
Electronic Journal of Differential Equations, Vol. 2010(2010), No. 122, pp. 1–33.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

SOLUTIONS TO A MODEL FOR COMPRESSIBLE IMMISCIBLE
TWO PHASE FLOW IN POROUS MEDIA

ZIAD KHALIL, MAZEN SAAD

Abstract. In this article, we study the existence of solutions to a nonlin-

ear degenerate system modelling the displacement of two-phase compressible

immiscible flow in a three dimensional porous media. The aim of this work
is to treat the model with its general form with the whole nonlinear terms.

Especially, we consider the case where the density of each phase depends on

its corresponding pressure. We derive new energy estimates on velocities, sat-
urations and pressures to treat the degeneracy of the system. A compactness

result is shown for degenerate systems.

1. Introduction, assumptions and main results

The mathematical and numerical study of the miscible flow models has been
investigated in [5, 6, 16] and recently in [4, 11, 12, 13]. The immiscible and incom-
pressible flows have been treated by many authors [5, 7, 10, 15, 14, 17, 18]. For two
immiscible compressible flows, we refer to [20, 23], and recently [21] and [9].

The immiscible flow models developed by [20, 21, 23] use the feature of global
pressure even if the density of each phase depends on its own pressure, then the
context was to assume small capillary pressure so that the densities are assumed
to depend on the global pressure, recently and under that context Galusinski, Saad
[21] obtained an existence result of solutions. The employed global pressure is that
defined by Chavent et al. [10] for incompressible immiscible two phases, there is
no assumptions to define this pressure. In [3], a new notion of global pressure is
introduced especially for two compressible immiscible fluids, the new global pressure
is defined implicitly and depends on state law of density.

In this work, we consider the two compressible immiscible flows model studied in
[21]. The model is treated in its general form under the physical assumption that
the density of each phase depends on its own pressure. The mathematical study
of this model is based on new energy estimates on the velocity of each phase. The
main idea consists in deriving from degenerate estimates on pressure of each phase,
which not allowed straight bound on pressures, an estimate on global pressure
and degenerate capillary term. An appropriate compactness lemma is shown with
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the help of the feature of global pressure to pass from non-degenerate case to the
degenerate case.

We give below the basic model written in variables pressures and saturations.
The equations describing the immiscible displacement of two compressible fluids

are given by the following mass conservation of each phase (i = 1, 2):

φ(x)∂t(ρi(pi)si)(t, x) + div(ρi(pi)Vi)(t, x) + ρi(pi)sifP (t, x) = ρi(pi)sI
i fI(t, x),

(1.1)
where φ is the porosity of the medium, ρi and si are respectively the density and
the saturation of the ith fluid. The velocity of each fluid Vi is given by the Darcy
law:

Vi(t, x) = −K(x)
ki(si(t, x))

µi

(
∇pi(t, x)− ρi(pi)g

)
, i = 1, 2. (1.2)

where K(x) is the permeability tensor of the porous medium at point x to the fluid
under consideration, ki the relative permeability of the ith phase, µi the constant
i-phase’s viscosity, pi the i-phase’s pressure and g is the gravity term. Here the
functions fI and fP are respectively the injection and production terms. Note that
in equation (1.1) the injection term is multiplied by a known saturation sI

i corre-
sponding to the known injected fluid, whereas the production term is multiplied by
the unknown saturation si corresponding to the produced fluid. By definition of
saturations, one has

s1(t, x) + s2(t, x) = 1. (1.3)

The curvature of the contact surface between the two fluids links the jump of
pressure of the two phases to the saturation by the capillary pressure law in order
to close the system ((1.1)-(1.3),

f(s1(t, x)) = p1(t, x)− p2(t, x). (1.4)

the application s1 7→ f(s1) is non-decreasing, ( df
ds1

(s1) > 0, for all s1 ∈ [0, 1]), and
usually f(s1 = 1) = 0, in the case of two phases, when the wetting fluid is at its
maximum saturation. In this study we consider that the index i = 1 represents
the wetting fluid, and for this choice capillary pressure vanishes when s1 = 1. This
point is crucial in determining the spaces that the saturation of each phase belongs
to. We take the capillary pressure function f as considered in [10], defined on [0, 1],
increasing and f(1) = 0.

In section 4 we will use the feature of global pressure. For that let us denote,

Mi(si) = ki(si)/µi i− phase’s mobility,

M(s1) = M1(s1) +M2(1− s1) the total mobility,
V = V1 + V2 the total velocity.

As in [10, 28, 21] we can express the total velocity in terms of p2 and f(s1). We
have

V = −KM(s1)
(
∇p2 +

M1(s1)
M(s1)

∇f(s1)
)

+ K(M1(s1)ρ1(p1) +M2(s2)ρ2(p2))g.

Defining the functions p̃(s1), p̄(s1) such that

p̃′(s1) =
M1(s1)
M(s1)

f ′(s1), p̄′(s1) = −M2(s2)
M(s1)

f ′(s1), (1.5)
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the global pressure is then defined as in [10]

p = p2 + p̃(s1) = p1 + p̄(s1) (1.6)

Thus, the total velocity can be expressed as

V = −KM(s1)∇p+ K(M1(s1)ρ1(p1) +M2(s2)ρ2(p2))g,

Vi = −KMi(si)∇p−Kα(s1)∇si + KMi(si)ρi(pi)g.

where α(s1) = M1(s1)M2(s2)
M(s1)

df
ds (s1) ≥ 0. Define

β(s) =
∫ s

0

α(ξ)dξ. (1.7)

In this paper we do not use this concept of writing the total and each velocity in
terms of the global pressure and one saturation, but just to show the source of
definitions of some functions.

We detail the physical context by introducing the boundary conditions, the initial
conditions and some assumptions on the data of the problem. Let T > 0, fixed and
let Ω be a bounded open set of Rd (d ≥ 1), with Lipschitz boundary. We set
QT = (0, T ) × Ω, ΣT = (0, T ) × ∂Ω. To the system (1.1)-(1.3)-(1.4) (i = 1, 2), we
add the following mixed boundary conditions and initial conditions. We consider
the boundary ∂Ω = Γ1 ∪Γimp, where Γ1 6= ∅ denotes the injection boundary of the
first phase and Γimp the impervious one.

p1(t, x) = 0, p2(t, x) = 0 on Γ1

V1 · n = V2 · n = 0 on Γimp,
(1.8)

where n is the outward normal to the boundary Γimp. The initial conditions are
defined on pressures

pi(0, x) = p0
i (x) in Ω, i = 1, 2. (1.9)

Next, we introduce some physically relevant assumptions on the coefficients of
the system.

(H1) The porosity φ ∈ L∞(Ω) and there is two positive constants φ0 and φ1 such
that φ0 ≤ φ(x) ≤ φ1 almost everywhere x ∈ Ω.

(H2) The tensor K belongs to (L∞(Ω))d×d. Moreover, there exist two positive
constants k0 and k∞ such that

‖K‖(L∞(Ω))d×d ≤ k∞, (K(x)ξ, ξ) ≥ k0|ξ|2, for all ξ ∈ Rd, a.e. x ∈ Ω.

(H3) The functions M1 and M2 belong to C0([0, 1]; R+), M1(s1 = 0) = 0 and
M2(s2 = 0) = 0. In addition, there is a positive constant m0, such that,
for all s1 ∈ [0, 1],

M1(s1) +M2(s2) ≥ m0; with s2 = 1− s1.

(H4) (fP , fI) ∈ (L2(QT ))2, fP (t, x), fI(t, x) ≥ 0 almost everywhere (t, x) ∈ QT ,
sI

i (t, x) ≥ 0 (i = 1, 2) and sI
1(t, x) + sI

2(t, x) = 1 almost everywhere in
(t, x) ∈ QT .

(H5) The densities ρi (i = 1, 2) are C2(R), increasing and there exist two positive
constants ρm and ρM such that 0 < ρm ≤ ρi(pi) ≤ ρM , for i = 1, 2.

(H6) The capillary pressure function f ∈ C1([0, 1]; R−) and 0 < f ≤ df
ds .

(H7) The function α ∈ C1([0, 1]; R+) satisfies α(s) > 0 for 0 < s < 1, and
α(0) = α(1) = 0.
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We assume that β−1, inverse of β(s) :=
∫ s

0
α(z)dz, is an Hölder function of order

θ, with 0 < θ ≤ 1, on [0, β(1)]. Which means there exists a positive c such that for
all s1, s2 ∈ [0, β(1)], one has |β−1(s1)− β−1(s1)| ≤ c|s1 − s2|θ.

Assumptions (H1)–(H7) are classical for porous media.
The main existence result of this paper is given below, for that let us define the

following Sobolev space

H1
Γ1

(Ω) = {u ∈ H1(Ω);u = 0 on Γ1},

this is an Hilbert space when equipped with the norm ‖u‖H1
Γ1

(Ω) = ‖∇u‖(L2(Ω))d .
Let us state the main results of this paper.

Theorem 1.1. Let (H1)-(H7) hold. Let (p0
1, p

0
2) belongs to L2(Ω) × L2(Ω). Then

there exists (p1, p2) satisfying

pi ∈ L2(0, T ;H1
Γ1

(Ω)), φ∂t(ρi(pi)si) ∈ L2(0, T ; (H1
Γ1

(Ω))′), i = 1, 2, (1.10)

0 ≤ si(t, x) ≤ 1 a.e. in QT , i = 1, 2, ;β(s1) ∈ L2(0, T ;H1(Ω)) (1.11)

such that for all ϕi ∈ C1(0, T ;H1
Γ1

(Ω)) with ϕi(T ) = 0,

−
∫

QT

φρi(pi)si∂tϕi dx dt−
∫

Ω

φ(x)ρi(p0
i (x))s

0
i (x)ϕi(0, x) dx

+
∫

QT

KMi(si)ρi(p2)∇pi · ∇ϕi dx dt−
∫

QT

KMi(si)ρ2
i (pi)g · ∇ϕi dx dt

+
∫

QT

ρi(pi)sifPϕi dx dt

=
∫

QT

ρi(pi)sI
i fIϕi dx dt,

(1.12)

and finally the initial conditions are satisfied in a weak sense as follows: For all
ψ ∈ H1

Γ1
(Ω) the function

t→
∫

Ω

φρi(pi)siψ dx ∈ C0([0, T ]), (1.13)

furthermore, ( ∫
Ω

φρi(pi)siψ dx
)
(0) =

∫
Ω

φρi(p0
i )s

0
iψ dx. (1.14)

As we can see, the above notion of weak solutions is very natural provided that
we explain the origin of the requirements (1.10)–(1.11). Obviously, they correspond
to a priori estimates. Indeed, the equations (1.12) ensure that si ≥ 0 (i = 1, 2)
which is equivalent to 0 ≤ si ≤ 1 (the proof is detailed in lemma 2.6. The key point
is to obtain the estimates on ∇p and ∇β(s1). For that, define

gi(pi) :=
∫ pi

0

1
ρi(ξ)

dξ, i = 1, 2, (1.15)

Hi(pi) := ρi(pi)gi(pi)− pi, i = 1, 2, (1.16)

then H′
i(pi) = ρ′i(pi)gi(pi), Hi(0) = 0, Hi(pi) ≥ 0 for all pi, and Hi is sublinear

with respect to pi. Multiplying (1.1) by g1(p1) for i = 1 and (1.1) by g2(p2) for
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i = 2 then integrate the equations with respect to x and adding them, we deduce
at least formally,

d

dt

∫
Ω

φ
(
s1H1(p1) + s2H2(p2) +

∫ s1

0

f(ξ) dξ
)
dx

+
∫

Ω

KM1(s1)∇p1 · ∇p1 dx+
∫

Ω

KM2(s2)∇p2 · ∇p2 dx

−
∫

Ω

KM1(s1)ρ1(p1)g · ∇p1 dx−
∫

Ω

KM2(s2)ρ2(p2)g · ∇p2 dx

+
∫

Ω

ρ1(p1)s1fpg1(p1) dx+
∫

Ω

ρ2(p2)s2fpg2(p2) dx

=
∫

Ω

ρ1(p1)sI
1fIg1(p1) dx+

∫
Ω

ρ2(p2)sI
2fIg2(p2) dx.

(1.17)

A key point is to obtain formally the first term in the above equality, for that let

D = ∂t(ρ1(p1)s1)g1(p1) + ∂t(ρ2(p2)s2)g2(p2)

= ∂t(ρ1(p1)s1g1(p1)) + ∂t(ρ2(p2)s2g2(p2))− s1∂tp1 − s2∂tp2.

We have s1 + s2 = 1, then s1∂tp1 + s2∂tp2 = s1∂tf(s1) + ∂tp2 = ∂tG(s1) + ∂tp2,
where G is a primitive of s1f ′(s1). We can write D as D = ∂tE where E is defined
by

E = ρ1(p1)s1g1(p1) + ρ2(p2)s2g2(p2)−G(s1)− p2

= s1(ρ1(p1)g1(p1)− p1) + s2(ρ2(p2)s2g2(p2)− p2)−G(s1) + s1f(s1),

from the definition of the functions Hi (i = 1, 2) and G, the expression of E is
equivalent to:

E = s1H1(p1) + s2H2(p2) +
∫ s1

0

f(ξ) dξ.

