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PERIODICITY OF SOLUTIONS TO DELAYED DYNAMIC
EQUATIONS WITH FEEDBACK CONTROL

ZHIJUN ZENG

Abstract. Using coincidence degree theory, the related continuation theorem,
and some priori estimates, we investigate the existence of periodic solutions

of a class of delayed dynamic equations with feedback on time scales. Some

sufficient criteria are established for the existence solutions. In particular,
when the time scale is chosen as the set of the real numbers or the integers,

the existence of the periodic solutions to the corresponding continuous-time

and discrete-time models follows.

1. Introduction

In real life, biological controls have been successfully and frequently implemented
by nature and human beings. Therefore, control variables are introduced to the
mathematical ecological models. The reasons for introducing control variables are
based on two points. On one hand, ecosystems are continuously distributed by
unpredictable forces which can results in changes in the biological parameters such
as survival rates. A very basic and practical problem in ecology is whether or not
an ecosystem can withstand those unpredictable disturbances which persist for a
finite period of time. In the language of control, we call the disturbance func-
tions as control variables, for more information, one can see [13]. On the other
hand, it has been proved that under certain conditions some species are perma-
nence and some are possible extinction in the competitive system [1]. However, in
paper [20], when some control variables are imposed on the competitive system,
some sufficient conditions are derived for the permanence and existence of globally
asymptotically stable periodic solution in the two competitive species, which shows
that the controls can save extinction of the species. Therefore, in order to search
for certain schemes to ensure all the species coexist, it is necessary to introduce
control variables.

It is well known that, as the effects of the environmental factors are considered,
the assumption of periodicity of parameters is more realistic. Moreover, to model
the oscillatory behavior of observed population densities in the field, one of typical
approaches is to take into account the time delay in the population dynamics.
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Thus, a more important and realistic population model should take into both the
periodicity of the environment and effects of time delay.

Probably motivated by the above mentioned and the practical problem, many
authors devote themselves to studying the delayed population dynamic systems
with feedback control [7, 8, 9, 10, 13, 17], Huo [15] discussed the following general
nonlinear delayed differential system with feedback control

x′(t) = F (t, x(t− τ1(t)), . . . , x(t− τn(t)), u(t− δ(t))),

u′(t) = −a(t)u(t) + b(t)x(t− τ(t)),
(1.1)

where x(t) denotes the density of species at time t and u(t) is the regulator or control
variable. F (t, z1, z2, . . . , zn, zn+1) is in C(Rn+2,R), F (t+ ω, z1, z2, . . . , zn, zn+1) =
F (t, z1, z2, . . . , zn, zn+1), τ(t), τi(t), δ(t) are in C(R,R), 1 ≤ i ≤ n, a(t), b(t) are in
C(R, (0,∞)), all of the above functions are ω-periodic functions and ω > 0 is a
constant. By using the coincidence degree theory, some sufficient conditions were
derived that guarantee the existence of positive periodic solutions.

Very recently, attempts have been made towards the study of population dynamic
systems on time scales, for example, see [5, 6, 11, 21]. The theory of calculus on
time scales was initiated by Stefan Hilger in his Ph.D Thesis in 1988 [14] in order
to unify continuous and discrete analysis, and it has a tremendous potential for
applications in some mathematical models of real processes and phenomena studied
in physics, chemical technology, population dynamics, biotechnology, economics,
neutral networks and social sciences. For more details, see the monographs of
Aulbach and Hilger [2], Bohner and Peterson [4], Lakshmikantham et al. [16] and
the references therein. The main advantage offered by this theory is to help us
to avoid proving results twice, once for differential equations and once again for
difference equations.

Up to now, to the author’s best knowledge, the studies of delayed dynamic equa-
tions with feedback control on time scales are scarce. Therefore, in the present
paper, by employing the coincidence degree theory, we will explore the existence of
periodic solutions of a class of delayed dynamic equations with feedback control,
which incorporate as special cases many species models governed by ordinary dif-
ferential and difference equations when the time scale is chosen as the set of all real
numbers and all integer numbers.

The remainder of the paper is comprised of three sections. In the coming section,
we presented some preliminary results on the calculus on time scales and the famous
Gaines and Mawhin’s continuation theorem of coincidence degree theory. In section
3, by using the coincidence degree theory, we will establish some sufficient conditions
for the existence of periodic solutions of a class of delayed dynamic equations with
feedback control. In section 4, we present some examples to verify our theoretical
findings. At last, some conclusions are given.

2. Preliminaries

In this section, we will recall some fundamental definitions and results from the
calculus on time scales [2, 3, 4, 14, 16].

