vsodx
Q Q

h

- / KM, (51)72(By)g - Ve da +1 / 1 (51)V(PxBy — Px) - Vipda
Q Q

+ /Q p1(B1)Z(51) frpd = /Q pu(B1)s! frode, (2.5)

/ ¢P2(52)Z(i2) - pgséfdg; +/ K M5 (32)p2(Ps)Vp2 - VEdx
o Q
- /QKM2(§2)P%(I72)€ -Védxr —n /Q p2(P2)V(PNDy — PnD,) - VEdx

+ / po(B3) Z(52) f o dix = / pa(By)sh f1€ d, (2.6)
Q Q

for all (¢, £) belonging to H (Q)x HE (), 51 = f1(p,—P,) and 53 = 1— f~1(p; —
D). The functions M7 and M, are the extended mobilities which operates on R.
Such extensions of the mobilities M; (i = 1,2), the capillary function f and such
bound of the saturations s; (¢ = 1,2) by introducing the map Z are temporary; we
deal it at the end of this section after the passage to the limit in € by a maximum
principle on saturations and then the mobilities, the map Z and the extended
capillary function f operates only on [0, 1] where they have a physical meaning.

The system — can be written in the form By (p1,¢) = f1(¢), B2(p2,&) =
f2(€), where fi(-), fo(-) are linear continuous mappings on Hf\ (2). Then, apply
Lax-Milgram theorem to get the existence of the unique pair (p1,p2) in H%l (Q) x
HY. (€2) which ensures that the map 7 is well defined on L*(2) x L*(£2).

Lemma 2.2. The map 7 is a continuous operator which maps every bounded
subsets of (L?(Q))? into a relatively compact set (L*(Q))2.

Proof. Consider a sequence (P, ,,, Py ,,) of a bounded set, of L?(£2) x L*(2) which con-
verges to (Py,Dq) € L?(2) x L2(), and let us prove that (P1,nD2.n) = T(ﬁlm,ﬁzn)
is bounded in H{ () x Hf () which converges to (p1,p2) = 7 (P;,D;). The se-
quences pi p, P2, verify respectively

[ pr(P1.0) Z(51.0) — pisi
¢ h
Q

pds + / KM (51,001 (B ) V1 - Vep i
Q

- /QKMl(gLﬂ)p%(ﬁl,n)g : V()O dx + n‘/glpl(ﬁl,n)v(leﬁl,n - ,PNﬁZn) : VQD dx

+/QP1(T91,n)Z(§1,n)fP<Pd$=/9,01(1717n)5{f1¢d$7 (2.7)
Pﬁnzg,n —p*S* €(3 =

[o Pan) 2] 15 g [ KM5 (52,925, ) V2 - V d

Q Q
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— 2/ — _ _
- /Q KMy (52,03 (P )g - VEdz — 1 /Q p2(Bs )V (PND1 . — PrPan) - VE da

+ /Q p2(By.0) Z(52.0) [ dit = /Q p2(Ba,n) L€ d, (2.8)

for all (¢, &) belonging to Hf (Q) x Hf (Q). Let us take ¢ = py, in ([2.7),
/ KMle(glyn)pl(ﬁl,n)vpl,n : Vpl,n dx
Q

- / KMy (51,02 (Pr 0 )& - V. dit

“ / p1(B1 )V (PNByn — PrBan) - Vornda (2.9)
= Z(51n) — * ok
_/(bpl(pl,n) (21) P131p17ndﬂj
Q

—/QPl@l,n)z(gl,n)fppl,ndI/ﬂPl@Ln)S{ffpl,ndL

we deduce from the Cauchy-Schwarz inequality that (2.9]) reduces to,

chopns [ [Vpalde < C(1+ Iprallia + [9pral o
o (2.10)

+ IV PNBL 2oy + I VPPl )
where C' depends on Q, 7, h, ¢1, [|frllr2), If1llL2), prr, koo and [[p7st]12(q)-
As,
IVPNDinllLz@) < enlPinllze), (i=1,2)
where ¢y is the square root of the Nth eigenvalue of the laplace operator (by
considering the set of eigenvalues as increasing sequence), the Poincaré and Young
inequalities and the estimate (2.10) ensure that the sequence (P )y is uniformly
bounded in Hf (€2).
Then, taking & = py ,, in (2.8]), we deduce similarly that

Gkopm/ [Vpaul? do < 0(1 + P2z + IVP2allL2 )
9 (2.11)

+ ||V,PN§1,7L

|L2(0) + ||V77N272,n||L2(Q)),

where C' depends on Q, 1, b, ¢1, [|fpllr2), [f1llz2(@), prrs koo and [|p5s3 ] L2(q)-
Then the sequence (Py,,);, is uniformly bounded in Hf (€2). This establishes the
relative compactness property of the map 7.

Furthermore, up to a subsequence, we have the convergence

Pin — p1 weakly in Hlll(Q)7

DP2.n — D2 weakly in H%l(Q),
pin — p1 strongly in L?*(Q) and a.e. in Q,
pam — p2 strongly in L*(2) and a.e. in Q.

To complete the proof of continuity of the operator 7, it is sufficient to show that
(p1,p2) is the unique adherent value of the sequence (p1,, p2,n), for that let us show

(p1,p2) is the unique solution of (2.5)-(2.6)) by passing the limit in (2.7)-(2.8].
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Passing to the limit in (2.7):

P1(P1,n)Z (S1n) — PIs] ¢/ _
K WP 2] 2P, | KM (51001510 V10 - Vipda
Q Q

—/QKMl(ELn)p?(ﬁl,n)g-deern/g p1(P1,,)V(PND1,y, — PND2y) - Vo dz
2

4 /Q Pr(B10) Z(51.0) [ d = /Q (P18t frode,

where 3 ,, = f_l(ﬁ17n — Do) )
The passage to the limit in the first term is due to the continuity of Z, f~! and

p1, the convergence and (2.15), and the domination of p1(p; ,,)Z(S1,n)¢ by
par|e|, which allow us to apply the Lebesgue theorem.