Using the assumptions (H1)–(H6) and the fact that Hi ≥ 0, gi(pi) is sublinear
with respect to pi we deduce from (1.17) that∫

QT

M1(s1)∇p1 · ∇p1 dx+
∫

QT

M2(s2)∇p2 · ∇p2 dx <∞, (1.18)

∇p = ∇p2 +
M1

M
∇f(s1) = ∇p1 −

M2

M
∇f(s1), (1.19)

then, we deduce a magic equality∫
QT

M |∇p|2 dx+
∫

QT

M1M2

M
|∇f(s1)|2 dx

=
∫

QT

M1(s1)|∇p1|2 dx+
∫

QT

M2(s2)|∇p2|2 dx,
(1.20)

thus, the equality (1.20) and the assumption (H3) ensure that p ∈ L2(0, T ;H1
Γ1

(Ω))
and β(s1) ∈ L2(0, T ;H1(Ω)).

Before establishing theorem 1.1, we introduce the existence of solutions to system
(1.1) under the assumptions (H1)–(H7), with the addition of some terms on each
equation to save a maximum principle on saturations, to conserve the existence of
solutions of a time discretization, and to insure a compactness lemma which is nec-
essary to pass from an elliptic approximation to the original parabolic systemfrom,
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after that we get rid of these terms by a limit process which is also conserved. Thus
we consider the non-degenerate system:

φ∂t(ρ1(p
η
1)sη

1)− div(Kρ1(p
η
1)M1(s

η
1)∇pη

1) + div(Kρ2
1(p

η
1)M1(s

η
1)g)

− η div(ρ1(p
η
1)∇(pη

1 − pη
2)) + ρ1(p

η
1)sη

1fP = ρ1(p
η
1)sI

1fI ,
(1.21)

φ∂t(ρ2(p
η
2)sη

2)− div(Kρ2(p
η
2)M2(s

η
2)∇pη

2) + div(Kρ2
2(p

η
2)M2(s

η
2)g)

− η div(ρ2(p
η
2)∇(pη

2 − pη
1)) + ρ2(p

η
2)sη

2fP = ρ2(p
η
2)sI

2fI ,
(1.22)

completed with the initial conditions (1.9), and the following mixed boundary con-
ditions, for i = 1, 2,

pη
1(t, x) = 0, pη

2(t, x) = 0 on Γ1,(
KMi(s

η
i )(∇pη

i − ρi(p
η
i )g) + (−1)i+1η∇(pη

1 − pη
2)

)
· n = 0 on Γimp,

(1.23)

where n is the outward normal to the boundary Γimp.
Now, we state existence of solutions of the above system by the following theo-

rem.

Theorem 1.2 (Non-degenerate system). Let (H1)–(H6) hold. Let (p0
1, p

0
2) belongs

to L2(Ω)× L2(Ω). Then for all η > 0, there exists (pη
1 , p

η
2) satisfying

pη
i ∈ L

2(0, T ;H1
Γ1

(Ω)), sη
1 ∈ L2(0, T ;H1(Ω)), sη

2 ∈ L2(0, T ;H1
Γ1

(Ω)),

φ∂t(ρi(p
η
i )sη

i ) ∈ L2(0, T ; (H1
Γ1

(Ω))′), ρi(p
η
i )sη

i ) ∈ C0(0, T ;L2(Ω)),

0 ≤ sη
i (t, x) ≤ 1 a.e. in QT , i = 1, 2,

for all ϕi ∈ L2(0, T ;H1
Γ1

(Ω)), i = 1, 2,

〈φ∂t(ρi(p
η
i )sη

i ), ϕi〉+
∫

QT

KMi(s
η
i )ρi(p

η
i )∇pη

i · ∇ϕi dx dt

−
∫

QT

KMi(s
η
i )ρ2

i (p
η
i )g · ∇ϕi dx dt+ (−1)i+1η

∫
QT

ρi(p
η
i )∇(pη

1 − pη
2) · ∇ϕdx dt

+
∫

QT

ρi(p
η
i )sη

i fPϕi dx dt =
∫

QT

ρi(p
η
i )sI

i fIϕi dx dt

(1.24)
where the symbol 〈·, ·〉 represents the duality product between L2(0, T ; (H1

Γ1
(Ω))′)

and L2(0, T ;H1
Γ1

(Ω)).

The first step to establish theorem 1.2 is based on a time discretization scheme
of (1.21)-(1.22). For that, let ρ?

i and s?
i be the values of the h-translated in time of

ρi(pi) and si, respectively, i = 1, 2, we state the following theorem.

Theorem 1.3 (Non-degenerate elliptic system). Let (H1)–(H6) hold. Let (p0
1, p

0
2)

belongs to L2(Ω) × L2(Ω). Then for all h > 0, there exists (ph
1 , p

h
2 ) = (pη,h

1 , pη,h
2 )

satisfying

ph
1 ∈ H1

Γ1
(Ω), ph

2 ∈ H1
Γ1

(Ω), sh
1 ∈ H1(Ω), sh

2 ∈ H1
Γ1

(Ω),

0 ≤ sh
i (t, x) ≤ 1 a.e. in QT , i = 1, 2,
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for all ϕi ∈ H1
Γ1

(Ω), i = 1, 2,∫
Ω

φ
ρi(ph

i )sh
i − ρ?

i s
?
i

h
ϕi dx+

∫
Ω

KMi(sh
i )ρi(ph

i )∇ph
i · ∇ϕi dx

−
∫

Ω

KMi(sh
i )ρ2

i (p
h
i )g · ∇ϕi dx

+ (−1)i+1η

∫
Ω

ρi(ph
i )∇(ph

1 − ph
2 ) · ∇ϕi dx+

∫
Ω

ρi(ph
i )sh

i fPϕi dx

=
∫

Ω

ρi(ph
i )sI

i fIϕdx,

(1.25)

The rest of the paper is organized as follows. In the next section we deal with
the time discrete model to prove Theorem 1.3 in two steps. The first step deals
with an elliptic system with non degenerate mobilities, M ε

i = Mi + ε with ε > 0,
in this step we apply a suitable fixed point theorem, Leray-Schauder, to get weak
solution. The second step is to pass to the limit as ε goes to zero depending on
a suitable uniform estimate (w. r. to ε), and a maximum principle ensures the
positivity of saturations which achieves the proof of theorem 1.3.

In the third section we introduce a sequence of solutions solving (1.25). This
choice is motivated by the fact that no evolution have to be considered in a first step.
The problem of degeneracy of evolution term is temporarily sat aside. Furthermore,
the maximum principle is conserved on saturation after the passage to the limit on
in the non linear variational elliptic system. The last section is devoted to pass
from non-degenerate case to degenerate case through a compactness lemma which
allow us with the help of some estimates to pass the limit and end the proof of
existence of weak solutions of the system under consideration. The next section is
devoted to the analysis of the elliptic problem.

2. Study of a nonlinear elliptic system (proof of theorem 1.3)

Having in mind a time discretization of (1.21)-(1.22), we are concerned with the
following system,

φ
ρi(pi)si − ρ?

i s
?
i

h
− div(Kρi(pi)Mi(si)∇pi) + div(KMi(si)ρ2

i g)

− (−1)i+1η div(ρi(pi)∇(p1 − p2)) + ρi(pi)sifP

= ρi(pi)sI
i fI in Ω.

(2.1)

Before establishing theorem 1.3 which is the main purpose of this section, we intro-
duce the existence of solutions of system (2.1), when the mobilities Mi, (i = 1, 2)
are replaced by a non-degenerate positive functions,

M ε
i = Mi + ε, i = 1, 2, and ε > 0,

which reinforce the passage to the limit in another regularization which is the trunk
high frequencies of nonlinear elliptic term in pressure p2 in the equation (2.1). Let
PN be the orthogonal projector of L2(Ω) on the first N eigenvectors of the operator

p→ −∆p

with homogeneous Dirichlet boundary conditions. The projector PN appears in
(2.3) to make regular the implied term. The necessity of this regularization appears
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in the coming proposition in order to define the operator which we apply on the
Leray-Schauder fixed point theorem.

The addition of such ε to the mobilities lead to the loss of maximum principle
on the saturations si (i = 1, 2). So the functions M1 and M2 are extended on R by
continuous constant functions outside [0, 1] and then are bounded on R. For the
same reason we denote,

Z(si) =


0 for si ≤ 0
si for si ∈ [0; 1]
1 for si ≥ 1.

(2.2)

In the same spirit and in order to write the saturations si (i = 1, 2.) as functions
of the principle unknowns p1 and p2 of the system, we extend the capillary pressure
function f by continuity and strict monotony outside [0, 1] in to f̄ , this is possible in
the case when the capillary function f is bounded, in other words when | f(0) |<∞,
and denote by s1 = f̄−1(p1 − p2) and s2 = 1− f̄−1(p1 − p2).

Existence of solution to (2.1) is constructed in three steps. The first one consists
in studying the following problem for fixed parameters ε > 0, N > 0 and η > 0.
Then, we are concerned with the regularized elliptic system:∫

Ω

φ
ρ1(p

ε,N
1 )Z(sε,N

1 )− ρ?
1s

?
1

h
ϕdx+

∫
Ω

KM ε
1(sε,N

1 )ρ1(p
ε,N
1 )∇pε,N

1 · ∇ϕdx

−
∫

Ω

KM1(s
ε,N
1 )ρ2

1(p
ε,N
1 )g · ∇ϕdx

+ η

∫
Ω

ρ1(p
ε,N
1 )∇(PNp

ε,N
1 − PNp

ε,N
2 ) · ∇ϕdx+

∫
Ω

ρ1(p
ε,N
1 )Z(sε,N

1 )fPϕdx

=
∫

Ω

ρ1(p
ε,N
1 )sI

1fIϕdx,

(2.3)

∫
Ω

φ
ρ2(p

ε,N
2 )Z(sε,N

2 )− ρ?
2s

?
2

h
ξ dx+

∫
Ω

KM ε
2(sε,N

2 )ρ2(p
ε,N
2 )∇pε,N

2 · ∇ξ dx

−
∫

Ω

KM2(s
ε,N
2 )ρ2

2(p
ε,N
2 )g · ∇ξ dx

− η

∫
Ω

ρ2(p
ε,N
2 )∇(PNp

ε,N
1 − PNp

ε,N
2 ) · ∇ξ dx+

∫
Ω

ρ2(p
ε,N
2 )Z(sε,N

2 )fP ξ dx

=
∫

Ω

ρ2(p
ε,N
2 )sI

2fIξ dx,

(2.4)

for all (ϕ, ξ) belonging to H1
Γ1

(Ω) × H1
Γ1

(Ω); with sε,N
1 = f̄−1(pε,N

1 − pε,N
2 ) and

sε,N
2 = 1− sε,N

1 .
The second step concerns the passage to the limit as N goes to infinity in order to
recover the full physical diffusion on pressures p1 and p2, while the third one is the
passage to the limit as ε approaches zero.
Step 1. We show for fixed N > 0 and ε > 0 existence of solutions to (2.3)-(2.4).
We omit for the time being the dependence of solutions on parameter N > 0 and
ε.

Proposition 2.1. Assume ρ?
i s

?
i belongs to L2(Ω) and ρ?

i s
?
i ≥ 0. Then there exists

(p1, p2) belonging to H1
Γ1

(Ω)×H1
Γ1

(Ω), solution of (2.3)-(2.4).
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Proof. The proof is based on the Leray-Schauder fixed point theorem. Let T be a
map from L2(Ω)× L2(Ω) to L2(Ω)× L2(Ω) defined by

T (p1, p2) = (p1, p2),

where the pair (p1, p2) is the unique solution of the system (2.5)-(2.6)∫
Ω

φ
ρ1(p1)Z(s1)− ρ?

1s
?
1

h
ϕdx+

∫
Ω

KM ε
1(s1)ρ1(p1)∇p1 · ∇ϕdx

−
∫

Ω

KM1(s1)ρ2
1(p1)g · ∇ϕdx+ η

∫
Ω

ρ1(p1)∇(PNp1 − PNp2) · ∇ϕdx

+
∫

Ω

ρ1(p1)Z(s1)fPϕdx =
∫

Ω

ρ1(p1)s
I
1fIϕdx, (2.5)

∫
Ω

φ
ρ2(p2)Z(s2)− ρ?

2s
?
2

h
ξ dx+

∫
Ω

KM ε
2(s2)ρ2(p2)∇p2 · ∇ξ dx

−
∫

Ω

KM2(s2)ρ2
2(p2)g · ∇ξ dx− η

∫
Ω

ρ2(p2)∇(PNp1 − PNp2) · ∇ξ dx

+
∫

Ω

ρ2(p2)Z(s2)fP ξ dx =
∫

Ω

ρ2(p2)s
I
2fIξ dx, (2.6)

for all (ϕ, ξ) belonging to H1
Γ1

(Ω)×H1
Γ1

(Ω), s1 = f̄−1(p1−p2) and s2 = 1−f̄−1(p1−
p2). The functions M1 and M2 are the extended mobilities which operates on R.
Such extensions of the mobilities Mi (i = 1, 2), the capillary function f and such
bound of the saturations si (i = 1, 2) by introducing the map Z are temporary; we
deal it at the end of this section after the passage to the limit in ε by a maximum
principle on saturations and then the mobilities, the map Z and the extended
capillary function f̄ operates only on [0, 1] where they have a physical meaning.