Definition 2.1. A time scale is an arbitrary nonempty closed subset T of R, the
real numbers. The set T inherits the standard topology of R.

Remark 2.2. It is easy to see the set of all real numbers R, the set of all integer
numbers Z and ∪k∈Z[2k, 2k+1], as well as ∪k∈Z ∪n∈N {k+ 1

n} are such time scales.
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Definition 2.3. The forward jump operator σ : T → T, the backward jump
operator ρ : T → T, and the graininess µ : T → R+ = [0,+∞) are defined,
respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, µ(t) = σ(t)− t for t ∈ T.

If σ(t) = t, then t is called right-dense (otherwise: right-scattered), and if ρ(t) =
t, then t is called left-dense (otherwise: left-scattered).

Definition 2.4. A function f : T → R is said to be rd-continuous if it is continuous
at right-dense points in T and its left-sided limits exist (finite) at left-dense point
in T. The set of rd-continuous function f : T → R will be denoted by Crd(T).

Definition 2.5. Assume f : T → R is a function and let t ∈ T. Then we define
f∆(t) to be the number (provided it exists) with the property that given any ε > 0,
there is a neighborhood U of t such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s| for all s ∈ U.
In this case, f∆(t) is called the delta (or Hilger) derivative of f at t. Moreover, f
is said to be delta or Hilger differentiable on T if f∆(t) exists for all t ∈ T. The set
of functions f : T → R that are delta-differentiable and whose delta-derivative are
rd-continuous functions is denoted by C1

rd = C1
rd(T) = C1

rd(T,R).

Definition 2.6. A function F : T → R is called a antiderivative of f : T → R
provided F∆(t) = f(t) for all t ∈ T. Then we write∫ s

r

f(t)∆t = F (s)− F (r) for r, s ∈ T.

Throughout the paper, we need below the set Tκ is derived from the time scale
T as follows: If T has a left-scattered maximum m, then Tκ = T− {m}, otherwise
Tκ = T. In summary,

Tκ =

{
T\(ρ(sup T), sup T] if sup T <∞,

T if sup T = ∞.

Moreover, we will assume the time scale T is ω-periodic, that is, t ∈ T implies
t + ω ∈ T. In particular, the time scale under consideration is unbounded above
and below. For simplicity, we also denote

κ = min{R+ ∩ T}, Iω = [κ, κ+ ω] ∩ T, gl = inf
t∈T

g(t), gu = sup
t∈T

g(t)

and

ḡ =
1
ω

∫
Iω

g(s)∆s =
1
ω

∫ κ+ω

κ

g(s)∆s,

where g ∈ Crd(T) is an ω-periodic real function; i.e., g(t+ ω) = g(t) for all t ∈ T.

Lemma 2.7. If f : T → R is delta differentiable at t ∈ Tκ, then

fσ(t) = f(t) + µ(t)f∆(t),

where fσ = f ◦ σ and σ, µ are as in Def. 2.3.

Lemma 2.8. If f ∈ Crd and t ∈ Tκ, then
∫ σ(t)

t
f(s)∆s = µ(t)f(t).

Lemma 2.9. If a, b, c ∈ T and f ∈ Crd, then

(i)
∫ b

a
f(t)∆t =

∫ c

a
f(t)∆t+

∫ b

c
f(t)∆t,
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(ii) if |f(t)| < g(t) for all t ∈ [a, b), then |
∫ b

a
f(t)∆t| ≤

∫ b

a
g(t)∆t,

(iii) if f(t) ≥ 0 for all a ≤ t < b, then
∫ b

a
f(t)∆t ≥ 0.

Lemma 2.10. Every rd-continuous function has an antiderivative and every con-
tinuous function is rd-continuous.

Definition 2.11. If a ∈ T, sup T = ∞, and f is rd-continuous on [a,∞), then we
define the improper integral by∫ ∞

a

f(t)∆t := lim
b→∞

∫ b

a

f(t)∆t

provided this limit exists, and we say that the improper integral converges in this
case. If this limit does not exist, then we say that the improper integral diverges.

Lemma 2.12. If f, g : T → R are delta differentiable at t ∈ Tκ, then

(fg)∆(t) = f∆(t)g(t) + fσ(t)g∆(t) = f(t)g∆(t) + f∆(t)gσ(t).

Definition 2.13. A function r : T → R is called regressive provided

1 + µ(t)r(t) 6= 0, for all t ∈ Tκ.

The set of all regressive and rd-continuous functions will be denoted by R.

Definition 2.14. We define the set R+ of all positively regressive elements of R
by

R+ = {p ∈ R : 1 + µ(t)p(t) > 0, for all t ∈ T}.