The second term is treated as follows, the sequence (KMF(51,)p1(P1,) V), is
dominated and converges a.e. as n goes to infinity. Then, by Lebesgue theorem,
we have the following strong convergence in L?(12),

KM (S1,0)p1(P1,,) Vo — KM; (51)p1(P1) V- (2.16)
Furthermore and due to the convergence (2.12)), it follows that
Vpy — Vp;  weakly in L*(Q), (2.17)

then, the convergence ([2.16)) and (2.17)) establish the limit for the second term.
The fourth term

77/ pl(ﬁl,n)v(PNpl,n - PNTDZ,n) ! VQD dl‘,
Q
is treated as follows,
pi(Din) Ve — pi(p;) Vi strongly in (L*(Q)* (i=1,2). (2.18)
Furthermore p, ,, converges in L?(Q2), it follows that
VPNDin — VPND; weakly in (L?(Q))* (i = 1,2). (2.19)
Then, the convergence (2.18)-(2.19) allow us to pass the limit in the fourth
term. The convergence of the other terms are also an application of the Lebesgue
convergence theorem. The passage to the limit on (2.8) is obtained in the same

manner. Thus (py,p2) is a solution of (2.5))-(2.6]), which establishes the continuity
and completes the proof of the lemma. O

Lemma 2.3 (A priori estimate). There exists a positive constant r such that, if
(p1,p2) = AT (p1,p2) with A € (0,1), then

(1, p2) | L2y x L2 () < 7y

where r is independent of .
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Proof. Assume (p1,p2) = AT (p1,p2) holds, recall that s; = f_l(pl — p2) and
s9 =1 — s, then (p1,p2) satisfies

/ KM;(s1)p1(p1)Vp1 - Vo da
Q

VA Kok
:_/\/ ¢P1(p1) (21) plslgodx—&—A/KMl(sl)pf(pl)g-Vgodx
Q Q

(2.20)
—A/ pl(p1)Z(81)fP¢dx+A/ p1(p1)st frp da
Q Q
— /Q 1)V (Pypr — Pps) - Vipda,
/QKMQE(SZ)Pz(Pz)VPQ -V&dx
— _)\/ ¢p2(p2)Z(22) — PESﬁgdx + )\/ KMQ(SQ)p%(pQ)g . VfdJJ
“ @ (2.21)

—A/sz(p2)z(82)fP§d$+)\/QP2(p2)S£f1€d$

+ /\77/ p2(p2)V(Pnp1 — Pnpe) - VEdz.
Q

for all (¢,) belonging to HE () x HE (). Consider ¢ = g1(p1) := [3" pll(C) d¢

H{ () in (2.20) and & = ga(p2) == 592 p21(c) d¢ € Hi (Q) in (2:21). Summing up

these quantities, we obtain

A/Q %((pl(pl)z(sl) = p151)91(p1) + (p2(p2)Z(s2) — 9553)92(192)) d

+/ KM{Vp: - Vprdz + Aﬂ/ V(Pnp1 — Pnpz) - V(p1 — p2) dx
Q Q

— )\/ Kpi(p1)Mi(s1)g - Vpr dz + / KM5Vpy - Vps dx
@ @ (2.22)

A [ Koalpa) Masa)g - Vi do
+ )‘/Q (p1(P1)Z(51)91(p1) + p2(p2)Z(s52)92(p2)) fp dx

= )‘/Q ((p1(p1)s191(p1) + p2(p2)shga(p2)) f1 da.

Remark that the functions p; — ¢;(p;) is sub-linear, we deduce from Cauchy-
Schwarz and Poincaré inequalities that (2.22)) reduces to

e/ |vp1\2dx+e/ |Vp2|2dm+)\17/ IV (Pap1 — Paps)|? da
Q Q Q

< Cr(L+ |I£plIEa () + 1 f1lliz ) + 1P1silIE2 ) + 1P35511E2(0):

where C7 depends on € and not on A. It is important in to ensure that C
does not depend on N.

Lemma [2.2] Lemma [2.3] allow to apply the Leray-Schauder fixed point theorem
[31]), thus the proof of proposition is completed. O

(2.23)
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Step 2. Now we are concerned with the limit N goes to infinity (we omit the de-
pendence of solutlons on €) For all N, we have established a solution (p1 N, D2, N) S

HE () x HE (Q) to satlsfylng

pMZ(sN) — prs .
[ ome) hl) "“1¢dx+AKM1<s¥>p1(p¥>Vp¥-wdm

—/QKMl(S{V)p?(piv)g-Vsadfv+n/gp1(piv)v(7’zvpiv—PNpév)'dew
+ /Q ) Z(Y) frp d = /Q ()8! frpda, (2.24)

NZ NY _ xo*
Q¢P2(p2) (22) p2$2§dx—|—

—/QKMz(SéV)pg(pév)g-Vfdm—n/sz(pév)V(PNp{V—PNpév) -V da

KM;(s5)p2(py ) Vpy - VEda
Q

+ / o2 Z(sY) fp€ dr = / po(pY )5k f1€ da, (2.25)
Q Q

for all (¢, &) belonging to Hf () x Hf (Q). Reproducing the estimate (2.23) with
A =1, we get

e/ |Vp1\2dx+e/ |Vpo|? dm+77/ |V (Pnp1 — Pnp2)|? da
Q Q Q

(2.26)
< L1+ |Ifpl T + I1f1lZ2 (@) + 1PTsTZ2 () + 05551172 (0)),
where C; depends on € and not on N.
Then, up to a subsequence, we have the convergence,
pi,Nv — p1 weakly in H%I(Q)7 strongly in L?(Q) and a.e. in Q (2.27)
pa,Ny — pa weakly in Hf (Q), strongly in L*(Q2) and a.e. in Q. (2.28)

The convergence in ([2.24])-([2.25]) with respect to N are obtained in the same manner
as for the convergence with respect to n in (2.7)) (2.8).

Step 3. Passage to the limit as € approaches zero. For all € > 0, we have shown
that there exists (p1e,p2,e) € Hll (Q) x HE (), satisfying

S
/fbpl )z 1 i pdx +/KM (s1)p1(p1) VD] - Vo da
- [ KMGORGDE Vedntn [ mEOVEE-p5)-Vode  (220)
+Am@ﬂmﬁﬁwmzljmm%ﬁwm

p5)Z(s5) — phsh €( o€ € €
/Qq,)m( 5) (hz) P2 2,5dx+/QKM2(82)p2(P2)VP2'Vfdw

—AKMz(SE)pg(pS)g-Vﬁdw—n/sz(pS)V(pi—pé)-Vﬁdm (2.30)

+Am@w@ﬁﬁmzém@wﬁwa

for all (p,€) belonging to HE () x HE (), with s§ = ?71(]35 —p§) and s§ = 1—s§.
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We need uniform estimates on the solutions independent of the regularization e
in order to pass to the limit in e. For that, we are going to use the feature of global
pressure. After the passage to the limit in €, a maximum principle on saturations is
possible. We are now concerned with a uniform estimate on the gradient of 3(s{),
and on the global pressure p¢. We state the following two lemmas.