The system (2.5)−(2.6) can be written in the form B1(p1, ϕ) = f1(ϕ), B2(p2, ξ) =
f2(ξ), where f1(·), f2(·) are linear continuous mappings on H1

Γ1
(Ω). Then, apply

Lax-Milgram theorem to get the existence of the unique pair (p1, p2) in H1
Γ1

(Ω)×
H1

Γ1
(Ω) which ensures that the map T is well defined on L2(Ω)× L2(Ω).

Lemma 2.2. The map T is a continuous operator which maps every bounded
subsets of (L2(Ω))2 into a relatively compact set (L2(Ω))2.

Proof. Consider a sequence (p1,n, p2,n) of a bounded set of L2(Ω)×L2(Ω) which con-
verges to (p1, p2) ∈ L2(Ω)×L2(Ω), and let us prove that (p1,n, p2,n) = T (p1,n, p2,n)
is bounded in H1

Γ1
(Ω) × H1

Γ1
(Ω) which converges to (p1, p2) = T (p1, p2). The se-

quences p1,n, p2,n verify respectively∫
Ω

φ
ρ1(p1,n)Z(s1,n)− ρ?

1s
?
1

h
ϕdx+

∫
Ω

KM ε
1(s1,n)ρ1(p1,n)∇p1,n · ∇ϕdx

−
∫

Ω

KM1(s1,n)ρ2
1(p1,n)g · ∇ϕdx+ η

∫
Ω

ρ1(p1,n)∇(PNp1,n − PNp2,n) · ∇ϕdx

+
∫

Ω

ρ1(p1,n)Z(s1,n)fPϕdx =
∫

Ω

ρ1(p1,n)sI
1fIϕdx, (2.7)

∫
Ω

φ
ρ2(p2,n)Z(s2,n)− ρ?

2s
?
2

h
ξ dx+

∫
Ω

KM ε
2(s2,n)ρ2(p2,n)∇p2,n · ∇ξ dx



10 Z. KHALIL, M. SAAD EJDE-2010/122

−
∫

Ω

KM2(s2,n)ρ2
2(p2,n)g · ∇ξ dx− η

∫
Ω

ρ2(p2,n)∇(PNp1,n − PNp2,n) · ∇ξ dx

+
∫

Ω

ρ2(p2,n)Z(s2,n)fP ξ dx =
∫

Ω

ρ2(p2,n)sI
2fIξ dx, (2.8)

for all (ϕ, ξ) belonging to H1
Γ1

(Ω)×H1
Γ1

(Ω). Let us take ϕ = p1,n in (2.7),∫
Ω

KM ε
1(s1,n)ρ1(p1,n)∇p1,n · ∇p1,n dx

=
∫

Ω

KM1(s1,n)ρ2
1(p1,n)g · ∇p1,n dx

− η

∫
Ω

ρ1(p1,n)∇(PNp1,n − PNp2,n) · ∇p1,n dx

−
∫

Ω

φ
ρ1(p1,n)Z(s1,n)− ρ?

1s
?
1

h
p1,n dx

−
∫

Ω

ρ1(p1,n)Z(s1,n)fP p1,n dx

∫
Ω

ρ1(p1,n)sI
1fIp1,n dx,

(2.9)

we deduce from the Cauchy-Schwarz inequality that (2.9) reduces to,

εk0ρm

∫
Ω

|∇p1,n|2 dx ≤ C
(
1 + ‖p1,n‖L2(Ω) + ‖∇p1,n‖L2(Ω)

+ ‖∇PNp1,n‖L2(Ω) + ‖∇PNp2,n‖L2(Ω)

)
,

(2.10)

where C depends on Ω, η, h, φ1, ‖fP ‖L2(Ω), ‖fI‖L2(Ω), ρM , k∞ and ‖ρ?
1s

?
1‖L2(Ω).

As,
‖∇PNpi,n‖L2(Ω) ≤ cN‖pi,n‖L2(Ω), (i = 1, 2)

where cN is the square root of the Nth eigenvalue of the laplace operator (by
considering the set of eigenvalues as increasing sequence), the Poincaré and Young
inequalities and the estimate (2.10) ensure that the sequence (P1,n)n is uniformly
bounded in H1

Γ1
(Ω).

Then, taking ξ = p2,n in (2.8), we deduce similarly that

εk0ρm

∫
Ω

|∇p2,n|2 dx ≤ C
(
1 + ‖p2,n‖L2(Ω) + ‖∇p2,n‖L2(Ω)

+ ‖∇PNp1,n‖L2(Ω) + ‖∇PNp2,n‖L2(Ω)

)
,

(2.11)

where C depends on Ω, η, h, φ1, ‖fP ‖L2(Ω), ‖fI‖L2(Ω), ρM , k∞ and ‖ρ?
2s

?
2‖L2(Ω).

Then the sequence (P2,n)n is uniformly bounded in H1
Γ1

(Ω). This establishes the
relative compactness property of the map T .

Furthermore, up to a subsequence, we have the convergence

p1,n → p1 weakly in H1
Γ1

(Ω), (2.12)

p2,n → p2 weakly in H1
Γ1

(Ω), (2.13)

p1,n → p1 strongly in L2(Ω) and a.e. in Ω, (2.14)

p2,n → p2 strongly in L2(Ω) and a.e. in Ω. (2.15)

To complete the proof of continuity of the operator T , it is sufficient to show that
(p1, p2) is the unique adherent value of the sequence (p1,n, p2,n), for that let us show
(p1, p2) is the unique solution of (2.5)-(2.6) by passing the limit in (2.7)-(2.8).
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Passing to the limit in (2.7):∫
Ω

φ
ρ1(p1,n)Z(s1,n)− ρ?

1s
?
1

h
ϕdx+

∫
Ω

KM ε
1(s1,n)ρ1(p1,n)∇p1,n · ∇ϕdx

−
∫

Ω

KM1(s1,n)ρ2
1(p1,n)g · ∇ϕdx+ η

∫
Ω

ρ1(p1,n)∇(PNp1,n − PNp2,n) · ∇ϕdx

+
∫

Ω

ρ1(p1,n)Z(s1,n)fPϕdx =
∫

Ω

ρ1(p1,n)sI
1fIϕdx,

where s1,n = f̄−1(p1,n − p2,n).
The passage to the limit in the first term is due to the continuity of Z, f̄−1 and

ρ1, the convergence (2.14) and (2.15), and the domination of ρ1(p1,n)Z(s1,n)ϕ by
ρM |ϕ|, which allow us to apply the Lebesgue theorem.

The second term is treated as follows, the sequence
(
KMε

1 (s1n)ρ1(p1n)∇ϕ
)
n

is
dominated and converges a.e. as n goes to infinity. Then, by Lebesgue theorem,
we have the following strong convergence in L2(Ω),

KMε
1 (s1,n)ρ1(p1n)∇ϕ→ KMε

1 (s1)ρ1(p1)∇ϕ. (2.16)

Furthermore and due to the convergence (2.12), it follows that

∇pn
1 → ∇p1 weakly in L2(Ω), (2.17)

then, the convergence (2.16) and (2.17) establish the limit for the second term.
The fourth term

η

∫
Ω

ρ1(p1,n)∇(PNp1,n − PNp2,n) · ∇ϕdx,

is treated as follows,

ρi(pi,n)∇ϕ→ ρi(pi)∇ϕ strongly in (L2(Ω))d (i = 1, 2). (2.18)

Furthermore pi,n converges in L2(Ω), it follows that

∇PNpi,n ⇀ ∇PNpi weakly in (L2(Ω))d (i = 1, 2). (2.19)

Then, the convergence (2.18)-(2.19) allow us to pass the limit in the fourth
term. The convergence of the other terms are also an application of the Lebesgue
convergence theorem. The passage to the limit on (2.8) is obtained in the same
manner. Thus (p1, p2) is a solution of (2.5)-(2.6), which establishes the continuity
and completes the proof of the lemma. �

Lemma 2.3 (A priori estimate). There exists a positive constant r such that, if
(p1, p2) = λT (p1, p2) with λ ∈ (0, 1), then

‖(p1, p2)‖L2(Ω)×L2(Ω) ≤ r,

where r is independent of λ.
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Proof. Assume (p1, p2) = λT (p1, p2) holds, recall that s1 = f
−1

(p1 − p2) and
s2 = 1− s1, then (p1, p2) satisfies∫

Ω

KM ε
1(s1)ρ1(p1)∇p1 · ∇ϕdx

= −λ
∫

Ω

φ
ρ1(p1)Z(s1)− ρ?

1s
?
1

h
ϕdx+ λ

∫
Ω

KM1(s1)ρ2
1(p1)g · ∇ϕdx

− λ

∫
Ω

ρ1(p1)Z(s1)fPϕdx+ λ

∫
Ω

ρ1(p1)sI
1fIϕdx

− λη

∫
Ω

ρ1(p1)∇(PNp1 − PNp2) · ∇ϕdx,

(2.20)

∫
Ω

KM ε
2(s2)ρ2(p2)∇p2 · ∇ξ dx

= −λ
∫

Ω

φ
ρ2(p2)Z(s2)− ρ?

2s
?
2

h
ξ dx+ λ

∫
Ω

KM2(s2)ρ2
2(p2)g · ∇ξ dx

− λ

∫
Ω

ρ2(p2)Z(s2)fP ξ dx+ λ

∫
Ω

ρ2(p2)sI
2fIξ dx

+ λη

∫
Ω

ρ2(p2)∇(PNp1 − PNp2) · ∇ξ dx.

(2.21)

for all (ϕ, ξ) belonging to H1
Γ1

(Ω)×H1
Γ1

(Ω). Consider ϕ = g1(p1) :=
∫ p1

0
1

ρ1(ζ) dζ ∈
H1

Γ1
(Ω) in (2.20) and ξ = g2(p2) :=

∫ p2

0
1

ρ2(ζ) dζ ∈ H1
Γ1

(Ω) in (2.21). Summing up
these quantities, we obtain

λ

∫
Ω

φ

h

((
ρ1(p1)Z(s1)− ρ?

1s
?
1

)
g1(p1) +

(
ρ2(p2)Z(s2)− ρ?

2s
?
2

)
g2(p2)

)
dx

+
∫

Ω

KMε
1∇p1 · ∇p1 dx+ λη

∫
Ω

∇(PNp1 − PNp2) · ∇(p1 − p2) dx

− λ

∫
Ω

Kρ1(p1)M1(s1)g · ∇p1 dx+
∫

Ω

KMε
2∇p2 · ∇p2 dx

− λ

∫
Ω

Kρ2(p2)M2(s2)g · ∇p2 dx

+ λ

∫
Ω

(
ρ1(p1)Z(s1)g1(p1) + ρ2(p2)Z(s2)g2(p2)

)
fP dx

= λ

∫
Ω

(
(ρ1(p1)sI

1g1(p1) + ρ2(p2)sI
2g2(p2)

)
fI dx.

(2.22)

Remark that the functions pi → gi(pi) is sub-linear, we deduce from Cauchy-
Schwarz and Poincaré inequalities that (2.22) reduces to

ε

∫
Ω

|∇p1|2 dx+ ε

∫
Ω

|∇p2|2 dx+ λη

∫
Ω

|∇(PNp1 − PNp2)|2 dx

≤ C1(1 + ‖fP ‖2
L2(Ω) + ‖fI‖2

L2(Ω) + ‖ρ?
1s

?
1‖2

L2(Ω) + ‖ρ?
2s

?
2‖2

L2(Ω)),
(2.23)

where C1 depends on ε and not on λ. It is important in (2.26) to ensure that C1

does not depend on N .
Lemma 2.2, Lemma 2.3 allow to apply the Leray-Schauder fixed point theorem

[31], thus the proof of proposition 2.1 is completed. �
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Step 2. Now we are concerned with the limit N goes to infinity (we omit the de-
pendence of solutions on ε). For all N , we have established a solution (p1,N , p2,N ) ∈
H1

Γ1
(Ω)×H1

Γ1
(Ω) to (2.3) (2.4) satisfying∫

Ω

φ
ρ1(pN

1 )Z(sN
1 )− ρ?

1s
?
1

h
ϕdx+

∫
Ω

KM ε
1(sN

1 )ρ1(pN
1 )∇pN

1 · ∇ϕdx

−
∫

Ω

KM1(sN
1 )ρ2

1(p
N
1 )g · ∇ϕdx+ η

∫
Ω

ρ1(pN
1 )∇(PNp

N
1 − PNp

N
2 ) · ∇ϕdx

+
∫

Ω

ρ1(pN
1 )Z(sN

1 )fPϕdx =
∫

Ω

ρ1(pN
1 )sI

1fIϕdx, (2.24)

∫
Ω

φ
ρ2(pN

2 )Z(sN
2 )− ρ?