Definition 2.15. If p ∈ R, then the delta exponential function ep(·, s) is defined
as the unique solution of the initial value problem

y∆ = p(t)y, y(s) = 1,

where s ∈ T. Furthermore, for p, q ∈ R, we also define

p⊕ q = p+ q + µpq, p	 q =
p− q

1 + µq
.

Lemma 2.16. If p, q ∈ R, then

ep(t, t) = 1, ep(t, s) = 1/ep(s, t), ep(t, a)ep(a, s) = ep(t, s),

ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s), ep(s, σ(t)) =
ep(s, t)

1 + µ(t)p(t)
,

e∆p (·, s) = pep(·, s), e∆p (s, ·) = (	p)ep(s, ·).

Lemma 2.17. If p ∈ R+ and t0 ∈ T, then ep(t, t0) > 0 for all t ∈ T.

Lemma 2.18. Suppose T is ω-periodic, p ∈ Crd(T) is ω-periodic, and a, b ∈ T.
Then

σ(t+ ω) = σ(t) + ω, ρ(t+ ω) = ρ(t) + ω, µ(t+ ω) = µ,∫ b+ω

a+ω

p(t)∆t =
∫ b

a

p(t)∆t, ep(b, a) = ep(b+ ω, a+ ω), kp = ep(t+ ω, t)− 1

are independent of t ∈ T whenever p ∈ R.
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Lemma 2.19. Let T be ω-periodic and suppose f : T × T → R satisfies the as-
sumptions of [4, Theorem 1.117]. Define g(t) =

∫ t+ω

t
f(t, s)∆s. If f∆(t, s) denotes

the derivative of f with respect to t, then

g∆(t) =
∫ t+ω

t

f∆(t, s)∆s+ f(σ(t), t+ ω)− f(σ(t), t).

Next, we introduce the famous Gaines and Mawhin’s continuation theorem of
coincidence degree theory [12], which will come into play later on.

Let X,Z be normed vector spaces, L : DomL ⊂ X → Z a linear mapping,
N : X → Z is a continuous mapping. The mapping L will be called a Fredholm
mapping of index zero if dim kerL = codimImL < +∞ and ImL is closed in Z. If
L is a Fredholm mapping of index zero there exist continuous projectors P : X → X
and Q : Z → Z such that ImP = kerL, ImL = KerQ = Im(I − Q). It follows
that L|DomL ∩KerP : (I − P )X → ImL is invertible. We denote the inverse of
that map by KP . If Ω be an open bounded subset of X, the mapping N will be
called L-compact on Ω̄ if QN(Ω̄) is bounded and KP (I−Q)N : Ω̄ → X is compact.
Since ImQ is isomorphic to kerL, there exists an isomorphism J : ImQ→ kerL.

Lemma 2.20 (Continuation Theorem). Let L be a Fredholm mapping of index zero
and let N be L-compact on Ω̄. Suppose

(i) For each λ ∈ (0, 1), every solution x of Lx = λNx is such that x 6∈ ∂Ω;
(ii) QNx 6= 0 for each x ∈ ∂Ω ∩ kerL and

deg{JQN,Ω ∩ kerL, 0} 6= 0.

Then the equation Lx = Nx has at least one solution lying in DomL ∩ Ω̄.

3. Existence of periodic solutions

In this section, we utilize the continuation theorem of coincidence degree the-
ory introduced in the previous section to establish some sufficient criteria for the
existence of periodic solutions.

Consider the following more general delayed dynamic equation on a time scale

x∆(t) = F
(
t, exp{x(g1(t))}, . . . , exp{x(gn(t))},∫ t

−∞
c(t, s) exp{x(s)}∆s, exp{u(t− δ(t))}

)
,

[exp{u(t)}]∆ = −a(t) exp{u(σ(t))}+ b(t) exp{x(t− τ(t))}.

(3.1)

To obtain our main results, we assume the following hypotheses:

(H1) F : T × Rn+2 → R, F (t, ·) is continuous on Rn+2 for all t ∈ T and is ω-
periodic with respect to the first variable; i.e., F (t+ ω, v1, v2, . . . , vn+2) =
f(t, v1, v2, . . . , vn+2),