Lemma 2.4. The sequences (s)e, (p° := pS + p(s$))e defined by Proposition [2.]]
satisfy

(p)e is uniformly bounded in Hp (S2) (2.31)
(Ve VpS)cis uniformly bounded in L*(2) (2.32)
(B(55))e is uniformly bounded in H' () (2.33)
V£(55))e is uniformly bounded in L? () (2.34)

Proof. Consider ¢ = g (p§) := [ pll(C) d¢ € Hy (Q) in (2.29) and & = ga(ps) =

Op; pzl(C) d¢ € H (Q) in (2.30). Summing these quantities, we obtain

/Q %((Pl(pi)Z(SE) — p151)91(p1) + (p2(p5) Z(s5) — p§85)92(P§)> dx

+/QKM15VPE-VPE dx+77/QV(pi—p§)-V(pi—p§)dx
—/QKpl(pi)Ml(Si)g-Vpi dw+/QKM§Vp§-Vp§dw
- | K Ma(sp)g - Vs da

+ [ (D200 50) + D) Z ()0 (3) i do

= /Q ((p1(05)s191(05) + p2(ps)sga(ps)) fr dz,

then

/ KM, VpS - Vp] dx + / KM,Vps - Vps dx

Q Q
+ e/ KVp] - Vpi dz + 6/ KVps - Vp5 dx—l—n/ Vf(s1) -Vf(s1)dx
Q Q Q
- / K (p) Ma (55)g - V5 da + / K o (p) Ma (55)g - Vs da
Q Q
(2.35)

- / (P (0 Z(5)91 (%) + p2(05) Z(55) g2 (5)) f

+ / (01 (55)5 91 (55) + P2 (05) shgap5)) f1 e
Q

= [ (D265 = pist)on () + (a0 Z(55) ~ pis)o(o) o

The hypothesis (H2) and with the help of Cauchy-Schwarz inequality, we have

k
@ Q
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k
| [ Kealh)ata(st) - Vs o] < 0+ 5 [ 20905 - Vs
Q Q

then the gravity terms in (2.35)) on the right hand side are absorbed by pressures
dissipative terms. Recall that, the functions p; — g;(p;) is sub-linear (i.e |g;(p;)| <

pim|p¢\ ), then from (2.35)), one obtains

/ M (55) V5 2 da + / Ma(s5) Vs 2 da + 1 / IV f(s0)]? da
Q Q Q

+e/ |Vp§|2da:+e/ |Vps|? dx (2.36)
Q Q

< O+ [Ipillzco) + 105l 22 (0))-

Return now to the relationship between pressures and global pressure. From (1.6]),
we have p¢ = p§ + p(s§) = p§ + p(s5), and

Mi(s5) Ma(s5)
Vp® = Vp§ + =~V f(s]) = Vpi — -
2 sy VY = VR

Vf(s1), (2.37)
which imply that

[ Te|2 M, (s7)Ma(s5) e\
|y par+ | U0 ) ar

:/Ml(«Si)Vpi'Vpi dw+/Mz(S§)Vp§-Vp§dw-
Q Q
The estimate ([2.36) is equivalent to
M; (s7)M(s5) 2
M s€)|Vp52da:+/ ——— |V f(s])|" dx
/sz (51 | Q M(s1) I
o [ 19He0Pdo e [ [9piP et e [ Vi da
Q Q Q
<O+ (Ipillzeco) + IP5] 22(0))
< C(L+ [Ipll L2 + [P(sD L2(0) + [1P(sDL2(02))
< CA+VPilleze) + [P(sDlL2) + [1P(sD) 22 (0))

due to the Poincaré’s inequality. Finally, using the fact that the function p and
p are bounded, and the global pressure term on the right hand side in the above
inequality can be absorbed by the dissipative term in global pressure, on the left
hand side, we deduce that there exists a constant C independent of ¢, C; =
Cl(h’ Pm;s Mia g, fp7 fla S{a Séa pi(si(a P§3§a h> ¢, kooa kO) such that

/QM(sl)\Vp\ dx+/ﬂ M(s0) IVf(s)I7d

—l—n/ |Vf(31)\2da:+e/ |Vp§|2dm+e/ \Vps|? dr < Cy,
Q Q )

which establish the estimates (2.31)), (2.32)) and (2.34)). For the estimate (2.33)), we
use the fact that the second term on the left hand side in (2.39) is bounded and

the total mobility is bounded below due to the assumption (H3), we have

(2.38)

(2.39)

[ A DM [T (52 o < o,
Q
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which implies
[ 1vBG)R da / Mis )IVf( O de
Q

/M1 SO Ma(s5)[V £ (59| da < moCh,

and completes the proof of lemma. O
From the previous lemma, we deduce the following convergence.

Lemma 2.5 (Strong and weak convergence). Up to a subsequence the sequences
(55)es (0)e, (05)e have the following convergence

p°—p weakly in Hf (Q) (2.40)

B(s$) — B(s1) weakly in H*(Q), (2.41)

p° — p almost everywhere in (2.42)
B(s]) — B(s1)  almost everywhere in ) (2.43)
Z(s]) — Z(s1) almost everywhere in Q (2.44)
Z(s5) — Z(s1) strongly in L*(Q) (2.45)

p5 — p;  almost everywhere in €. (2.46)

Proof. The weak convergence (2.40)—(2.41) follows from the uniform estimates
(2:31)) and (2-33) of lemma [2.4] while
p¢ — p strongly in L?(Q) and a.e. in Q,
B(sS) — B*  strongly in L*(Q) and a. e. in
is due to the compact injection of Hf in to L*(2). As 3(s1) := 5(Z(s1)) and 37!
is continuous,
Z(s]) — Z(s1) a. e. in Q,

while the Lebesgue theorem ensures the strong convergence (2.45[). The convergence

(2.46]) is a consequence of (2.42)—(2.44) and the fact that p§ := p° — p(Z(s9)),
ps = p° — B(Z(s9))- -

To achieve the proof of Theorem it remains to pass to the limit as € goes
to zero in the formulations (2.29))(2.30) and a proof of a maximum principle on
saturations. For all test functions (¢,&) € Hf () x Hf (),

V7 (s€) — p*g*
/szpl(pl) (hl) A1 1<pdw+/QKMf(8§)p1(pi)Vpi~V<pdw
—/QKMl(Si)p?(pi)g'Vsodern/Qpl(pi)V(pi—pé)'Vstx

4 /Q o (05)Z(55) fpp dex = /Q p(05)s! fre de,

€VZ(sE) — pksk
[ P EDIEI = i [ a5 (65) ) Vi - Ve d

_ / KMy (55)02(p5)g - VE d — 1 / P2 (P V(55 — p5) - VE di
Q Q
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+ /Q pa(05)Z(s5) ot di = /Q pa(05)sh 1€ d,

The first terms of the above equalities converge due to the strong convergence of
pi(p$)Z(s5) to pi(pi)Z(s;) in L?(Q2). The second terms can be written as,

/ZKME(Sf-)m(pE)VpS -Vedx

¢

_ / KM, (55) i (pF) V" - Vip da (2.47)
Q

+ [ Kpi) VA0 Vieds +VE [ Kplp))(VE Vi) Vipda.
Q Q

The first two terms on the right hand side of the equation converge arguing in two
steps. Firstly, the Lebsgue theorem and the convergence (2.44))(2.46) establish

pi(pS)M;(55)Vo — pi(pi)Mi(s;)V strongly in (L*(Qr)),
pi(p§)V — pi(pi)Ve  strongly in (L*(Qr))*.

Secondly, the weak convergence on pressure combined to the above strong
convergence validate the convergence for the first term of the right hand side of
, and the weak convergence combined to the above strong convergence
validate the convergence for the second term of the right hand side of . The
third term converges to zero due to the uniform estimate 7 and this achieves
the passage to the limit on the second terms. The convergence of the fourth terms
of the above equations are due to the uniform estimate (2.34)). The other terms
converge using and the Lebesgue dominated convergence theorem.