2s
?
2

h
ξ dx+

∫
Ω

KM ε
2(sN

2 )ρ2(pN
2 )∇pN

2 · ∇ξ dx

−
∫

Ω

KM2(sN
2 )ρ2

2(p
N
2 )g · ∇ξ dx− η

∫
Ω

ρ2(pN
2 )∇(PNp

N
1 − PNp

N
2 ) · ∇ξ dx

+
∫

Ω

ρ2(pN
2 )Z(sN

2 )fP ξ dx =
∫

Ω

ρ2(pN
2 )sI

2fIξ dx, (2.25)

for all (ϕ, ξ) belonging to H1
Γ1

(Ω)×H1
Γ1

(Ω). Reproducing the estimate (2.23) with
λ = 1, we get

ε

∫
Ω

|∇p1|2 dx+ ε

∫
Ω

|∇p2|2 dx+ η

∫
Ω

|∇(PNp1 − PNp2)|2 dx

≤ C1(1 + ‖fP ‖2
L2(Ω) + ‖fI‖2

L2(Ω) + ‖ρ?
1s

?
1‖2

L2(Ω) + ‖ρ?
2s

?
2‖2

L2(Ω)),
(2.26)

where C1 depends on ε and not on N .
Then, up to a subsequence, we have the convergence,

p1,N → p1 weakly in H1
Γ1

(Ω), strongly in L2(Ω) and a.e. in Ω (2.27)

p2,N → p2 weakly in H1
Γ1

(Ω), strongly in L2(Ω) and a.e. in Ω. (2.28)

The convergence in (2.24)-(2.25) with respect to N are obtained in the same manner
as for the convergence with respect to n in (2.7) (2.8).

Step 3. Passage to the limit as ε approaches zero. For all ε > 0, we have shown
that there exists (p1,ε, p2,ε) ∈ H1

Γ1
(Ω)×H1

Γ1
(Ω), satisfying∫

Ω

φ
ρ1(pε

1)Z(sε
1)− ρ?

1s
?
1

h
ϕdx+

∫
Ω

KM ε
1(sε

1)ρ1(pε
1)∇pε

1 · ∇ϕdx

−
∫

Ω

KM1(sε
1)ρ

2
1(p

ε
1)g · ∇ϕdx+ η

∫
Ω

ρ1(pε
1)∇(pε

1 − pε
2) · ∇ϕdx

+
∫

Ω

ρ1(pε
1)Z(sε

1)fPϕdx =
∫

Ω

ρ1(pε
1)s

I
1fIϕdx,

(2.29)

∫
Ω

φ
ρ2(pε

2)Z(sε
2)− ρ?

2s
?
2

h
ξ dx+

∫
Ω

KM ε
2(sε

2)ρ2(pε
2)∇pε

2 · ∇ξ dx

−
∫

Ω

KM2(sε
2)ρ

2
2(p

ε
2)g · ∇ξ dx− η

∫
Ω

ρ2(pε
2)∇(pε

1 − pε
2) · ∇ξ dx

+
∫

Ω

ρ2(pε
2)Z(sε

2)fP ξ dx =
∫

Ω

ρ2(pε
2)s

I
2fIξ dx,

(2.30)

for all (ϕ, ξ) belonging to H1
Γ1

(Ω)×H1
Γ1

(Ω), with sε
1 = f

−1
(pε

1−pε
2) and sε

2 = 1−sε
1.



14 Z. KHALIL, M. SAAD EJDE-2010/122

We need uniform estimates on the solutions independent of the regularization ε
in order to pass to the limit in ε. For that, we are going to use the feature of global
pressure. After the passage to the limit in ε, a maximum principle on saturations is
possible. We are now concerned with a uniform estimate on the gradient of β(sε

1),
and on the global pressure pε. We state the following two lemmas.

Lemma 2.4. The sequences (sε
i)ε, (pε := pε

2 + p̃(sε
1))ε defined by Proposition 2.1

satisfy

(pε)ε is uniformly bounded in H1
Γ1

(Ω) (2.31)

(
√
ε ∇pε

i)εis uniformly bounded in L2(Ω) (2.32)

(β(sε
1))ε is uniformly bounded in H1(Ω) (2.33)

∇f(sε
1))ε is uniformly bounded in L2(Ω) (2.34)

Proof. Consider ϕ = g1(pε
1) :=

∫ pε
1

0
1

ρ1(ζ) dζ ∈ H1
Γ1

(Ω) in (2.29) and ξ = g2(pε
2) :=∫ pε

2
0

1
ρ2(ζ) dζ ∈ H

1
Γ1

(Ω) in (2.30). Summing these quantities, we obtain∫
Ω

φ

h

((
ρ1(pε

1)Z(sε
1)− ρ?

1s
?
1

)
g1(pε

1) +
(
ρ2(pε

2)Z(sε
2)− ρ?

2s
?
2

)
g2(pε

2)
)
dx

+
∫

Ω

KMε
1∇pε

1 · ∇pε
1 dx+ η

∫
Ω

∇(pε
1 − pε

2) · ∇(pε
1 − pε

2) dx

−
∫

Ω

Kρ1(pε
1)M1(sε

1)g · ∇pε
1 dx+

∫
Ω

KMε
2∇pε

2 · ∇pε
2 dx

−
∫

Ω

Kρ2(pε
2)M2(sε

2)g · ∇pε
2 dx

+
∫

Ω

(
ρ1(pε

1)Z(sε
1)g1(p

ε
1) + ρ2(pε

2)Z(sε
2)g2(p

ε
2)

)
fP dx

=
∫

Ω

(
(ρ1(pε

1)s
I
1g1(p

ε
1) + ρ2(pε

2)s
I
2g2(p

ε
2)

)
fI dx,

then∫
Ω

KM1∇pε
1 · ∇pε

1 dx+
∫

Ω

KM2∇pε
2 · ∇pε

2 dx

+ ε

∫
Ω

K∇pε
1 · ∇pε

1 dx+ ε

∫
Ω

K∇pε
2 · ∇pε

2 dx+ η

∫
Ω

∇f(s1) · ∇f(s1) dx

=
∫

Ω

Kρ1(pε
1)M1(sε

1)g · ∇pε
1 dx+

∫
Ω

Kρ2(pε
2)M2(sε

2)g · ∇pε
2 dx

−
∫

Ω

(
ρ1(pε

1)Z(sε
1)g1(p

ε
1) + ρ2(pε

2)Z(sε
2)g2(p

ε
2)

)
fP dx

+
∫

Ω

(
(ρ1(pε

1)s
I
1g1(p

ε
1) + ρ2(pε

2)s
I
2g2(p

ε
2)

)
fI dx

−
∫

Ω

φ

h

((
ρ1(pε

1)Z(sε
1)− ρ?

1s
?
1

)
g1(pε

1) +
(
ρ2(pε

2)Z(sε
2)− ρ?

2s
?
2

)
g2(pε

2)
)
dx.

(2.35)

The hypothesis (H2) and with the help of Cauchy-Schwarz inequality, we have∣∣ ∫
Ω

Kρ1(pε
1)M1(sε

1)g · ∇pε
1 dx

∣∣ ≤ C +
k0

2

∫
Ω

M1∇pε
1 · ∇pε

1 dx,
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∣∣ ∫
Ω

Kρ2(pε
2)M2(sε

2)g · ∇pε
2 dx

∣∣ ≤ C +
k0

2

∫
Ω

M2∇pε
2 · ∇pε

2 dx,

then the gravity terms in (2.35) on the right hand side are absorbed by pressures
dissipative terms. Recall that, the functions pi → gi(pi) is sub-linear (i.e |gi(pi)| ≤
1

ρm
|pi| ), then from (2.35), one obtains∫

Ω

M1(sε
1)|∇pε

1|2 dx+
∫

Ω

M2(sε
2)|∇pε

2|2 dx+ η

∫
Ω

|∇f(s1)|2 dx

+ ε

∫
Ω

|∇pε
1|2 dx+ ε

∫
Ω

|∇pε
2|2 dx

≤ C(1 + ‖pε
1‖L2(Ω) + ‖pε

2‖L2(Ω)).

(2.36)

Return now to the relationship between pressures and global pressure. From (1.6),
we have pε = pε

2 + p̃(sε
1) = pε

1 + p̄(sε
1), and

∇pε = ∇pε
2 +

M1(sε
1)

M(sε
1)
∇f(sε

1) = ∇pε
1 −

M2(sε
2)

M(sε
1)
∇f(sε

1), (2.37)

which imply that∫
Ω

M(sε
1)|∇pε|2 dx+

∫
Ω

M1(sε
1)M2(sε

2)
M(sε

1)
|∇f(sε

1)|2 dx

=
∫

Ω

M1(sε
1)∇pε

1 · ∇pε
1 dx+

∫
Ω

M2(sε
2)∇pε

2 · ∇pε
2 dx.

(2.38)

The estimate (2.36) is equivalent to∫
Ω

M(sε
1)|∇pε|2 dx+

∫
Ω

M1(sε
1)M2(sε

2)
M(sε

1)
|∇f(sε

1)|2 dx

+ η

∫
Ω

|∇f(s1)|2 dx+ ε

∫
Ω

|∇pε
1|2 dx+ ε

∫
Ω

|∇pε
2|2 dx

≤ C(1 + ‖pε
1‖L2(Ω) + ‖pε

2‖L2(Ω))

≤ C(1 + ‖pε‖L2(Ω) + ‖p(sε
1)‖L2(Ω) + ‖p̃(sε

1)‖L2(Ω))

≤ C(1 + ‖∇pε‖L2(Ω) + ‖p(sε
1)‖L2(Ω) + ‖p̃(sε

1)‖L2(Ω)),

due to the Poincaré’s inequality. Finally, using the fact that the function p̃ and
p̄ are bounded, and the global pressure term on the right hand side in the above
inequality can be absorbed by the dissipative term in global pressure, on the left
hand side, we deduce that there exists a constant C1 independent of ε, C1 =
C1(h, ρm,Mi,g, fp, fI , s

I
1, s

I
2, ρ

?
1s

?
1, ρ

?
2s

?
2, h, φ, k∞, k0) such that∫

Ω

M(sε
1)|∇pε|2 dx+

∫
Ω

M1(sε
1)M2(sε

2)
M(sε

1)
|∇f(sε

1)|2 dx

+ η

∫
Ω

|∇f(s1)|2 dx+ ε

∫
Ω

|∇pε
1|2 dx+ ε

∫
Ω

|∇pε
2|2 dx ≤ C1,

(2.39)

which establish the estimates (2.31), (2.32) and (2.34). For the estimate (2.33), we
use the fact that the second term on the left hand side in (2.39) is bounded and
the total mobility is bounded below due to the assumption (H3), we have∫

Ω

M1(sε
1)M2(sε

2)|∇f(sε
1)|2 dx ≤ m0C1,
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which implies∫
Ω

|∇β(sε
1)|2 dx =

∫
Ω

M2
1 (sε

1)M
2
2 (sε

2)
M2(sε

1)
|∇f(sε

1)|2 dx

≤
∫

Ω

M1(sε
1)M2(sε

2)|∇f(sε
1)|2 dx ≤ m0C1,

and completes the proof of lemma. �

From the previous lemma, we deduce the following convergence.

Lemma 2.5 (Strong and weak convergence). Up to a subsequence the sequences
(sε

i)ε, (pε)ε, (pε
i)ε have the following convergence

pε ⇀ p weakly in H1
Γ1

(Ω) (2.40)

β(sε
1) ⇀ β(s1) weakly in H1(Ω), (2.41)

pε → p almost everywhere in Ω (2.42)

β(sε
1) → β(s1) almost everywhere in Ω (2.43)

Z(sε
1) → Z(s1) almost everywhere in Ω (2.44)

Z(sε
1) → Z(s1) strongly in L2(Ω) (2.45)

pε
i → pi almost everywhere in Ω. (2.46)

Proof. The weak convergence (2.40)–(2.41) follows from the uniform estimates
(2.31) and (2.33) of lemma 2.4, while

pε → p strongly in L2(Ω) and a.e. in Ω,

β(sε
1) → β? strongly in L2(Ω) and a. e. in Ω

is due to the compact injection of H1
Γ1

in to L2(Ω). As β(s1) := β(Z(s1)) and β−1

is continuous,
Z(sε

1) → Z(s1) a. e. in Ω,

while the Lebesgue theorem ensures the strong convergence (2.45). The convergence
(2.46) is a consequence of (2.42)–(2.44) and the fact that pε

1 := pε − p̄(Z(sε
1)),

pε
2 := pε − p̃(Z(sε

1)). �

To achieve the proof of Theorem 1.3, it remains to pass to the limit as ε goes
to zero in the formulations (2.29)(2.30) and a proof of a maximum principle on
saturations. For all test functions (ϕ, ξ) ∈ H1

Γ1
(Ω)×H1

Γ1
(Ω),∫

Ω

φ
ρ1(pε

1)Z(sε
1)− ρ?