(H2) gi : T → T is ω-periodic and satisfies gi(t) ≤ t,
∫ t

−∞ c(t, s)∆s is rd-
continuous in t ∈ T, c(t+ ω, s+ ω) = c(t, s),

(H3) a(t), b(t) ∈ Crd(T, (0,∞)) are ω-periodic, δ(t), τ(t) ∈ Crd(T,R) are ω-
periodic, σ(t) is the forward jump operator defined in Definition 2.3.
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Remark 3.1. Let x̂ = exp{x(t)}, û(t) = exp{u(t)}. If T = R, then (3.1) reduces
to the following delayed differential system with feedback control,

x̂′(t) = x̂(t)F (t, x̂(g1(t)), . . . , x̂(gn(t)),
∫ t

−∞
c(t, s)x̂(s)ds, û(t− δ(t))),

û′(t) = −a(t)û(t) + b(t)x̂(t− τ(t)),
(3.2)

while if T = Z, then (3.1) is reformulated as the difference equation with feedback
control

x̂(t+ 1) = x̂(t) exp
{
F

(
t, x̂(g1(t)), . . . , x̂(gn(t)),

t−1∑
s=−∞

c(t, s)x̂(s), û(t− δ(t))
)}
,

û(t+ 1)− û(t) = −a(t)û(t+ 1) + b(t)x̂(t− τ(t)).

(3.3)

Lemma 3.2. The function (x(t), u(t))T is an ω-periodic solution of (3.1) if and
only if it is also an ω-periodic solution of the system

x∆(t) = F
(
t, exp{x(g1(t))}, . . . , exp{x(gn(t))},∫ t

−∞
c(t, s) exp{x(s)}∆s, exp{u(t− δ(t))}

)
,

u(t) = ln
{ 1
ka

∫ t+ω

t

b(s) exp{x(s− τ(s))}ea(s, t)∆s
}

:= (ϕx)(t).

(3.4)

Here, ea(s, t) is defined in Definition 2.15 and ka = ea(t+ ω, t)− 1.

Proof. First, we assume (x(t), u(t))T is an ω-periodic solution of (3.1). For con-
venience, denote f(t) = b(t) exp{x(t − τ(t))} and let t0 ∈ T. Using Lemma 2.17,
for s ∈ [t, t+ ω], ea(s, t) > 0, and thus u(t) is well-defined. By considering Lemma
2.18, we have

u(t+ ω) = ln
{ 1
ka

∫ t+2ω

t+ω

f(s)ea(s, t+ ω)∆s
}

= ln
{ 1
ka

∫ t+ω

t

f(s+ ω)ea(s+ ω, t+ ω)∆s
}

= ln
{ 1
ka

∫ t+ω

t

f(s)ea(s, t)∆s
}

= u(t),

so that u(t) is ω-periodic.
By Lemma 2.12 and Lemma 2.16, we have

[exp{u(t)}ea(t, t0)]∆ = [exp{u(t)}]∆ea(t, t0) + [exp{u(t)}]σe∆a (t, t0)

= [exp{u(t)}]∆ea(t, t0) + [exp{u(t)}]σa(t)ea(t, t0)

= ea(t, t0){[exp{u(t)}]∆ + a(t)[exp{u(t)}]σ} = ea(t, t0)f(t).

Integrating both sides of this equation from t to t+ ω leads to∫ t+ω

t

ea(s, t0)f(s)∆s = exp{u(t+ ω)}ea(t+ ω, t0)− u(t)ea(t, t0)

= exp{u(t)}[ea(t+ ω, t0)− ea(t, t0)] = exp{u(t)}ea(t, t0)ka.

This proves one part of the lemma.
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Next, let (x(t), u(t))T be an ω-periodic solution of (3.4). Then by Lemma 2.19,
Lemma 2.12 and Lemma 2.16, we obtain

[exp{u(t)}]∆

=
1
ka

[ ∫ t+ω

t

[f(s)ea(s, t)]∆∆s+ f(t+ ω)ea(t+ ω, σ(t))− f(t)ea(t, σ(t))
]

=
1
ka

[ ∫ t+ω

t

f(s)(�a)(t)ea(s, t)∆s+ f(t+ ω)ea(t+ ω, σ(t))− f(t)ea(t, σ(t))
]

=
1
ka

[ ∫ t+ω

t

f(s)
−a(t)

1 + µ(t)a(t)
ea(s, t)∆s+ f(t+ ω)ea(t+ ω, σ(t))

− f(t)ea(t, σ(t))
]

=
1
ka

[ ∫ t+ω

t

f(s)
−a(t)

(1 + µ(t)a(t))ea(t, s)
∆s+ f(t+ ω)ea(t+ ω, σ(t))

− f(t)ea(t, σ(t))
]

=
1
ka

[ ∫ t+ω

t

f(s)a(t)ea(s, σ(t))∆s+ f(t)ea(t+ ω, σ(t))− f(t)ea(t, σ(t))
]
.