In summarize, we have shown, there exists (pf,p}) € HE () x HE (€2) solution
of

h Zsh — prg*

—/QKMl(S’f)p?(p’f)g-dex+n/9p1(p’f)v(p’f—pg)~V<pdw (2.48)

+ / () Z(sh) fpp de = / p(O)s! frpde,

h hY _ % o*
[ PP =00 gyt [ KL () Vi - Vo
Q Q
_ / KMy (sh)o3(plh)g - VE d — 1 / POV (Pl — pb) - VEde  (2.49)

+/QP2(Z?S)Z(3}21)JCP§ de = /{2P2(p§)8£f15 dz,
for all p,& € HE (), with sh = fﬁl(p? —ph) and sh =1 — sh.

Lemma 2.6 (Maximum principle). Under the conditions of Theorem the sat-
uration functions s% and sb which verify ([2.48)-(2.49) are between zero and one
a.e. in Q.

Proof. Tt is sufficient to show that s? > 0 a.e. in Q. For that, consider ¢ =
—(s1)7,& = —(s2)~ respectively in (2.48) and (2.49) and by taking into considera-
tion the definition of the map Z, and according to the extension of the mobility of
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each phase, M;(sh)(s?)~ =0 (i = 1,2) we obtain

S _ _
/ o5 () da g ) V() de = — /Q o (p)st f1(sh) ™ da,

/¢P232 o) derTl/ ~V(s’5)*dr:*/QPQ(PQL)SéfI(SQ)f dz.

Since it is possible to choose an extension f of f outside [0,1] in a way that ensures
f'(s1) different from zero outside [0, 1], we get

n/ IV(st)™|Pdz <0 (i=1,2)
Q
which proves the maximum principle since s; vanishes on I'y, i =1, 2. (I

After this maximum principle, the weak formulations (1.25]) are established, and
thus the theorem [[.3]is then established.

3. PROOF OF THEOREM [I.2]

The proof is based on a semi-discretization method in time [2]. Let be T > 0,

N eN*and h = % We define the following sequence parameterized by h:

p?,h(x) =p(z) ae inQ i=1,2,

for all n € [0, N — 1], consider (p’fh7 piy) € L2(Q) x L*(Q) with py(p}),)s7), >0

for i = 1,2, denote by (fp )”Jr1 = TEZ—H)hf (1) dr (f[)n+1 = l ,EZH)h fr(r)dr
an = 7 for i = then define (p; ", p solution o
d (shptt =1 Ot sl (r dr for i — 1,2, then def p gﬁl lution of
pr(Pi s — p1(PY )T . n n n
ptotti b PLTUVT iy (KM, (53 on (05 1) V)
. n n : n n n 3.1
+ div(Kpt M7 D) — ndivim OV erE -y B
+ Pl(p;lﬁl)s?zl(fp)zﬂ =P (p?zl)( )ZH(fI)ZH,
pa(p5 )5kt — p2(pi)sh, n n n
Iz " = div(KMy (s )pa (54 V5T
(3.2)

+ div(Kp3(ph ) Ma(sh 1 H)g) + ndiv(e2 (05 )V (015 — p51h)
+ 2y sy (Rt = pa(os ) (s5) T ()t

with the boundary conditions (1.23]). This sequence is well defined for all n €
[0, N — 1] by virtue of theorem As a matter of fact, for given s}, pi(p};) > 0

and p;(p,)s;, € L*(9), i = 1,2, we construct (p’f#,pgﬁl) € H} (Q) x HE (Q) so
that s?}fl € [0,1].

Now, we are concerned with uniform estimates with respect to h. We state the
following lemma.
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Lemma 3.1 (Uniform estimates with respect to h). The solutions of (3.1])-(3.2)
satisfy

1 7 n n n
E/ ¢(H1(p1f)51zl - Hl(P1,h)51,h) dz
Q

3 [ o(rarsE — s ) do

3 [ o(FEL — Pt doen [ VG - da (33)
+ ko / My (s 1) VPt VPt da + ko / Ma(sy 1 )Vps - Vph it da

< OO b I iy I )

where C' does not depend on h. Fori=1,2,

Hi(pi) == pi(pi)gi(ps) — pi,  F(s) = /Osf(é)dc, gi(pz-)—/opi d¢.

1
pi(C)

Proof. First of all, let us prove that: for all s; > 0 and s} > 0 such that s; 4+ s2 =
sT+ 85 =1,

(p1(p1)s1 — pr(PT)s7) 91 (p1) + (p2(p2)s2 — p2(p3)s3) g2 (p2)

3.4
> Halpr)si — Ha(ph)sh + Ha(p)sa — Ha(p)sh + Fls) — F(sD). O
Let us denote by J the left hand side of ([3.4)),
T = (pr(p1)s1 — p1(p7)s1) g1 (p1) + (p2(p2)s2 — p2(p3)s3)g2(p2)-
Since the function g; is concave, we have
1
9i(p) < 9:(P]) + 9300} (i = P1) = Gi01) + s (i = ) (3.5)

From the definition of H;, we have

T = [(pr(p1)s191(p1) — s1p1) + s1p1 — p1(p})sig1(p1)]
+ [(Pz(Pz)Szgz(Pz) - 82192) + s2p2 — P2(P§)8§92(P2)}
= s1H1(p1) + s1p1 — p1(p7)stg1(p1) + soHa(p2) + s2p2 — p2(p3)s592(p2)
and the concavity property of g; leads to

J = siHi(p1) — sTH1(pY) + s2Ha(p2) — s5H2(p3) + s1p1 — s1p1 + s2p2 — s5p2
> s1H1(p1) — sTH1(PT) + s2Ha(p2) — s3H2(p3) + s1(p1 — p2) — s1(p1 — p2)

= s1H1(p1) — sTH1(p}) + s2Ha(p2) — s5H2(p5) + (s1 — st) f(s1).-
(3.6)
Since the function F is convex,

(s1 = s71)f(s1) = F(s1) — F(s7)- (3.7)
The above inequalities (3.6) and (3.7)) ensure that the assertion (3.4)) is satisfied.
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Let us multiply scalarly (3.1]) with gl(pﬁ;l) and add the scalar product of (3.2))
with g (p;j;l), we have

7 LoD = mt st i)

+ (o255 5" = p2 (i) shn) 92057 ) da

/ KM, (sy 1) Vpi - Vpihtde + /Q KM, (s53 ) Vst - Vph !t de
+77/ IV£( S’fﬁl | dz

= [ KM e Vi do
PSP d

+ [ KMl ol e Vi o

pr DR (R (o)) da

S~ 55—

— [ o e ) da+

+ / PR (S5 (1) o () di

(3.8)
Using (3.4) and following the proof of Lemma one gets (3.3). O
For a given sequence (u}),, let us denote
’LL}L(O) = U?L,
V-1 (3.9)
up(t) = Z UZJFIX]nh,(nJrl)h] (t), Vte€]0,T)
n=0
and
N-1 . .
ap(t) = Z ((1 +n— E)’U,Z + (E - n)u2+1)x[nh7(n+1)h] (t), Vte [O,T]. (3.10)
n=0
Then
1N
Ot () = 7 Z U — W) X yn((t), V€ [0, TI\{UY_onh}

Let the functions p;, and s;p be defined as in . For ¢+ = 1,2, we denote by
7, the function defined similarly to (3.9) corresponding to r), = p; (p?,h)s;fh and
7;.n the function defined similarly to corresponding to 77%,. In the same way,
we denote by fpp, fr, and (s!); the functions corresponding to (f2)7 ", (f1); ™
and (s!)! respectively.