1s
?
1

h
ϕdx+

∫
Ω

KM ε
1(sε

1)ρ1(pε
1)∇pε

1 · ∇ϕdx

−
∫

Ω

KM1(sε
1)ρ

2
1(p

ε
1)g · ∇ϕdx+ η

∫
Ω

ρ1(pε
1)∇(pε

1 − pε
2) · ∇ϕdx

+
∫

Ω

ρ1(pε
1)Z(sε

1)fPϕdx =
∫

Ω

ρ1(pε
1)s

I
1fIϕdx,

∫
Ω

φ
ρ2(pε

2)Z(sε
2)− ρ?

2s
?
2

h
ξ dx+

∫
Ω

KM ε
2(sε

2)ρ2(pε
2)∇pε

2 · ∇ξ dx

−
∫

Ω

KM2(sε
2)ρ

2
2(p

ε
2)g · ∇ξ dx− η

∫
Ω

ρ2(pε
2)∇(pε

1 − pε
2) · ∇ξ dx
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+
∫

Ω

ρ2(pε
2)Z(sε

2)fP ξ dx =
∫

Ω

ρ2(pε
2)s

I
2fIξ dx,

The first terms of the above equalities converge due to the strong convergence of
ρi(pε

i)Z(sε
i) to ρi(pi)Z(si) in L2(Ω). The second terms can be written as,∫

Ω

KM ε
i (sε

i)ρi(pε
i)∇pε

i · ∇ϕdx

=
∫

Ω

KMi(sε
i)ρi(pε

i)∇pε · ∇ϕdx

+
∫

Ω

Kρi(pε
i)∇β(sε

i) · ∇ϕdx+
√
ε

∫
Ω

Kρi(pε
i)(
√
ε ∇pε

i) · ∇ϕdx.

(2.47)

The first two terms on the right hand side of the equation converge arguing in two
steps. Firstly, the Lebsgue theorem and the convergence (2.44)(2.46) establish

ρi(pε
i)Mi(sε

i)∇ϕ→ ρi(pi)Mi(si)∇ϕ strongly in (L2(QT ))d,

ρi(pε
i)∇ϕ→ ρi(pi)∇ϕ strongly in (L2(QT ))d.

Secondly, the weak convergence on pressure (2.40) combined to the above strong
convergence validate the convergence for the first term of the right hand side of
(2.47), and the weak convergence (2.41) combined to the above strong convergence
validate the convergence for the second term of the right hand side of (2.47). The
third term converges to zero due to the uniform estimate (2.32), and this achieves
the passage to the limit on the second terms. The convergence of the fourth terms
of the above equations are due to the uniform estimate (2.34). The other terms
converge using (2.44)(2.46) and the Lebesgue dominated convergence theorem.

In summarize, we have shown, there exists (ph
1 , p

h
1 ) ∈ H1

Γ1
(Ω)×H1

Γ1
(Ω) solution

of ∫
Ω

φ
ρ1(ph

1 )Z(sh
1 )− ρ?

1s
?
1

h
ϕdx+

∫
Ω

KM1(sh
1 )ρ1(ph

1 )∇ph
1 · ∇ϕdx

−
∫

Ω

KM1(sh
1 )ρ2

1(p
h
1 )g · ∇ϕdx+ η

∫
Ω

ρ1(ph
1 )∇(ph

1 − ph
2 ) · ∇ϕdx

+
∫

Ω

ρ1(ph
1 )Z(sh

1 )fPϕdx =
∫

Ω

ρ1(ph
1 )sI

1fIϕdx,

(2.48)

∫
Ω

φ
ρ2(ph

2 )Z(sh
2 )− ρ?

2s
?
2

h
ξ dx+

∫
Ω

KM2(sh
2 )ρ2(ph

2 )∇ph
2 · ∇ξ dx

−
∫

Ω

KM2(sh
2 )ρ2

2(p
h
2 )g · ∇ξ dx− η

∫
Ω

ρ2(ph
2 )∇(ph

1 − ph
2 ) · ∇ξ dx

+
∫

Ω

ρ2(ph
2 )Z(sh

2 )fP ξ dx =
∫

Ω

ρ2(ph
2 )sI

2fIξ dx,

(2.49)

for all ϕ, ξ ∈ H1
Γ1

(Ω), with sh
1 = f

−1
(ph

1 − ph
2 ) and sh

2 = 1− sh
1 .

Lemma 2.6 (Maximum principle). Under the conditions of Theorem 1.3, the sat-
uration functions sh

1 and sh
2 which verify (2.48)-(2.49) are between zero and one

a.e. in Ω.

Proof. It is sufficient to show that sh
i ≥ 0 a.e. in Ω. For that, consider ϕ =

−(s1)−, ξ = −(s2)− respectively in (2.48) and (2.49) and by taking into considera-
tion the definition of the map Z, and according to the extension of the mobility of
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each phase, Mi(sh
i )(sh

i )− = 0 (i = 1, 2) we obtain∫
Ω

φ
ρ?
1s

?
1

h
(sh

1 )− dx+ η

∫
Ω

f̄ ′(sh
1 )∇(sh

1 )− · ∇(sh
1 )− dx = −

∫
Ω

ρ1(ph
1 )sI

1fI(sh
1 )− dx,∫

Ω

φ
ρ?
2s

?
2

h
(sh

2 )− dx+ η

∫
Ω

f̄ ′(sh
1 )∇(sh

2 )− · ∇(sh
2 )− dx = −

∫
Ω

ρ2(ph
2 )sI

2fI(sh
2 )− dx.

Since it is possible to choose an extension f̄ of f outside [0, 1] in a way that ensures
f̄ ′(s1) different from zero outside [0, 1], we get

η

∫
Ω

|∇(sh
i )−|2 dx ≤ 0 (i = 1, 2)

which proves the maximum principle since s−i vanishes on Γ1, i = 1, 2. �

After this maximum principle, the weak formulations (1.25) are established, and
thus the theorem 1.3 is then established.

3. Proof of Theorem 1.2

The proof is based on a semi-discretization method in time [2]. Let be T > 0,
N ∈ N∗ and h = T

N . We define the following sequence parameterized by h:

p0
i,h(x) = p0

i (x) a.e. inΩ i = 1, 2,

for all n ∈ [0, N − 1], consider (pn
1,h, p

n
2,h) ∈ L2(Ω) × L2(Ω) with ρ1(pn

i,h)sn
i,h ≥ 0

for i = 1, 2, denote by (fP )n+1
h = 1

h

∫ (n+1)h

nh
fP (τ) dτ , (fI)n+1

h = 1
h

∫ (n+1)h

nh
fI(τ) dτ

and (sI
i )

n+1
h = 1

h

∫ (n+1)h

nh
sI

i (τ) dτ for i = 1, 2, then define (pn+1
1,h , pn+1

2,h ) solution of

φ
ρ1(pn+1

1,h )sn+1
1,h − ρ1(pn

1,h)sn
1,h

h
− div(KM1(sn+1

1,h )ρ1(pn+1
1,h )∇pn+1

1,h )

+ div(Kρ2
1(p

n+1
1,h )M1(sn+1

1,h )g)− η div(ρ1(pn+1
1,h )∇(pn+1

1,h − pn+1
2,h ))

+ ρ1(pn+1
1,h )sn+1

1,h (fP )n+1
h = ρ1(pn+1

1,h )(sI
1)

n+1
h (fI)n+1

h ,

(3.1)

φ
ρ2(pn+1

2,h )sn+1
2,h − ρ2(pn

2,h)sn
2,h

h
− div(KM2(sn+1

2,h )ρ2(pn+1
2,h )∇pn+1

2,h )

+ div(Kρ2
2(p

n+1
2,h )M2(sn+1

2,h )g) + η div(ρ2(pn+1
2,h )∇(pn+1

1,h − pn+1
2,h ))

+ ρ2(pn+1
2,h )sn+1

2,h (fP )n+1
h = ρ2(pn+1

2,h )(sI
2)

n+1
h (fI)n+1

h ,

(3.2)

with the boundary conditions (1.23). This sequence is well defined for all n ∈
[0, N − 1] by virtue of theorem 1.3. As a matter of fact, for given sn

i,hρi(pn
i,h) ≥ 0

and ρi(pn
i,h)sn

i,h ∈ L2(Ω), i = 1, 2, we construct (pn+1
1,h , pn+1

2,h ) ∈ H1
Γ1

(Ω)×H1
Γ1

(Ω) so
that sn+1

i,h ∈ [0, 1].
Now, we are concerned with uniform estimates with respect to h. We state the

following lemma.
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Lemma 3.1 (Uniform estimates with respect to h). The solutions of (3.1)-(3.2)
satisfy

1
h

∫
Ω

φ
(
H1(pn+1

1,h )sn+1
1,h −H1(pn

1,h)sn
1,h

)
dx

+
1
h

∫
Ω

φ
(
H2(pn+1

2,h )sn+1
2,h −H2(pn

2,h)sn
2,h

)
dx

+
1
h

∫
Ω

φ
(
F(sn+1

1,h )−F(sn
1,h)

)
dx+ η

∫
Ω

|∇(pn+1
1,h − pn+1

2,h )|2 dx

+ k0

∫
Ω

M1(sn+1
1,h )∇pn+1

1,h · ∇pn+1
1,h dx+ k0

∫
Ω

M2(sn+1
2,h )∇pn+1

2,h · ∇pn+1
2,h dx

≤ C(1 + ‖(fP )n+1
h ‖2

L2(Ω) + ‖(fI)n+1
h ‖2

L2(Ω))

(3.3)

where C does not depend on h. For i = 1, 2,

Hi(pi) := ρi(pi)gi(pi)− pi, F(s) :=
∫ s

0

f(ζ) dζ, gi(pi) =
∫ pi

0

1
ρi(ζ)

dζ.

Proof. First of all, let us prove that: for all si ≥ 0 and s?
i ≥ 0 such that s1 + s2 =

s?
1 + s?

2 = 1,(
ρ1(p1)s1 − ρ1(p?

1)s
?
1

)
g1(p1) +

(
ρ2(p2)s2 − ρ2(p?

2)s
?
2

)
g2(p2)

≥ H1(p1)s1 −H1(p?
1)s

?
1 +H2(p2)s2 −H2(p?

2)s
?
2 + F(s1)−F(s?

1).
(3.4)

Let us denote by J the left hand side of (3.4),

J =
(
ρ1(p1)s1 − ρ1(p?

1)s
?
1

)
g1(p1) +

(
ρ2(p2)s2 − ρ2(p?

2)s
?
2

)
g2(p2).

Since the function gi is concave, we have

gi(pi) ≤ gi(p?
i ) + g′i(p

?
i )(pi − p?

i ) = gi(p?
i ) +

1
ρi(p?

i )
(pi − p?

i ). (3.5)

From the definition of Hi, we have

J =
[(
ρ1(p1)s1g1(p1)− s1p1

)
+ s1p1 − ρ1(p?

1)s
?
1g1(p1)

]
+

[(
ρ2(p2)s2g2(p2)− s2p2

)
+ s2p2 − ρ2(p?

2)s
?
2g2(p2)

]
= s1H1(p1) + s1p1 − ρ1(p?

1)s
?
1g1(p1) + s2H2(p2) + s2p2 − ρ2(p?

2)s
?
2g2(p2)

and the concavity property of gi leads to

J ≥ s1H1(p1)− s?
1H1(p?

1) + s2H2(p2)− s?
2H2(p?

2) + s1p1 − s?
1p1 + s2p2 − s?

2p2

≥ s1H1(p1)− s?
1H1(p?

1) + s2H2(p2)− s?
2H2(p?

2) + s1
(
p1 − p2

)
− s?

1

(
p1 − p2

)
= s1H1(p1)− s?

1H1(p?
1) + s2H2(p2)− s?

2H2(p?
2) +

(
s1 − s?

1

)
f(s1).

(3.6)
Since the function F is convex,

(s1 − s?
1)f(s1) ≥ F(s1)−F(s?

1). (3.7)

The above inequalities (3.6) and (3.7) ensure that the assertion (3.4) is satisfied.
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Let us multiply scalarly (3.1) with g1(pn+1
1,h ) and add the scalar product of (3.2)

with g2(pn+1
2,h ), we have

1
h

∫
Ω

φ
((
ρ1(pn+1

1,h )sn+1
1,h − ρ1(pn

1,h)sn
1,h

)
g1(pn+1

1,h )

+
(
ρ2(pn+1

2,h )sn+1
2,h − ρ2(pn

2,h)sn
2,h

)
g2(pn+1

2,h )
)
dx

+
∫

Ω

KM1(sn+1
1,h )∇pn+1

1,h · ∇pn+1
1,h dx+

∫
Ω

KM2(sn+1
2,h )∇pn+1

2,h · ∇pn+1
2,h dx

+ η

∫
Ω

|∇f(sn+1
1,h )|2 dx

=
∫

Ω

KM1(sn+1
1,h )ρ1(pn+1

1,h )g · ∇pn+1
1,h dx

+
∫

Ω

KM2(sn+1
2,h )ρ2(pn+1

2,h )g · ∇pn+1
1,h dx−

∫
Ω

ρ1(pn+1
1,h )sn+1

1,h (fP )n+1
h g1(pn+1

1,h ) dx

−
∫

Ω

ρ2(pn+1
2,h )sn+1

2,h (fP )n+1
h g2(pn+1

2,h ) dx+
∫

Ω

ρ1(pn+1
1,h )(sI

1)
n+1
h (fI)n+1

h g1(pn+1
1,h ) dx

+
∫

Ω

ρ2(pn+1
2,h )(sI

2)
n+1
h (fI)n+1

h g2(pn+1
2,h ) dx.