Moreover by Lemma 2.8, Lemma 2.9, Lemma 2.16 and Lemma 2.18, we have

a(t) exp{u(σ(t))} =
a(t)
ka

∫ σ(t)+ω

σ(t)

f(s)ea(s, σ(t))∆s

=
a(t)
ka

[ ∫ t+ω

t

f(s)ea(s, σ(t))∆s−
∫ σ(t)

t

f(s)ea(s, σ(t))∆s

+
∫ σ(t)+ω

t+ω

f(s)ea(s, σ(t))∆s
]

=
a(t)
ka

[ ∫ t+ω

t

f(s)ea(s, σ(t))∆s− µ(t)f(t)ea(t, σ(t))

+ µ(t+ ω)f(t+ ω)ea(t+ ω, σ(t))
]

=
a(t)
ka

[ ∫ t+ω

t

f(s)ea(s, σ(t))∆s− µ(t)f(t)ea(t, σ(t))

+ µ(t)f(t)ea(t+ ω, σ(t))
]
.

Therefore,

ka{[exp{u(t)}]∆ + a(t) exp{u(σ(t))}}
= f(t)[ea(t+ ω, σ(t))− ea(t, σ(t))− µ(t)a(t)ea(t, σ(t)) + µ(t)a(t)ea(t+ ω, σ(t))]

= f(t)[(1 + µ(t)a(t))ea(t+ ω, σ(t))− (1 + µ(t)a(t))ea(t, σ(t))]

= f(t)[ea(t+ ω, t)− ea(t, t)] = kaf(t).

This completes the proof. �
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By Lemma 3.2, to show the existence of periodic solutions of (3.1), we only need
to show the existence of periodic solutions of (3.4). Now, (3.4) can be written as

x∆(t) = F
(
t, exp{x(g1(t))}, . . . , exp{x(gn(t))},∫ t

−∞
c(t, s) exp{x(s)}∆s, exp{(ϕx)(t− δ(t))}

)
.

(3.5)

The following lemma will be used in the proof of our main results. The proof can
be found in [5].

Lemma 3.3. Let t1, t2 ∈ Iω and t ∈ T. If g : T → R is ω-periodic, then

g(t) ≤ g(t1) +
∫ κ+ω

κ

|g∆(s)|∆s and g(t) ≥ g(t2)−
∫ κ+ω

κ

|g∆(s)|∆s. (3.6)

Theorem 3.4. Let (H1)–(H3) hold. In addition, assume:
(H4) there exists a constant M > 0 such that for any ω-periodic function x :

T → R, if∫ κ+ω

κ

F
(
t, exp{x(g1(t))}, exp{x(g2(t))}, . . . , exp{x(gn(t))},∫ t

−∞
c(t, s) exp{x(s)}∆s, exp{(ϕx)(t− δ(t))}

)
∆t = 0,

∫ κ+ω

κ

∣∣∣F(
t, exp{x(g1(t))}, exp{x(g2(t))}, . . . , exp{x(gn(t))},∫ t

−∞
c(t, s) exp{x(s)}∆s, exp{(ϕx)(t− δ(t))}

)∣∣∣∆t ≤M,

(H5) there exist constants A2 > A1 > 0 such that if vi ≥ A2 for all 1 ≤ i ≤ n+2,
then∫ κ+ω

κ

F
(
t, v1, v2, . . . , vn,

∫ t

−∞
c(t, s)vn+1∆s, vn+2

)
∆t < 0,

and if 0 < vi ≤ A1 for all 1 ≤ i ≤ n+ 2, then∫ κ+ω

κ

F
(
t, v1, v2, . . . , vn,

∫ t

−∞
c(t, s)vn+1∆s, vn+2

)
∆t > 0.

Then system (3.1) has at least one ω-periodic solution.

Proof. By the above discussion, it suffices to show (3.5) has at least one ω-periodic
solution. In order to apply Lemma 2.20 to system (3.5), we take

X = Z = {x ∈ Crd(T,R)|x(t+ ω) = x(t), for all t ∈ T},

and denote
‖x‖ = max

t∈Iω

|x(t)|, x ∈ X (or Z).

It is not difficult to show that X and Z are Banach spaces equipped with the norm
‖ · ‖. Set

L : DomL ∩X, Lx = x∆(t), x ∈ X,
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where DomL = {x(t) ∈ X|x(t) ∈ C1
rd}. For x(t) ∈ X, we define N : X → X as

follows

Nx(t) = F
(
t, exp{x(g1(t))}, . . . , exp{x(gn(t))},∫ t

−∞
c(t, s) exp{x(s)}∆s, exp{(ϕx)(t− δ(t))}

)
.

Furthermore, let us define two projectors P and Q by Px = Qx = x̄. Then it
follows that

kerL = {x ∈ X|x(t) ≡ h ∈ R for t ∈ T},
ImL = {z ∈ Z|z̄ = 0},

and
dim kerL = 1 = codim ImL.