Proposition 3.2. We have

(so.0)n  is uniformly bounded in L*(0,T; Hlll(Q)), (3.11)
(pin)n is uniformly bounded in L*(0,T; Hp (Q)),i=1,2 (3.12)
(rin)n is uniformly bounded in L*(0,T; H'(Q)),i = 1,2 (3.13)
(Fin)n  is uniformly bounded in L*(0,T; H'(R)),i = 1,2 (3.14)
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(pOyFin)n s uniformly bounded in L*(0,T; (Hp, (€2))),i=1,2. (3.15)

Proof. At the beginning of this proof, we indicate some useful remarks which can
be established by a classical calculations,

N-1
Mi(si,hnvpi,hﬁd:ﬂdt:hz/Mi(sgglnvpﬁlﬁd:ﬁ (i=1,2), (3.16)
n=0 Q

QT
N-—1
/Q V)P dndt =13 [ [V da, (3.17)
T n=0
N-—-1
L st dede = b S 10 o, (318)
T n=0
N-1
/Q it o) Pdtde = b S 102 - (3.19)
T n=0

Now, multiply (3.3)) by ~ and summing it from n=0ton =N — 1,
[ Mo @s14(T) + Halpa ()20 (T) do
Q

+ ko Ml(sl’h)|vp1’h|2d.%‘dt+k0/ MQ(SQ’h)‘VPQ’h‘Qdmdt
Qr Qr

+n / IV f(s1,)|? da dt (3.20)
Qr

< /Q (6H1 (1.1 (0))514(0) + FHa (P2 (0))52.4(0) )

+ F(s1,1(0) = Fs1n(D)) + C(L+ I fplT2(qr + I1llZ2qr)s

where C' is a constant independent of h. The positivity of the first term on the left

hand side of (3.20) ensures that there exists a positive constant C' independent of
h such that

ko Ml(sl)h)‘vpl,h‘Zda?dt—i-ko MQ(SQ’h)|vp2’h|2dl‘dt
Qr Qr

+ 77/ IV f(s1.0)]? dedt < C,
Qr
since we have,

M (s1.1)|Vp1n|? dedt + Mo (52.)|Vpa.n|? de dt

Qr Qr
M M.
:/ M (s1.,)|Vpn|? dz dt + 1(51,0) 2(82’h)|Vf(sl7h)\2dzdt,
T QT M(Slxh)
we deduce
M (s1.,)|Vpn|? de dt + n/ IV f(s1.0)|? dedt < C. (3.21)
Qr Qr

For the first estimate (3.11]) and first of all, let us indicate to the fact that,
pLa(t,x) —pon(t,z) =0= f(s1n(t,x)) foraxzely
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which gives so = 0. The assumption (H6) on the capillary function f with the
second term on the right hand side of (3.21)) lead to

/ |Vsyp|?dedt < C,
Qr
where C' is a constant independent of h, which establishes (3.11]). Since we have
M. M
Vpin = Vpn + ==V f(s15) and  Vpay = Vi, — —Vf(s1),

M M
the estimate (3.12)) becomes a consequence of (3.21]). The uniform estimate (3.13))

is a consequence of the two previous ones since the densities p; are bounded and of
class C!functions as well as the saturations 0 < s;, <1,

N-1
Vrin = > (ol )sin Vo + o0V Xgnn (nym (8-
n=0
Now, for estimate (3.14]) we have
N-1 ;
V7 = Z (1+n-— E)[Pg(p;fh)sﬁhvﬁn,h + pi(pi'n) Vil
=0 (3.22)
t
+ (ﬁ —n) [Pg(pzzl)SZZIVPZZI + pi(p?j;l)vsz—]—tl])X]nh,(n+1)h] ().
since the densities p; are bounded and of class C! functions as well as the saturations
0<si), <1,
N-1
Visnl® < C Y (IVPR + IVsPal® + V0 P+ VST ) X, (g1 (8),
n=0

and this implies
Hvﬁ,hH%Z(QT) < C(||Vpg,h||2L2(Q)+||V5?,h||%2(9)+||Vpi,h||i2(QT)+||V5i,h||%2(QT))7

where C' is a constant independent of h, and the estimate ([3.14) is established.
From equations (3.1) and (3.2)), we have for all ¢ € L2(0,T; H{ (Q)),

(PO Ti s )

=- KM;(sin)pi(pin) Vi - Vodrdt
Qr

[ KR Mi(sin)g - Vipda dt +n(—1) / V(pun - pan) - Ve dedt
QT T

—/ Pi(pi7h)8i,hfp,htpd$dt+/ pi(pn)Stp fr.nep du dt.

T T

The above estimates (3.11)—(3.12) with (3.21)) ensure that (#9,7; 1 )n is uniformly
bounded in L*(0,T; (Hf (Q))'). O

The next step is to pass from an elliptic problem to a parabolic one. Then, we
pass to the limit on h, using some compactness theorems.

Proposition 3.3 (Convergence with respect to h). We have the following conver-
gence as h goes to zero,

I7in = TinllL2@r) — 0, (3.23)
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Sop — s2  weakly in L*(0,T; Hp (),
Dih — pi  weakly in LQ(O,T; H%I(Q))7
rin — Ty strongly in L*(Qr).
Furthermore,
Si,n — 8; almost everywhere in Qr,
0<s; <1 almost everywhere in Qr,
Dih — Pi  almost everywhere in Qr,
r; = pi(pi)s; almost everywhere in Q.
Finally, we have
GO n — ¢0:(pi(pi)si) weakly in L*(0,T; (Hllﬂ1 Q).
Proof. Note that
N-1 ,(nt1)h

~ t n n
lI7in — Ti,h”%z(QT) = Z / [(1+n- E)(U,Zl - ri,h)”%z(g) dt
n

h

n=0

N-1
= N et
=3 ih ihllL2(Q)
n=0

We multiply scalarly (3.1)) and (3.2) respectively with r?j;l — 7, and rgj;l — Ty