(3.8)
Using (3.4) and following the proof of Lemma 2.4, one gets (3.3). �

For a given sequence (un
h)n, let us denote

uh(0) = u0
h,

uh(t) =
N−1∑
n=0

un+1
h χ]nh,(n+1)h](t), ∀t ∈]0, T ]

(3.9)

and

ũh(t) =
N−1∑
n=0

(
(1 + n− t

h
)un

h + (
t

h
− n)un+1

h

)
χ[nh,(n+1)h](t), ∀t ∈ [0, T ]. (3.10)

Then

∂tũh(t) =
1
h

N−1∑
n=0

((un+1
h − un

h)χ]nh,(n+1)h[(t), ∀t ∈ [0, T ]\{∪N
n=0nh}

Let the functions pi,h and si,h be defined as in (3.9). For i = 1, 2, we denote by
ri,h the function defined similarly to (3.9) corresponding to rn

i,h = ρi(pn
i,h)sn

i,h and
r̃i,h the function defined similarly to (3.10) corresponding to rn

i,h. In the same way,
we denote by fP,h, fI,h and (sI

i )h the functions corresponding to (fP )n+1
h , (fI)n+1

h

and (sI
i )

n+1
h respectively.

Proposition 3.2. We have

(s2,h)h is uniformly bounded in L2(0, T ;H1
Γ1

(Ω)), (3.11)

(pi,h)h is uniformly bounded in L2(0, T ;H1
Γ1

(Ω)), i = 1, 2 (3.12)

(ri,h)h is uniformly bounded in L2(0, T ;H1(Ω)), i = 1, 2 (3.13)

(r̃i,h)h is uniformly bounded in L2(0, T ;H1(Ω)), i = 1, 2 (3.14)
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(φ∂tr̃i,h)h is uniformly bounded in L2(0, T ; (H1
Γ1

(Ω))′), i = 1, 2. (3.15)

Proof. At the beginning of this proof, we indicate some useful remarks which can
be established by a classical calculations,∫

QT

Mi(si,h)|∇pi,h|2 dx dt = h
N−1∑
n=0

∫
Ω

Mi(sn+1
i,h )|∇pn+1

i,h |2 dx (i = 1, 2.), (3.16)

∫
QT

|∇f(s1,h)|2 dx dt = h
N−1∑
n=0

∫
Ω

|∇f(sn+1
1,h )|2 dx, (3.17)

∫
QT

|fp(t, x)|2 dt dx ≥ h
N−1∑
n=0

‖(fp)n+1
h ‖L2(Ω), (3.18)

∫
QT

|fI(t, x)|2 dt dx ≥ h
N−1∑
n=0

‖(fI)n+1
h ‖L2(Ω). (3.19)

Now, multiply (3.3) by h and summing it from n = 0 to n = N − 1,∫
Ω

φH1(p1,h(T ))s1,h(T ) + φH2(p2,h(T ))s2,h(T ) dx

+ k0

∫
QT

M1(s1,h)|∇p1,h|2 dx dt+ k0

∫
QT

M2(s2,h)|∇p2,h|2 dx dt

+ η

∫
QT

|∇f(s1,h)|2 dx dt

≤
∫

Ω

(
φH1(p1,h(0))s1,h(0) + φH2(p2,h(0))s2,h(0)

)
dx

+ F(s1,h(0))−F(s1,h(T )) + C
(
1 + ‖fP ‖2

L2(QT ) + ‖fI‖2
L2(QT )

)
,

(3.20)

where C is a constant independent of h. The positivity of the first term on the left
hand side of (3.20) ensures that there exists a positive constant C independent of
h such that

k0

∫
QT

M1(s1,h)|∇p1,h|2 dx dt+ k0

∫
QT

M2(s2,h)|∇p2,h|2 dx dt

+ η

∫
QT

|∇f(s1,h)|2 dx dt ≤ C,

since we have,∫
QT

M1(s1,h)|∇p1,h|2 dx dt+
∫

QT

M2(s2,h)|∇p2,h|2 dx dt

=
∫

QT

M(s1,h)|∇ph|2 dx dt+
∫

QT

M1(s1,h)M2(s2,h)
M(s1,h)

|∇f(s1,h)|2 dx dt,

we deduce ∫
QT

M(s1,h)|∇ph|2 dx dt+ η

∫
QT

|∇f(s1,h)|2 dx dt ≤ C. (3.21)

For the first estimate (3.11) and first of all, let us indicate to the fact that,

p1,h(t, x)− p2,h(t, x) = 0 = f(s1,h(t, x)) for x ∈ Γ1
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which gives s2,h|Γ1
= 0. The assumption (H6) on the capillary function f with the

second term on the right hand side of (3.21) lead to∫
QT

|∇s1,h|2 dx dt ≤ C,

where C is a constant independent of h, which establishes (3.11). Since we have

∇p1,h = ∇ph +
M2

M
∇f(s1,h) and ∇p2,h = ∇ph −

M1

M
∇f(s1,h),

the estimate (3.12) becomes a consequence of (3.21). The uniform estimate (3.13)
is a consequence of the two previous ones since the densities ρi are bounded and of
class C1functions as well as the saturations 0 ≤ si,h ≤ 1,

∇ri,h =
N−1∑
n=0

(
ρ′i(p

n+1
i,h )sn+1

i,h ∇pn+1
i,h + ρi(pn+1

i,h )∇sn+1
i,h

)
χ]nh,(n+1)h](t).

Now, for estimate (3.14) we have

∇r̃i,h =
N−1∑
n=0

(
(1 + n− t

h
)[ρ′i(p

n
i,h)sn

i,h∇pn
i,h + ρi(pn

i,h)∇sn
i,h]

+ (
t

h
− n)[ρ′i(p

n+1
i,h )sn+1

i,h ∇pn+1
i,h + ρi(pn+1

i,h )∇sn+1
i,h ]

)
χ]nh,(n+1)h](t).

(3.22)

since the densities ρi are bounded and of class C1 functions as well as the saturations
0 ≤ sn

i,h ≤ 1,

|∇r̃i,h|2 ≤ C
N−1∑
n=0

(
|∇pn

i,h|2 + |∇sn
i,h|2 + |∇pn+1

i,h |2 + |∇sn+1
i,h |2

)
χ]nh,(n+1)h](t),

and this implies

||∇r̃i,h||2L2(QT ) ≤ C(‖∇p0
i,h‖2

L2(Ω) +‖∇s0i,h‖2
L2(Ω) +‖∇pi,h‖2

L2(QT ) +‖∇si,h‖2
L2(QT )),

where C is a constant independent of h, and the estimate (3.14) is established.
From equations (3.1) and (3.2), we have for all ϕ ∈ L2(0, T ;H1

Γ1
(Ω)),

〈φ∂tr̃i,h, ϕ〉

= −
∫

QT

KMi(si,h)ρi(pi,h)∇pi,h · ∇ϕdx dt

+
∫

QT

Kρ2
i (pi,h)Mi(si,h)g · ∇ϕdx dt+ η(−1)i

∫
QT

∇(p1,h − p2,h) · ∇ϕdx dt

−
∫

QT

ρi(pi,h)si,hfP,hϕdx dt+
∫

QT

ρi(ph)sI
i,hfI,hϕdx dt.

The above estimates (3.11)–(3.12) with (3.21) ensure that (φ∂tr̃i,h)h is uniformly
bounded in L2(0, T ; (H1

Γ1
(Ω))′). �

The next step is to pass from an elliptic problem to a parabolic one. Then, we
pass to the limit on h, using some compactness theorems.

Proposition 3.3 (Convergence with respect to h). We have the following conver-
gence as h goes to zero,

‖ri,h − r̃i,h‖L2(QT ) → 0, (3.23)
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s2,h ⇀ s2 weakly in L2(0, T ;H1
Γ1

(Ω)), (3.24)

pi,h ⇀ pi weakly in L2(0, T ;H1
Γ1

(Ω)), (3.25)

ri,h → ri strongly in L2(QT ). (3.26)

Furthermore,

si,h → si almost everywhere in QT , (3.27)

0 ≤ si ≤ 1 almost everywhere in QT , (3.28)

pi,h → pi almost everywhere in QT , (3.29)

ri = ρi(pi)si almost everywhere in QT . (3.30)

Finally, we have

φ∂tr̃i,h ⇀ φ∂t(ρi(pi)si) weakly in L2(0, T ; (H1
Γ1

(Ω))′). (3.31)

Proof. Note that

‖ri,h − r̃i,h‖2
L2(QT ) =

N−1∑
n=0

∫ (n+1)h

nh

‖((1 + n− t

h
)(rn+1

i,h − rn
i,h)‖2

L2(Ω) dt

=
h

3

N−1∑
n=0

‖rn+1
i,h − rn

i,h‖2
L2(Ω).

We multiply scalarly (3.1) and (3.2) respectively with rn+1
1,h − rn

1,h and rn+1
2,h − rn

2,h.
Then, summing for n = 0 to N − 1, we obtain, for i = 2,

φ0

h

N−1∑
n=0

‖rn+1
2,h − rn

2,h‖2
L2(Ω)

≤ C
N−1∑
n=0

(
‖∇rn

2,h‖2
L2(Ω) + ‖∇rn+1

2,h ‖2
L2(Ω) + ‖∇sn+1

2,h ‖2
L2(Ω) + ‖∇pn+1

2,h ‖2
L2(Ω)

+ ‖(fP )n+1
h ‖2

L2(Ω) + ‖(fI)n+1
h ‖2

L2(Ω)

)
.

This yields
N−1∑
n=0

‖rn+1
2,h − rn

2,h‖2
L2(Ω)

≤ C
(
1 + ‖∇r2,h‖2 + ‖∇s2,h‖2

L2(QT ) + ‖∇p2,h‖2
L2(QT )

+ ‖fP ‖2
L2(QT ) + ‖fI‖2

L2(QT )

)
.

From (3.11),(3.12), and (3.13), we conclude that ‖r2,h− r̃2,h‖L2(QT ) → 0. For i = 1,

φ0

h

N−1∑
n=0

‖rn+1
1,h − rn

1,h‖2
L2(Ω)

≤ C
N−1∑
n=0

(
‖∇rn

1,h‖2
L2(Ω) + ‖∇rn+1

1,h ‖2
L2(Ω)

+
∣∣∣ ∫

Γ1

Kρ2
1(p

n+1
1,h )M1(sn+1

1,h )g.ν(rn+1
1,h − rn

1,h) dγ
∣∣∣

+ ‖∇sn+1
2,h ‖2

L2(Ω) + ‖∇pn+1
1,h ‖2

L2(Ω) + ‖(fP )n+1
h ‖2

L2(Ω) + ‖(fI)n+1
h ‖2

L2(Ω)

)
.
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where ν is the outward normal to the injection boundary. This yields, with the
help of trace theory to handle with the third term in the right hand side namely
(‖rn+1

1,h − rn
1,h‖L2(Γ1) ≤ C‖∇(rn+1

1,h − rn
1,h)‖L2(Ω)), that

N−1∑
n=0

‖rn+1
1,h − rn

1,h‖2
L2(Ω) ≤ C

(
1 + ‖∇r1,h‖2 + ‖∇s2,h‖2

L2(QT ) + ‖∇p1,h‖2
L2(QT )

+ ‖fP ‖2
L2(QT ) + ‖fI‖2

L2(QT )

)
.

From (3.11),(3.12), and (3.13), we conclude that

‖r1,h − r̃1,h‖L2(QT ) → 0,

and this achieves (3.23).
From (3.12) (3.11), the sequences (pi,h)h, (s2,h)h are uniformly bounded in

L2(0, T ;H1
Γ1

(Ω)), we have up to a subsequence the convergence results (3.24),
(3.25).
The sequences (r̃i,h)h are uniformly bounded in L2(0, T ;H1(Ω)). In light of (3.15)
we have the strong convergence

r̃i,h → ri strongly in L2(QT ). (3.32)

This compactness result is classical and can be found in [29], [10] when the porosity
is constant, and under the assumption (H1) (the porosity belongs to W 1,∞(Ω)),
the proof can be adapted with minor modifications. The convergence (3.32) with
(3.23) ensures the following strong convergence

ρ1(p1,h)s1,h → r1 strongly in L2(QT ) and a.e. in QT , (3.33)

ρ2(p2,h)s2,h → r2 strongly in L2(QT ) and a.e. in QT , (3.34)

and this achieves (3.26).
We are now concerned with almost everywhere convergence on pressures pi,h and

saturations si,h. Denote

u = ρ1(p1,h)s1,h, v = ρ2(p1,h − f(s1,h))(1− s1,h).