Since ImL is closed in Z, then L is a Fredholm operator of index zero. Clearly,
P, Q are continuous projectors by the above definition such that

ImP = kerL, ImL = KerQ = Im(I −Q).

It follows that the mapping LDom L∩KerP : (I − P )X → ImL is invertible. We
define the inverse of the mapping by KP , then KP has the form

KPx =
∫ t

κ

x(s)∆s− 1
ω

∫ κ+ω

κ

∫ t

κ

x(s)∆s∆t.

Thus,

QNx =
1
ω

∫ κ+ω

κ

F
(
t, exp{x(g1(t))}, . . . , exp{x(gn(t))},∫ t

−∞
c(t, s) exp{x(s)}∆s, exp{(ϕx)(t− δ(t))}

)
∆t

and

Kp(I −Q)Nx =
∫ t

κ

(Nx)(s)∆s− 1
ω

∫ κ+ω

κ

∫ t

κ

(Nx)(s)∆s∆t

−
(
t− κ− 1

ω

∫ κ+ω

κ

(t− κ)∆t
)
Nx.

Obviously, QN and KP (I − Q)N are continuous. Since X is a Banach space, by
using Arzelà-Ascoli theorem, it is not difficult to show that KP (I −Q)N(Ω̄) is
compact for any open bounded set Ω ⊂ X. Moreover, QN(Ω̄) is bounded. Thus,
N is L-compact on Ω̄ for any open bounded set Ω ⊂ X.

Now, we reach the point where we search for appropriate open bounded subsets
Ω for the application of the continuation theorem. For λ ∈ (0, 1), we consider the
operator equation Lx = λNx; that is,

x∆(t) = λ

∫ κ+ω

κ

F
(
t, exp{x(g1(t))}, . . . , exp{x(gn(t))},∫ t

−∞
c(t, s) exp{x(s)}∆s, exp{(ϕx)(t− δ(t))}

)
.

(3.7)
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Suppose that x ∈ X is an arbitrary ω-periodic solution of system (3.7) for some
λ ∈ (0, 1). Integrating both sides of (3.7) over the interval [κ, κ+ ω], we obtain∫ κ+ω

κ

F
(
t, exp{x(g1(t))}, . . . , exp{x(gn(t))},∫ t

−∞
c(t, s) exp{x(s)}∆s, exp{(ϕx)(t− δ(t))}

)
= 0.

(3.8)

Combining (H4) with (3.8), leads to∫ κ+ω

κ

|x∆(t)|∆t = λ

∫ κ+ω

κ

∣∣∣F(
t, exp{x(g1(t))}, exp{x(g2(t))} . . . , exp{x(gn(t))},∫ t

−∞
c(t, s) exp{x(s)}∆s, exp{(ϕx)(t− δ(t))}

)∣∣∣∆t ≤M.

(3.9)
Moreover, in view of (3.8) and (H5), it is easy to see that there exist an i0 ∈
{1, . . . , n+ 1}, a point t′ and a constant A2 > 0, such that

x(gi0(t
′)) < ln(A2), x(t′) < ln(A2) and (ϕx)(t′ − δ(t′)) < ln(A2). (3.10)

Otherwise, for any A2 > 0 and any t ∈ Iω, one has

x(gi0(t
′)) ≥ ln(A2), x(t′) ≥ ln(A2) and (ϕx)(t′ − δ(t′)) ≥ ln(A2).

In view of (H5), we see that this contradicts (3.8). Hence, (3.10) holds.
Note that since x ∈ X, there exist ξ, η ∈ Iω, such that

x(ξ) = min
t∈Iω

{x(t)}, x(η) = max
t∈Iω

{x(t)}. (3.11)

Then by (3.10), we have x(ξ) < ln(A2). This together with the first inequality of
(3.6) implies

x(t) ≤ x(ξ) +
∫ κ+ω

κ

|x∆(t)|∆t < ln(A2) +M. (3.12)

In a similar way, it is easy to see there exists a constant A1 > 0 such that x(η) >
ln(A1), which together with the second inequality of (3.6) produces

x(t) ≥ x(η) +
∫ κ+ω

κ

|x∆(t)|∆t > ln(A1)−M. (3.13)

Therefore, it follows from (3.12) and (3.13) that

max
t∈Iω

|x(t)| ≤ max{| ln(A2) +M |, | ln(A1)−M |} := A3. (3.14)

Clearly, A3 is independent of λ.
Now we define Ω = {x ∈ X : ‖x‖ < A}, where A = max{A3, | ln(A1)|, | ln(A2)|}.