Then, summing for n =0 to N — 1, we obtain, for ¢ = 2,

g N1
0 n n
W Z Hrz,JiEl - 7’2,h||2L2(Q)
n=0
N-1
<C Z (||V7"§l,h||2L2(Q) + HVTS}ZlHQm(Q) + HVSS,#HQH(Q) + ||VJUZI1

n=0

HIFP)R 20 + DR I 20)-
This yields

N-1
1

Z IITS,Z - Tg,h”%%m

n=0

<CA+IVranll® + 1 Vs2nllZzior + 1V20ll72 (00
+felZe @ + 11l 72(0r))-

1720

From (3.11)),(3.12)), and (3.13), we conclude that ||r2 5 —72 4|/ 22(@,) — 0. Fori =1,

(b N—-1
0 n n
7 Z Hﬁf - Tl,h||2L2(Q)
n=0
N-1
<CY (IVrtalia) + IVrEi 220

n=0

| | KAGTHM B0 - i) dy
1

+ Vs Iz ) + VPRI T2 ) + 1P 200 + 1R 22 (0))-
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where v is the outward normal to the injection boundary. This yields, with the

help of trace theory to handle with the third term in the right hand side namely
(I3t = rfallzeeyy < CIVETE =71 4)ll2(0)), that

N-1
Dot =t ulZa) < COH+ VPl + I VsanllZz@m + VLA 2(0m)
n=0

+ /P2 @r) + 11112 0r))-
From (3.11)),(3.12), and (3.13), we conclude that

71,0 = Frnllzz Q) — 0,

and this achieves ((3.23)).

From (3.12) (3.11)), the sequences (p;n)n, (S2,n)n are uniformly bounded in
LQ(O,T;H%I(Q)), we have up to a subsequence the convergence results (3.24]),
B25).

The sequences (7 5)p, are uniformly bounded in L(0,T; H'(Q)). In light of (3.15)
we have the strong convergence

i — 1 strongly in L*(Qr). (3.32)
This compactness result is classical and can be found in [29], [10] when the porosity
is constant, and under the assumption (H1) (the porosity belongs to W1°°(Q)),

the proof can be adapted with minor modifications. The convergence (3.32]) with
(3-23)) ensures the following strong convergence

p1(p1p)sin — r1 strongly in L?(Q7) and a.e. in Qr, (3.33)
p2(p2,n)S2.n — T2 strongly in L*(Qr) and a.e. in Qr, (3.34)
and this achieves (3.26)).

We are now concerned with almost everywhere convergence on pressures p; », and
saturations s; . Denote

u=p1(p1,a)sih, v = p2(prn — f(s1,0))(1 = s1.n).
Define the map H : RT x Rt — R* x [0, 1] defined by
H(u,v) = (p1,ns 51,1) (3.35)
where u and v are solutions of the system
U(pl,h, 31,h) = p1(p1,h)31,h,
v(p1,hsy S1,0) = p2(p1a — f(s1,0))(1 = 81.0)-
Note that H is well defined as a diffeomorphism,

ou ou
Op1,n Os1,n

ov v
Opi,n  Osin

= —p1(P1r)p2(Prn — F(s1.0))51,0 — p1(Pra)Pa(P1a — f(s51,0))(1 = s1.n)
= Ph(p1n)s1n(l = s1n)pa(prn — f(s1))f (s1,0) <O.

As we have the almost everywhere convergence (3.33), (3.34]) and the map H defined
in (4.14) is continuous, we deduce

pip, — p1 ae. in Q.
S1,n — 1 a.e. in Q.
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The identification of the limit is due to (3.12)), (3.11)). The continuity of the capillary
pressure function ensures that

P2, — P2 a.e. in Qr,

the saturation equation ensures also,
S2.p, — S2 a.e. in Qr,

and this achieve (3.27)), (3.29). The maximum principle (3.28)) and the identification
(3.30) are conserved through a limit process. Finally the weak convergence (3.31))

is a consequence of ([3.15)), and the identification of the limit is due to (3.30). O

The technique for obtaining solutions of the system ([1.21)—(1.22]) is to pass to
the limit as h goes to zero on the solutions of

00y (Fin) — div(KM;(si,0)pi(pi,n) Vpin) + div(KM;(sin)pZ (pin)g)
+ (=1)'n div(p;(pin)V(p1,n — p2.n)) + pi(Pin)sinfrn (3.36)
= pi(pin)st frn

We remark that this system (¢ = 1,2) is nothing else than (3.1)-(3.2)), written for
n =0 to N — 1 by using the definition (3.9 and (3.10). Let us consider the weak
formulations (¢ = 1,2) on which we have to pass to the limit

(GOTi s i) + KM;(si,n)pi(pi,n) Vi - Vi de dt
Qr

- Kp?(pin)Mi(sin)g - Vi, dr dt
Qr

- (—l)in/ pi(Di,n)V(P1,n — D2,n) - Vg da dt (3.37)
QT
+/ pi(Di,n)sinfrnp: dx dt

= / pi(pn)si p fr.nepi da dt.
T
where ¢; (i = 1,2) belongs to L*(0,T; Hf: (€2)).

Next, we pass to the limit on each term of which is conserved by the
previous proposition. The passage to the limit on the first term is due to , for
the second term we have M;(s; n)pi(pin)Vipi converges almost everywhere in Qrp
and dominated which leads by Lebesgue theorem to a strong convergence in L?(Qr)
and by virtue of the weak convergence we establish the convergence of the
second term of to the desired term. The last three terms converge obviously
to the wanted limit due to the previous proposition and Lebesgue theorem.

We then have established the weak formulation of theorem Further-
more, we have well obtained by proposition [3.3]

0<s(t,z) <1 ae inQp, s2€L*0,T;Hp (),
pi € L*(0,T; H, (), ¢9(pi(pi)si) € L*(0,T: (Hp, (2))), i=1,2.

We recall that s; is a given function of p; and ps. The compactness property on
pi(pi,n)si,n implies p;(p;)s; € C°([0,T]; L*(Q)), for i = 1,2. Theorem is then
proved.



26 Z. KHALIL, M. SAAD EJDE-2010/122

4. PROOF OF THEOREM |1.1| (DEGENERATE CASE)

The proof is based on the existence result established for the non-degenerate
case and the compactness lemma

Lemma 4.1. The sequences (s]),, (p" := p3 + p(s})), defined by Theorem [1.3
satisfy

0<s!(t,x) <1 ae inzeQ foraltel0,T],
(p"), is uniformly bounded in L*(0,T; H (),
(vV £(s]))yis uniformly bounded in L*(Qr)
(\/ M;(s))Vpl), is uniformly bounded in L*(Qr),
(B(s]))y s uniformly bounded in L*(0,T; H(Q)),
(00 (pi(p])s}))y is uniformly bounded in L*(0,T; Hy (Q)').