Define the map H : R+ × R+ → R+ × [0, 1] defined by

H(u, v) = (p1,h, s1,h) (3.35)

where u and v are solutions of the system

u(p1,h, s1,h) = ρ1(p1,h)s1,h,

v(p1,h, s1,h) = ρ2(p1,h − f(s1,h))(1− s1,h).

Note that H is well defined as a diffeomorphism,∣∣∣∣∣ ∂u
∂p1,h

∂u
∂s1,h

∂v
∂p1,h

∂v
∂s1,h

∣∣∣∣∣
= −ρ′1(p1,h)ρ2(p1,h − f(s1,h))s1,h − ρ1(p1,h)ρ′2(p1,h − f(s1,h))(1− s1,h)

− ρ′1(p1,h)s1,h(1− s1,h)ρ′2(p1,h − f(s1,h))f ′(s1,h) < 0.

As we have the almost everywhere convergence (3.33), (3.34) and the mapH defined
in (4.14) is continuous, we deduce

p1,h → p1 a.e. in QT .

s1,h → s1 a.e. in QT .
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The identification of the limit is due to (3.12), (3.11). The continuity of the capillary
pressure function ensures that

p2,h → p2 a.e. in QT ,

the saturation equation ensures also,

s2,h → s2 a.e. in QT ,

and this achieve (3.27), (3.29). The maximum principle (3.28) and the identification
(3.30) are conserved through a limit process. Finally the weak convergence (3.31)
is a consequence of (3.15), and the identification of the limit is due to (3.30). �

The technique for obtaining solutions of the system (1.21)–(1.22) is to pass to
the limit as h goes to zero on the solutions of

φ∂t(r̃i,h)− div(KMi(si,h)ρi(pi,h)∇pi,h) + div(KMi(si,h)ρ2
i (pi,h)g)

+ (−1)iη div(ρi(pi,h)∇(p1,h − p2,h)) + ρi(pi,h)si,hfP,h

= ρi(pi,h)sI
i fI,h

(3.36)

We remark that this system (i = 1, 2) is nothing else than (3.1)-(3.2), written for
n = 0 to N − 1 by using the definition (3.9) and (3.10). Let us consider the weak
formulations (i = 1, 2) on which we have to pass to the limit

〈φ∂tr̃i,h, ϕi〉+
∫

QT

KMi(si,h)ρi(pi,h)∇pi,h · ∇ϕi dx dt

−
∫

QT

Kρ2
i (pi,h)Mi(si,h)g · ∇ϕi dx dt

− (−1)iη

∫
QT

ρi(pi,h)∇(p1,h − p2,h) · ∇ϕi dx dt

+
∫

QT

ρi(pi,h)si,hfP,hϕi dx dt

=
∫

QT

ρi(ph)sI
i,hfI,hϕi dx dt.

(3.37)

where ϕi (i = 1, 2) belongs to L2(0, T ;H1
Γ1

(Ω)).
Next, we pass to the limit on each term of (3.37) which is conserved by the

previous proposition. The passage to the limit on the first term is due to (3.31), for
the second term we have Mi(si,h)ρi(pi,h)∇ϕi converges almost everywhere in QT

and dominated which leads by Lebesgue theorem to a strong convergence in L2(QT )
and by virtue of the weak convergence (3.25) we establish the convergence of the
second term of (3.37) to the desired term. The last three terms converge obviously
to the wanted limit due to the previous proposition and Lebesgue theorem.

We then have established the weak formulation (1.24) of theorem 1.2. Further-
more, we have well obtained by proposition 3.3,

0 ≤ si(t, x) ≤ 1 a.e. in QT , s2 ∈ L2(0, T ;H1
Γ1

(Ω)),

pi ∈ L2(0, T ;H1
Γ1

(Ω)), φ∂t(ρi(pi)si) ∈ L2(0, T ; (H1
Γ1

(Ω))′), i = 1, 2.

We recall that si is a given function of p1 and p2. The compactness property on
ρi(pi,h)si,h implies ρi(pi)si ∈ C0([0, T ];L2(Ω)), for i = 1, 2. Theorem 1.2 is then
proved.
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4. Proof of Theorem 1.1 (Degenerate case)

The proof is based on the existence result established for the non-degenerate
case and the compactness lemma 4.2.

Lemma 4.1. The sequences (sη
i )η, (pη := pη

2 + p̃(sη
1))η defined by Theorem 1.2

satisfy

0 ≤ sη
i (t, x) ≤ 1 a.e. in x ∈ Ω for all t ∈ [0, T ], (4.1)

(pη)η is uniformly bounded in L2(0, T ;H1
Γ1

(Ω)), (4.2)

(
√
η∇f(sη

1))ηis uniformly bounded in L2(QT ) (4.3)

(
√
Mi(s

η
i )∇pη

i )η is uniformly bounded in L2(QT ), (4.4)

(β(sη
1))η is uniformly bounded in L2(0, T ;H1(Ω)), (4.5)

(φ∂t(ρi(p
η
i )sη

i ))η is uniformly bounded in L2(0, T ;H1
Γ1

(Ω)′). (4.6)

Proof. The maximum principle (4.1) is conserved through the limit process. For
the next three estimates, consider the L2(Ω) scalar product of (1.21) by g1(p

η
1) =∫ pη

1
0

1
ρ1(ξ)

dξ and (1.22) by g2(p
η
2) =

∫ pη
2

0
1

ρ2(ξ)
dξ and adding them after denoting by

Hi(p
η
i ) = ρi(p

η
i )gi(p

η
i )− pη

i (i = 1, 2), then we have

d

dt

∫
Ω

φ
(
sη
1H1(p

η
1) + sη

2H2(p
η
2) +

∫ sη
1

0

f(ξ) dξ
)
dx+

∫
Ω

KM1(s
η
1)∇pη

1 · ∇p
η
1 dx

+ η

∫
Ω

|∇f(sη
1)|2 dx+

∫
Ω

KM2(s
η
2)∇pη

2 · ∇p
η
2 dx

=
∫

Ω

KM1(s
η
1)ρ1(p

η
1)g · ∇pη

1 dx+
∫

Ω

KM2(s
η
2)ρ2(p

η
2)g · ∇pη

2 dx

+
∫

Ω

ρ1(p
η
1)sI

1fIg1(p
η
1) dx−

∫
Ω

ρ1(p
η
1)sη

1fpg1(p
η
1) dx

−
∫

Ω

ρ2(p
η
2)sη

2fpg2(p
η
2) dx+

∫
Ω

ρ2(p
η
2)sI

2fIg2(p
η
2) dx.

(4.7)
Integrate (4.7) over(0, T ) to obtain∫

Ω

φ
(
sη
1H1(p

η
1) + sη

2H2(p
η
2)

)
(x, T ) dx+

∫
QT

KM1(s
η
1)∇pη

1 · ∇p
η
1 dx dt

+ η

∫
QT

|∇f(sη
1)|2 dx dt+

∫
QT

KM2(s
η
2)∇pη

2 · ∇p
η
2 dx dt

=
∫

Ω

φ
(
s01H1(p0

1) + s02H2(p0
2)

)
dx−

∫
Ω

∫ sη
1 (x,T )

s0
1

f(ξ) dξdx

+
∫

QT

KM1(s
η
1)ρ1(p

η
1)g · ∇pη

1 dx dt+
∫

QT

KM2(s
η
2)ρ2(p

η
2)g · ∇pη

2 dx dt

+
∫

QT

ρ1(p
η
1)sI

1fIg1(p
η
1) dx dt−

∫
QT

ρ1(p
η
1)sη

1fpg1(p
η
1) dx dt

−
∫

QT

ρ2(p
η
2)sη

2fpg2(p
η
2) dx dt+

∫
QT

ρ2(p
η
2)sI

2fIg2(p
η
2) dx dt.

(4.8)
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The first term on the left hand side of (4.8) is positive and the two first terms
on the right hand side are bounded since p0

i ∈ L2(Ω) and 0 ≤ s0i ≤ 1. The third
and the fourth terms on the right hand side, corresponding to gravity term, can be
absorbed by the degenerate dissipative term on pressures (namely the second and
fourth terms on the left hand side of (4.8)) since:∣∣ ∫

QT

KMi(s
η
i )ρi(p

η
i )g · ∇pη

i dx dt
∣∣ ≤ C +

k0

2

∫
QT

Mi(s
η
i )|∇pη

i |
2 dx dt, i = 1, 2.

Finally, using the fact that the functions gi (i = 1, 2) are sublinear, we deduce from
(4.8) that ∫

QT

M1(s
η
1)|∇pη

1 |2 dx dt+
∫

QT

M2(s
η
2)|∇pη

2 |2 dx dt

+ η

∫
QT

∇f(sη
1) · ∇f(sη

1) dx dt

≤ C(1 + ‖pη
1‖L2(QT ) + ‖pη

2‖L2(QT )),

(4.9)

where C is a constant independent of η. From the definition of the global pressure,
we have

∇pη = ∇pη
2 +

M1(s
η
1)

M(sη
1)
∇f(sη

1) = ∇pη
1 −

M2(s
η
2)

M(sη
1)
∇f(sη

1), (4.10)

and consequently,∫
QT

M(sη
1)|∇pη|2 dx dt+

∫
QT

M1(s
η
1)M2(s

η
2)

M(sη
1)

|∇f(sη
1)|2 dx dt

=
∫

QT

M1(s
η
1)∇pη

1 · ∇p
η
1 dx dt+

∫
QT

M2(s
η
2)∇pη

2 · ∇p
η
2 dx dt.

(4.11)

On the other hand,

‖pη
1‖L2(QT ) ≤ ‖pη‖L2(QT ) + ‖p̄(sη

1)‖L2(QT ) ≤ C‖∇pη‖L2(QT ) + ‖p̄(sη
1)‖L2(QT ),

due to Poincaré’s inequality, in the same way we have

‖pη
2‖L2(QT ) ≤ C‖∇pη‖L2(QT ) + ‖p̃(sη

1)‖L2(QT ).

From the above estimates and (4.11), the estimate (4.9) yields∫
QT

M(sη
1)|∇pη|2 dx dt+

∫
QT

M1(s
η
1)M2(s

η
2)

M(sη
1)

|∇f(sη
1)|2 dx dt

+ η

∫
QT

∇f(sη
1) · ∇f(sη

1) dx dt

≤ C(1 + ‖∇pη‖L2(QT )).

(4.12)

The Young inequality permits to absorb the last term by the first term on the left
hand side of (4.12) to obtain∫

QT

M(sη
1)|∇pη|2 dx dt+

∫
QT

M1(s
η
1)M2(s

η
2)

M(sη
1)

|∇f(sη
1)|2 dx dt

+
∫

QT

M1(s
η
1)∇pη

1 · ∇p
η
1 dx dt+

∫
QT

M2(s
η
2)∇pη

2 · ∇p
η
2 dx dt

+ η

∫
QT

∇f(sη
1) · ∇f(sη

1) dx dt ≤ C,

(4.13)
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where C is a constant independent of η. Thus, the estimates (4.3)–(4.4) are estab-
lished. The estimate (4.5) is also a consequence of (4.9) since∫

QT

|∇β(sη
1)|2 dx dt =

∫
QT

M2
1 (sη

1)M2
2 (sη

2)
M2(sη

1)
|∇f(sη

1)|2 dx dt

≤
∫

QT

M1(s
η
1)M2(s

η
2)|∇f(sη

1)|2 dx dt ≤ C.

For the last estimate (4.6), let ϕi ∈ L2(0, T ;H1
Γ1

(Ω)) and denote the bracket 〈·, ·〉
the duality product between L2(0, T ; (H1

Γ1
(Ω))′) and L2(0, T ;H1

Γ1
(Ω)), using (1.6),

one gets

|〈φ∂t(ρi(p
η
i )sη

i ), ϕi〉|

≤
∣∣η ∫

QT

ρi(p
η
i )∇f(sη

i ) · ∇ϕi dx dt
∣∣

+
∣∣ ∫

QT

Kρi(p
η
i )(Mi(s

η
i )∇pη +∇β(sη

1)) · ∇ϕi dx dt
∣∣

+
∣∣ ∫

QT

Kρ2
i (p

η
i )Mi(s

η
i )g · ∇ϕi dx dt

∣∣ +
∣∣ ∫

QT

ρi(p
η
i )sη

i fPϕi dx dt
∣∣

+
∣∣ ∫

QT

ρi(p
η
i )sI

i fIϕi dx dt
∣∣,

and from the estimates (4.2)–(4.5), we deduce

|〈φ∂t(ρi(p
η
i )sη

i ), ϕi〉| ≤ C‖ϕi‖L2(0,T ;H1
Γ1

(Ω)),

which establishes (4.6) and completes the proof of the lemma. �

Lemma 4.2 (Compactness result for degenerate case). For every M , the following
set

EM =
{

(ρ1(p1)s1, ρ2(p2)s2) ∈ L2(QT )× L2(QT ) : ‖β(s1)‖L2(0,T ;H1(Ω)) ≤M,

‖
√
M1(s1)∇p1‖L2(QT ) + ‖

√
M2(s2)∇p2‖L2(QT ) ≤M,

‖φ∂t(ρ1(p1)s1)‖L2(0,T ;(H1
Γ1

(Ω))′) + ‖φ∂t(ρ2(p2)s2)‖L2(0,T ;(H1
Γ1

(Ω))′) ≤M
}

is relatively compact in L2(QT ) × L2(QT ), and γ(EM ) is relatively compact in
L2(ΣT )× L2(ΣT ), (γ denotes the trace on ΣT operator).