Then it is clear that Ω satisfies the requirement (i) of Lemma 2.20.
When x ∈ ∂Ω ∩ kerL = ∂Ω ∩ R and x is a constant vector in R, then by (H5),

QNx =
1
ω

∫ κ+ω

κ

F
(
t, exp{x(g1(t))}, exp{x(g2(t))}, . . . , exp{x(gn(t))},∫ t

−∞
c(t, s) exp{x(s)}∆s, exp{(ϕx)(t− δ(t))}

)
∆t 6= 0.



EJDE-2010/123 PERIODICITY OF SOLUTIONS 11

Moreover, note that J = I since ImQ = kerL. In order to compute the Brouwer
degree, let us consider the homotopy

ψ(ν, x) = νx+ (1− ν)QNx for ν ∈ [0, 1].

For any x ∈ ∂Ω ∩ kerL, ν ∈ [0, 1], we have xψ(ν, x) > 0, so ψ(ν, x) 6= 0. Thus, the
homotopy invariance of the degree produces

deg(JQN,Ω ∩ kerL, 0) = deg(QN,Ω ∩ kerL, 0) = deg(x,Ω ∩ kerL, 0) 6= 0,

where deg(·) is the Brouwer degree. By now we have verified that Ω fulfills all
requirements of Lemma 2.20. Therefore, system (3.5) has at least one ω-periodic
solution in DomL∩ Ω̄, which in turn implies that (3.1) has at least one ω-periodic
solution in DomL ∩ Ω̄. This completes the proof. �

Similarly, we can prove the following two results.

Theorem 3.5. Let (H1)–(H4) hold. Moreover, assume

(H6) there exist constants A2 > A1 > 0 such that if vi ≥ A2 for all 1 ≤ i ≤ n+2,
then ∫ κ+ω

κ

F (t, v1, . . . , vn,

∫ t

−∞
c(t, s)vn+1∆s, vn+2)∆t > 0,

and if 0 < vi ≤ A1 for all 1 ≤ i ≤ n+ 2, then∫ κ+ω

κ

F (t, v1, . . . , vn,

∫ t

−∞
c(t, s)vn+1∆s, vn+2)∆t < 0.

Then system (3.1) has at least one ω-periodic solution.

Corollary 3.6. Let (H1)–(H4) hold. Moreover, assume that one of the following
two conditions is valid

(H7) there exist a constant A > 0 such that if vi ≥ A for all 1 ≤ i ≤ n+ 2, then
for any t ∈ Iω, we always have

F
(
t, ev1 , . . . , evn ,

∫ t

−∞
c(t, s)evn+1∆s, evn+2

)
> 0,

F
(
t, e−v1 , . . . , e−vn ,

∫ t

−∞
c(t, s)e−vn+1∆s, e−vn+2

)
< 0,

(H8) there exist a constant A > 0 such that if vi ≥ A for all 1 ≤ i ≤ n+ 2, then
for any t ∈ Iω, we always have

F
(
t, ev1 , . . . , evn ,

∫ t

−∞
c(t, s)evn+1∆s, evn+2

)
< 0,

F
(
t, e−v1 , . . . , e−vn ,

∫ t

−∞
c(t, s)e−vn+1∆s, e−vn+2

)
> 0.

Then system (3.1) has at least one ω-periodic solution.

Corollary 3.7. Assume that (H1)–(H4) and one of (H5)–(H8) hold, then system
(3.2) and (3.3) have at least one positive ω-periodic solution.
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4. Applications

In this section, we aim to apply the results obtained in the previous section to
establish sufficient conditions for the existence of periodic solutions in some specific
delayed dynamic equations with feedback control.

Example 4.1. Consider the delayed dynamic equation with feedback control

x∆(t) = r(t)−
n∑

i=1

ai(t) exp{x(gi(t))}

−
∫ t

−∞
c(t, s) exp{x(s)}∆s− d(t) exp{u(t− δ(t))},

[exp{u(t)}]∆ = −a(t) exp{u(σ(t))}+ b(t) exp{x(t− τ(t))},

(4.1)

where r(t), ai(t), d(t), a(t), b(t) ∈ Crd(T, (0,∞)), gi(t) ∈ Crd(T,T) satisfies gi(t) ≤ t,
δ(t), τ(t) ∈ Crd(T,R), c ∈ Crd(T × T,R+) satisfies c(t + ω, s + ω) = c(t, s) and∫ t

−∞ c(t, s)∆s is rd-continuous, all the functions are ω-periodic functions and ω > 0
is a constant.

Theorem 4.2. System (4.1) has at least one ω-periodic solution.