7

Proof. The maximum principle (4.1) is conserved through the limit process. For
the next three estimates, consider the L?(Q) scalar product of (1.21) by ¢1(p]) =

é’? p%@) d¢ and (1.22)) by g2(p3) = 573 p%({) d¢ and adding them after denoting by
Hi(p) = pi(pi)gi(p) — pil (i = 1,2), then we have

d
pr Q¢(S?H1(p§’)+83712(p3)+ ) f(é)d§>dw+/QKM1(S?)Vp’f~Vp?dx
o / IV (s7)? de + / KMy (1) Vpl - Vpl do

Q Q
= [ KMo Vol de + | KM(Dm(phs - Vo da

4 / ()8! Frg1 (o) da — / 0D Fr1 (07) dx
Q Q

- / p2(p3)s9 fpg2(p7) dz + / p2(p3)sh f192(p3) da.
Q Q

(4.7)
Integrate (4.7)) over(0,T) to obtain
/ o (sTH1(pY) + saHa(pd)) (2, T) da + KM, (s])Vp?] - Vpldxdt
Q Qr
+77/ |V f(sT)|? do dt + KM, (s3)Vps - Vpd dx dt
Qr Qr
0 0 0 0 A7)

= [ o) + ey o~ [ [T pi dedo

Q QJs9 (4.8)

+ | KM(s{)pi(p])g - Vpldudt+ | KMy(s3)p2(p3)g - Vps dudt
Qr Qr

+ / (0! Frgn (1) da dt — / P (0)S fog1 (p7) da dt

T

- / p2(p7)s3 fpg2(p3) da dt + / p2(p3)sh frgo(p3) da dt.

T T
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The first term on the left hand side of (4.8) is positive and the two first terms
on the right hand side are bounded since p} € L*(Q) and 0 < s? < 1. The third
and the fourth terms on the right hand side, corresponding to gravity term, can be

absorbed by the degenerate dissipative term on pressures (namely the second and
fourth terms on the left hand side of (4.8)) since:

ko

| [ KM;(sDpi(p])g - Vo) dedt| < C+ = [ Mi(s])|Vp))* dedt, i=1,2.
Qr 2 Qr

Finally, using the fact that the functions g; (i = 1,2) are sublinear, we deduce from
(4.8) that

M,y (s7)|VpY|? de dt + / Mo (s3)|Vp)|? dz dt

Qr Qr
tn | V) VST dadt (4.9)
Qr

< CA+[IpYllz2 @) + IP3 11 L2(@r))s
where C' is a constant independent of 77. From the definition of the global pressure,
we have

M (sy) Ms(s3)
vpr = v+ M gy — vy - M Gy 4ap)
2 M(sy) ! boM(s{) !
and consequently,
M, (s7)My(sd

M(sq)|vpn|2dxdt+/ M|Vﬂs’f)|2d$ dt
Qr or M) (4.11)

= M (s])Vp! - Vpl dzdt + Ms(s3)Vpa - Vpd dz dt.

Qr Qr
On the other hand,
P12 @r) < 12" L2(@r) + 1P(s)IL2(@r) < CUVP I L2(Qr) + 1P(sTL2 (01>

due to Poincaré’s inequality, in the same way we have
P2l 22@r) < CIVP I22(@r) + 1B(sT)lL2(Qr)-
From the above estimates and (4.11]), the estimate (4.9) yields

Ml(sn)Mg(Sn)
M(sD|Vp2dudt + [ —oL— 22720
Or ( 1)| | Or M(Sll)
+n Vf(s]) - Vf(s]) dzdt
Qr
< CA+ VP le2@r))-

The Young inequality permits to absorb the last term by the first term on the left
hand side of (4.12)) to obtain

V(DI da dt

(4.12)

M, (s7) Ma(s3) 2
M(s")|Vp7’|2dxdt+/ —— 2\ (TP da dt
QT ' QT M(SY) !
+ My (s])Vp! - Vp] dx dt + My (s))Vps - Vpa dx dt (4.13)
Qr Qr

+7 Vf(s])-Vf(s])dxdt <C,
Qr
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where C is a constant independent of 7. Thus, the estimates (4.3)—(4.4) are estab-
lished. The estimate (4.5)) is also a consequence of (4.9)) since

M2 TIMQ n
/ VA et = /Q T WWf(s?)lexdt

< M,y (8T Mo (s])|V f(sT) > dx dt < C.
Qr

For the last estimate (4.6)), let ¢; € L?(0,T; Hlll(Q)) and denote the bracket (-, -)
the duality product between L?(0,T; (H{, (€2))') and L*(0,T; HE (), using (L.6),
one gets

{001 (pi(pi))s), i)

<ln [ pDVIGT - Voided
T

Q
+ | g Kpi(p])(M;(s])Vp" + VB(s])) - Vi da dt|

+ | A Kp?(P?)Mi(S?)ngdxdtH|/Q pi(p)s] fpepi de dt
T T

)

+|/ pi(p])s? frpi dx dt
Qr

and from the estimates (4.2)—(4.5)), we deduce
(00 (pi(p})s]), i)l < C||50i||L2(O,T;H111(Q))7
which establishes (4.6 and completes the proof of the lemma. ([l

Lemma 4.2 (Compactness result for degenerate case). For every M, the following
set

Ey = {(Pl (p1)s1, p2(p2)s2) € L*(Qr) x L*(Qr) : ||B(s1)|l 20,111 (02)) < M,
[V Mi(s1)VpillL2(Qr) + IV M2(52) V2|l L2 (r) < M,
160 (p1(p1)s )| 20,75t )y + 190:(p2(p2)s2) | 20,75 (@))y) < M}

is relatively compact in L?(Qr) x L*(Qr), and ~v(Eyr) is relatively compact in
L2(X7) x L2(27), (v denotes the trace on X1 operator).

Proof. The proof is inspired by the compactness lemma 4.3 |21, p. 37], which
introduced for compressible degenerate model. We generalize this result for our
compressible degenerate model. Denote by

u=pi(p1)si, v =p2Ap2)(1—s1).
Define the map H : RT x RT — R™ x [0, 3(1)] defined by
H(u,v) = (p, B(s1)) (4.14)
where u and v are solutions of the system
u(p, B(s1)) = p1(p — BB~ (B(s1))))B~(B(s1)),
u(p, B(s1)) = p2(p — BB~ (B(s1)))) (1 = B~ (B(s1))-
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Note that H is well defined as a diffeomorphism, since

g;; o= BB (B(1)))B (B(s1)) = 0

g% = (o — P (B0 =2 (B~ (A1) (B~ (B(s))B~ (B(s1))
+o1(p— BB (B(s1))))B Y (B(s1)) > 0

g;; = Ao~ FB B — 571 (B(51)) 2 0

2—; = (o — FB Bl =7 (B~ (B(s) (5~ (Bl — B~1(B(s1)

— pa(p — (B H(B(51))))B8~ " (B(s1)) <0,

and if one of the saturations is zero the other one is one, this conserves that the
jacobian determinant of the map H™! is strictly negative. Furthermore, H™! is an
Holder function, in the sense that w and v are Holder functions of order 6 with
0 <6 <1. For that, let (q1,01) and (g2, 02) in R* x [0, 3(1)], we have

[u(qr,01) — u(ge, 02)|
= |p1(qr — P(B(01)))B™ " (01) — p1(g2 — DB~ (02))) B (02)]
< |pi(qr — p(B~(01))) — pr(g2 — (B (02)))| + pm| B~ (1) — B~ (o2)],

since 7! is an Holder function of order 6, 0 < # < 1, and the map p; is bounded
and of class C', we deduce up to two cases:
The first case |q1 — ¢2| > 1:

[u(qr, 01) — u(ge, 02)]
< lpi(qr = (B~ (1)) = pilg2 — P(B™ (02)))| + par|B~H(01) — B (02)]
< par + pu|B7H(o1) = 7 (02)]
< pular — ¢2|” + puCalor — 02|,
for the other case |q1 — ¢2| < 1, we have
lu(qr, 01) — (g, 02)]
<lp1(qn — (B~ (01))) = prlg2 — BB~ (02)))| + puma| B~ (1) — B~ (02)]
< C(lq1 = ga| + [P(B~" (1)) = DB~ (02))]) + parCplor — 02|’
< Clgi — @2|” + Cp(B~" (a1)) = DB~ (02))| + prrCplon — oo’
further more one can easily show that p is a C1([0,1];R), it follows that
lu(qr,01) = u(ga, 02)| < Clg1 — ga|” + Clor — 02| (4.15)
In the same way, we have
(g1, 01) — v(g2, 02)| < e1lgr — @2|? + color — o]’ (4.16)
For 0 <7< 1,and 1 < r < oo, let us denote

wWTr(Q) ={w e LT(Q);/Q A W dxdy < +oo}
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equipped with the norm
jw(z) —wly)|" r

W) = ( wl|’ . +/ —dxdy) ,

ol = (ll@+ | [ =Y
recall that d denotes the space dimension. Let ¢, o be in W7 (Q) x W™ (Q), then
the Holder functions u and v belong to Wo"/?(Q). In fact,

u(g, 0)| < c1lql” + ealo]’;

then u belongs to L™/?(Q). Furthermore,

[ [ aoteh = ta) uC)) A
QJQ

|Z‘ _ y|d+7-r

r/e/ lg(z) —q(y)|" r/o/ lo(z) —a(y)|"”
<c ————dzdy + ¢ —————duxdy,
Yoo Ja Jr—yldtr e oo |z—yldtTr Y

which ensures,
(g, ) lworrso () < elllalfyrriay + o frmr@))-
Using the continuity of the injection of H'(Q) into W™2(Q), with 7 < 1,
lu(p, B(s1))lwor2re 0y < Pl + 181 15y (@))
< e(llplif @) + 180l o))
integrating the above inequality over (0,7,
[[u(p, ﬂ(sl))||L2/9(0,T;W9T12/9(Q)) < C”pH%Q(O,T;Hl(Q)) + ”ﬁ(sl)”GL?(O,T;Hl(Q))
Furthermore the porosity function ¢ belongs to W1°°(9), it follows that
[pu(p; B(s))l L2700, m3wer2r0(0)) < C.
As Q is bounded and regular, we have, for 7/ < 0T,
Wm0y c WT0(Q) C (HY, ()
with compact injection from W972/%(Q) into W™ 2/9(Q). Finally, from a standard
compactness argument, we get ) is relatively compact in L2/9(0, T; w'2/8 Q) C

L?(0,T;L?(Q)). Secondly, the trace operator v maps continuously WT,’Q/Q(Q))
into W7 =9/2:2/9(T")) as soon as 7/ > 6/2 (see [26] for more details). Choosing for

example 7/ = 32, we deduce the relative compactness of v(Ejs) into L*(S7) x
L?(Xr). This completes the proof. O

From the previous two lemmas, we deduce the following convergence.

Lemma 4.3 (Strong and weak convergence). Up to a subsequence, the sequences
(s)ns @)y, (p])n verify the following convergence

p" —p weakly in L*(0,T; H%l(Q)),
B(s7) = Bls1) weakly in L(0,T; H'()),
pT — p almost everywhere in Qr,
s{’ — 51 almost everywhere in Qr and X,
s1 — 51 strongly in L*(Qr) and L*(Z7),
0 <si(t,x) <1 almost everywhere in (t,z) € Qr,
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p] — pi almost everywhere in Qr, (4.23)
0 (pi(p)s!) — ¢pi(pi(pi)si) weakly in L*(0,T; (H%I(Q))’), ) (4.24)

Proof. The weak convergence (4.17)—(4.18)) follow from the uniform estimates (4.2))
and (4.5) of lemma [4.1]

The lemma [£.2] ensures the following strong convergence
pi(p])s! — 1; in L*(Qr) and a. e. in Qr,
pi(p])s] — 1; in L?(S7) and a. e. in X7,
As the map H defined in is continuous, we deduce
p" — pa. e in@Qr and a. e. in X,
B(s!) — B* a. e. in Qr and a. e. in Xr.
The convergence is then established and as 57! is continuous,
s] — 51 =613 a. e. in Qr and a. e. in Up.

From (4.1)), the estimate (4.22)) holds and the Lebesgue theorem ensures the strong

convergence (4.21)). The convergence (4.23) is a consequence of (4.19)—(4.20).
At last, the weak convergence (4.24)) is a consequence of the estimate (4.6, and the

identification of the limit follows from the previous convergence. O

To achieve the proof of Theorem [I.1] it remains to pass to the limit as i goes to
zero in the formulations (1.24), for all smooth test functions ¢ € C* ([0, T]; Hf (€2))N
L2(0,T; H*(Q)) such that o(T) =0

— | opi(p)siowpdrdt + | KM;(s])pi(p])Vp] - Vo dx dt

Qr Qr
— [ KM(s))R))e - Vi dodt + / o (p1)s? oo dz

@r T (4.25)
—(=1) W/Qpi(p?)v(p? —p3) - Veddt

- / p(p!)s! frodedt + / G0 (00)s%0(0,2) dw dt, i=1,2.
T Q

The first term converges due to the strong convergence of p;(p])s] to p;(pi)s; in

L*(Qr).

The second term can be written, with the help of global pressure, as

KM;(s])pi(p])Vp] - Vi dx dt
v (4.26)

= | KM(s))pi(p)Vp" - Vodrdt+ |  Kpi(p])VB(s]) - Vo da dt.
QT Qr

The two terms on the right hand side of the equation (4.26)) converge arguing in
two steps. Firstly, the Lebesgue theorem and the convergence (4.20)) (4.23)) establish

pi(P])M;(s7)V — pi(pi)Mi(s:)V strongly in (L*(Qr))?,
pi(p!)V — pi(p;)V  strongly in (L*(Qr))".
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Secondly, the weak convergence on global pressure and the weak convergence
combined to the above strong convergence allow the convergence for the terms
of the right hand side of .

The fifth term can be written as

0 [ VG- 9D Vedodt= i [ pGDWAVIED) - Tide dr,
Q Q

The Cauchy-Schwarz inequality and the uniform estimate ensure the con-
vergence of this term to zero as 7 goes to zero. The other terms converge using
(4.23) and the Lebesgue dominated convergence theorem. The weak formu-
lations (1.12)) are then established. The main theorem [I.1|is then established. O
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