Proof. The proof is inspired by the compactness lemma 4.3 [21, p. 37], which
introduced for compressible degenerate model. We generalize this result for our
compressible degenerate model. Denote by

u = ρ1(p1)s1, v = ρ2(p2)(1− s1).

Define the map H : R+ × R+ 7→ R+ × [0, β(1)] defined by

H(u, v) = (p, β(s1)) (4.14)

where u and v are solutions of the system

u(p, β(s1)) = ρ1(p− p̄(β−1(β(s1))))β−1(β(s1)),

v(p, β(s1)) = ρ2(p− p̃(β−1(β(s1))))(1− β−1(β(s1)).
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Note that H is well defined as a diffeomorphism, since
∂u

∂p
= ρ′1(p− p̄(β−1(β(s1))))β−1(β(s1)) ≥ 0

∂u

∂β
= ρ′1(p− p̄(β−1(β(s1))))[−p̄′(β−1(β(s1)))(β−1′(β(s1)))]β−1(β(s1))

+ ρ1(p− p̄(β−1(β(s1))))β−1′(β(s1)) ≥ 0
∂v

∂p
= −ρ′2(p− p̃(β−1(β(s1))))(1− β−1(β(s1))) ≥ 0

∂v

∂β
= ρ′2(p− p̃(β−1(β(s1))))[−p̃′(β−1(β(s1)))(β−1′(β(s1)))][1− β−1(β(s1))]

− ρ2(p− p̃(β−1(β(s1))))β−1′(β(s1)) ≤ 0,

and if one of the saturations is zero the other one is one, this conserves that the
jacobian determinant of the map H−1 is strictly negative. Furthermore, H−1 is an
Hölder function, in the sense that u and v are Hölder functions of order θ with
0 < θ ≤ 1 . For that, let (q1, σ1) and (q2, σ2) in R+ × [0, β(1)], we have

|u(q1, σ1)− u(q2, σ2)|
= |ρ1(q1 − p̄(β−1(σ1)))β−1(σ1)− ρ1(q2 − p̄(β−1(σ2)))β−1(σ2)|
≤ |ρ1(q1 − p̄(β−1(σ1)))− ρ1(q2 − p̄(β−1(σ2)))|+ ρM |β−1(σ1)− β−1(σ2)|,

since β−1 is an Hölder function of order θ, 0 < θ ≤ 1, and the map ρ1 is bounded
and of class C1, we deduce up to two cases:

The first case |q1 − q2| ≥ 1:

|u(q1, σ1)− u(q2, σ2)|
≤ |ρ1(q1 − p̄(β−1(σ1)))− ρ1(q2 − p̄(β−1(σ2)))|+ ρM |β−1(σ1)− β−1(σ2)|
≤ ρM + ρM |β−1(σ1)− β−1(σ2)|

≤ ρM |q1 − q2|θ + ρMCβ |σ1 − σ2|θ,

for the other case |q1 − q2| < 1, we have

|u(q1, σ1)− u(q2, σ2)|
≤ |ρ1(q1 − p̄(β−1(σ1)))− ρ1(q2 − p̄(β−1(σ2)))|+ ρM |β−1(σ1)− β−1(σ2)|

≤ C(|q1 − q2|+ |p̄(β−1(σ1))− p̄(β−1(σ2))|) + ρMCβ |σ1 − σ2|θ

≤ C|q1 − q2|θ + C|p̄(β−1(σ1))− p̄(β−1(σ2))|+ ρMCβ |σ1 − σ2|θ

further more one can easily show that p̄ is a C1([0, 1]; R), it follows that

|u(q1, σ1)− u(q2, σ2)| ≤ C|q1 − q2|θ + C|σ1 − σ2|θ. (4.15)

In the same way, we have

|v(q1, σ1)− v(q2, σ2)| ≤ c1|q1 − q2|θ + c2|σ1 − σ2|θ. (4.16)

For 0 < τ < 1, and 1 < r <∞, let us denote

W τ,r(Ω) = {w ∈ Lr(Ω);
∫

Ω

∫
Ω

|w(x)− w(y)|r

|x− y|d+τr
dxdy < +∞}
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equipped with the norm

‖w‖W τ,r(Ω) =
(
‖w‖r

Lr(Ω) +
∫

Ω

∫
Ω

|w(x)− w(y)|r

|x− y|d+τr
dxdy

)1/r

,

recall that d denotes the space dimension. Let q, σ be in W τ,r(Ω)×W τ,r(Ω), then
the Hölder functions u and v belong to W θτ,r/θ(Ω). In fact,

|u(q, σ)| ≤ c1|q|θ + c2|σ|θ;

then u belongs to Lr/θ(Ω). Furthermore,∫
Ω

∫
Ω

|u(q(x), σ(x))− u(q(y), σ(y))|r/θ

|x− y|d+τr
dx dy

≤ c
r/θ
1

∫
Ω

∫
Ω

|q(x)− q(y)|r

|x− y|d+τr
dxdy + c

r/θ
2

∫
Ω

∫
Ω

|σ(x)− σ(y)|r

|x− y|d+τr
dxdy,

which ensures,

‖u(q, σ)‖W θτ,r/θ(Ω) ≤ c(‖q‖θ
W τ,r(Ω) + ‖σ‖θ

W τ,r(Ω)).

Using the continuity of the injection of H1(Ω) into W τ,2(Ω), with τ < 1,

‖u(p, β(s1))‖W θτ,2/θ(Ω) ≤ c(‖p‖θ
W τ,2(Ω) + ‖β(s1)‖θ

W τ,r(Ω))

≤ c(‖p‖θ
H1(Ω) + ‖β(s1)‖θ

H1(Ω))

integrating the above inequality over (0, T ),

‖u(p, β(s1))‖L2/θ(0,T ;W θτ,2/θ(Ω)) ≤ c‖p‖θ
L2(0,T ;H1(Ω)) + ‖β(s1)‖θ

L2(0,T ;H1(Ω))

Furthermore the porosity function φ belongs to W 1,∞(Ω), it follows that

‖φu(p, β(s1))‖L2/θ(0,T ;W θτ,2/θ(Ω)) ≤ C.

As Ω is bounded and regular, we have, for τ ′ < θτ ,

W θτ,2/θ(Ω) ⊂W τ ′,2/θ(Ω) ⊂ (H1
Γ1

(Ω))′

with compact injection from W θτ,2/θ(Ω) into W τ ′,2/θ(Ω). Finally, from a standard
compactness argument, we get EM is relatively compact in L2/θ(0, T ;W τ ′,2/θ(Ω)) ⊂
L2(0, T ;L2(Ω)). Secondly, the trace operator γ maps continuously W τ ′,2/θ(Ω))
into W τ ′−θ/2,2/θ(Γ)) as soon as τ ′ > θ/2 (see [26] for more details). Choosing for
example τ ′ = 3θ

4 , we deduce the relative compactness of γ(EM ) into L2(ΣT ) ×
L2(ΣT ). This completes the proof. �

From the previous two lemmas, we deduce the following convergence.

Lemma 4.3 (Strong and weak convergence). Up to a subsequence, the sequences
(sη

i )η, (pη)η, (pη
i )η verify the following convergence

pη ⇀ p weakly in L2(0, T ;H1
Γ1

(Ω)), (4.17)

β(sη
1) ⇀ β(s1) weakly in L2(0, T ;H1(Ω)), (4.18)

pη → p almost everywhere in QT , (4.19)

sη
1 → s1 almost everywhere in QT and ΣT , (4.20)

sη
1 → s1 strongly in L2(QT ) and L2(ΣT ), (4.21)

0 ≤ si(t, x) ≤ 1 almost everywhere in (t, x) ∈ QT , (4.22)
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pη
i → pi almost everywhere in QT , (4.23)

φ∂t(ρi(p
η
i )sη

i ) ⇀ φ∂t(ρi(pi)si) weakly in L2(0, T ; (H1
Γ1

(Ω))′), . (4.24)

Proof. The weak convergence (4.17)–(4.18) follow from the uniform estimates (4.2)
and (4.5) of lemma 4.1.

The lemma 4.2 ensures the following strong convergence

ρi(p
η
i )sη

i → li in L2(QT ) and a. e. in QT ,

ρi(p
η
i )sη

i → li in L2(ΣT ) and a. e. in ΣT ,

As the map H defined in (4.14) is continuous, we deduce

pη → p a. e. in QT and a. e. in ΣT ,

β(sη
1) → β? a. e. in QT and a. e. in ΣT .

The convergence (4.19) is then established and as β−1 is continuous,

sη
1 → s1 = β−1(β?) a. e. in QT and a. e. in ΣT .

From (4.1), the estimate (4.22) holds and the Lebesgue theorem ensures the strong
convergence (4.21). The convergence (4.23) is a consequence of (4.19)–(4.20).
At last, the weak convergence (4.24) is a consequence of the estimate (4.6), and the
identification of the limit follows from the previous convergence. �

To achieve the proof of Theorem 1.1, it remains to pass to the limit as η goes to
zero in the formulations (1.24), for all smooth test functions ϕ ∈ C1([0, T ];H1

Γ1
(Ω))∩

L2(0, T ;H2(Ω)) such that ϕ(T ) = 0

−
∫

QT

φρi(p
η
i )sη

i ∂tϕdx dt+
∫

QT

KMi(s
η
i )ρi(p

η
i )∇pη

i · ∇ϕdx dt

−
∫

QT

KMi(s
η
i )ρ2

i (p
η
i )g · ∇ϕdx dt+

∫
QT

ρi(p
η
i )sη

i fPϕdx dt

− (−1)i η

∫
Ω

ρi(p
η
i )∇(pη

1 − pη
2) · ∇ϕdx dt

=
∫

QT

ρi(p
η
i )sI

i fIϕdx dt+
∫

Ω

φρi(p0
i )s

0
iϕ(0, x) dx dt, i = 1, 2.

(4.25)

The first term converges due to the strong convergence of ρi(p
η
i )sη

i to ρi(pi)si in
L2(QT ).

The second term can be written, with the help of global pressure, as∫
QT

KMi(s
η
i )ρi(p

η
i )∇pη

i · ∇ϕdx dt

=
∫

QT

KMi(s
η
i )ρi(p

η
i )∇pη · ∇ϕdx dt+

∫
QT

Kρi(p
η
i )∇β(sη

i ) · ∇ϕdx dt.
(4.26)

The two terms on the right hand side of the equation (4.26) converge arguing in
two steps. Firstly, the Lebesgue theorem and the convergence (4.20)(4.23) establish

ρi(p
η
i )Mi(s

η
i )∇ϕ→ ρi(pi)Mi(si)∇ϕ strongly in (L2(QT ))d,

ρi(p
η
i )∇ϕ→ ρi(pi)∇ϕ strongly in (L2(QT ))d.
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Secondly, the weak convergence on global pressure (4.17) and the weak convergence
(4.18) combined to the above strong convergence allow the convergence for the terms
of the right hand side of (4.26).

The fifth term can be written as

η

∫
Ω

ρi(p
η
i )∇(pη

1 − pη
2) · ∇ϕdx dt =

√
η

∫
Ω

ρi(p
η
i )(
√
η∇f(sη

1)) · ∇ϕdx dt,

The Cauchy-Schwarz inequality and the uniform estimate (4.3) ensure the con-
vergence of this term to zero as η goes to zero. The other terms converge using
(4.20)(4.23) and the Lebesgue dominated convergence theorem. The weak formu-
lations (1.12) are then established. The main theorem 1.1 is then established. �

References

[1] H. W. Alt, E. Di Benedetto; Nonsteady flow of water and oil through inhomogeneous porous

media, Annali della Scuola Normale Superiore di Piza, Séries IV, XII, 3, (1985).
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1968.
[27] P. L. Lions; Mathematical topics in fluid mechanics. Vol. 1. Incompressible models. Oxford

Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications. The

Clarendon Press, Oxford University Press, New York, 1996.
[28] M. Saad; An accurate numerical algorithm for solving three-phase flow in porous media,

Applicable Analysis, 66 (1997), pp. 57–88.

[29] J. Simon; Compact sets in Lp(0, T ; B), Ann. Mat. Pura Appl., IV(146) (1987), pp. 65–96.
[30] J. Simon; Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and

pressure. SIAM J. Math. Anal. 21 (1990), no. 5, pp. 1093–1117.

[31] E. Zeidler; Nonlinear Analysis and Fixed-Point Theorems, Berlin, Springer-Verlag, 1993.

Ziad Khalil

Ecole Centrale de Nantes, Laboratoire de Mathématiques Jean Leray, UMR CNRS
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6629, 1, rue de la Noé, 44321 Nantes, France
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