Proof. Let x(t) be an ω-periodic solution and satisfy∫ κ+ω

κ

[
r(t)−

n∑
i=1

ai(t) exp{x(gi(t))}

−
∫ t

−∞
c(t, s) exp{x(s)}∆s− d(t) exp{(ϕx)(t− δ(t))}

]
∆t = 0,

where (ϕx)(t) is the same as that in (3.4). Then∫ κ+ω

κ

r(t)∆t =
∫ κ+ω

κ

[ n∑
i=1

ai(t) exp{x(gi(t))}

+
∫ t

−∞
c(t, s) exp{x(s)}∆s+ d(t) exp{(ϕx)(t− δ(t))}

]
∆t.

Hence, ∫ κ+ω

κ

∣∣∣r(t)− n∑
i=1

ai(t) exp{x(gi(t))}

−
∫ t

−∞
c(t, s) exp{x(s)}∆s− d(t) exp{(ϕx)(t− δ(t))}

∣∣∣∆t
≤ 2

∫ κ+ω

κ

r(t)∆t = 2r̄ω.

Furthermore, since

lim
(v1,...,vn+2)→∞

(
r(t)−

n∑
i=1

ai(t)vi −
∫ t

−∞
c(t, s)vn+1∆s− d(t)vn+2

)
= −∞

and

lim
(v1,...,vn+2)→0

(
r(t)−

n∑
i=1

ai(t)vi −
∫ t

−∞
c(t, s)vn+1∆s− d(t)vn+2

)
= r(t) > 0.
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By Theorem 3.4, we see that system (4.1) has at least one ω-periodic solution. �

Example 4.3. Consider the delayed dynamic equation with feedback control

x∆(t) = r(t)−
n∏

i=1

ai(t) exp{x(gi(t))} − d(t) exp{u(t− δ(t))},

[exp{u(t)}]∆ = −a(t) exp{u(σ(t))}+ b(t) exp{x(t− τ(t))},
(4.2)

where r(t), ai(t), d(t), a(t), b(t) ∈ Crd(T, (0,∞)), gi(t) ∈ Crd(T,T) satisfies gi(t) ≤ t,
δ(t), τ(t) ∈ Crd(T,R), all the functions are ω-periodic functions and ω > 0 is a
constant.

Theorem 4.4. System (4.2) has at least one ω-periodic solution.

The proof of the above theorem is the same as that of Theorem 4.2, we omit it.

Example 4.5. Consider the delayed dynamic equations with feedback control

x∆(t) = r(t)
K(t)− exp{x(g(t))}

K(t) + c(t) exp{x(g(t))}
− d(t) exp{u(t− δ(t))},

[exp{u(t)}]∆ = −a(t) exp{u(σ(t))}+ b(t) exp{x(t− τ(t))},
(4.3)

x∆(t) = r(t)−
n∑

i=1

ai(t) exp{x(gi(t))}
1 + ci(t) exp{x(gi(t))}

− d(t) exp{u(t− δ(t))},

[exp{u(t)}]∆ = −a(t) exp{u(σ(t))}+ b(t) exp{x(t− τ(t))},
(4.4)

x∆(t) = r(t) +m(t) exp{px(g(t))} − c(t) exp{qx(g(t))} − d(t) exp{u(t− δ(t))},
[exp{u(t)}]∆ = −a(t) exp{u(σ(t))}+ b(t) exp{x(t− τ(t))},

(4.5)

x∆(t) = r(t)− exp{θx(g(t))}
K(t)θ

− d(t) exp{u(t− δ(t))},

[exp{u(t)}]∆ = −a(t) exp{u(σ(t))}+ b(t) exp{x(t− τ(t))},
(4.6)

where r(t), ai(t), d(t), a(t), b(t), ci(t),K(t),m(t), c(t) are in Crd(T, (0,∞)); g(t) and
gi(t) are in Crd(T,T) and satisfy g(t) ≤ t, gi(t) ≤ t; δ(t), τ(t) are in Crd(T,R);
p, q, θ are positive constants with q > p; all the functions are ω-periodic functions
and ω > 0 is a constant.

By Theorems 3.4 and 3.5, one can easily reach the following result.

Theorem 4.6. Each of (4.3)-(4.6) has at least one ω-periodic solution.

Remark 4.7. Let T = R or T = Z and x̂(t) = exp{x(t)}, û(t) = exp{u(t)}. Then
the dynamic equations (4.1)-(4.6) with feedback control reduce to the well-known
continuous or discrete time nonautonomous logistic equation with several deviating
argument and feedback control [15, 17], multiplicative logistic type equation with
several deviating argument and feedback control [9, 15], generalized food-limited
population model with deviating arguments and feedback control, Michalis-Menton
type single species growth model with deviating arguments and feedback control
[15], Lotka-Volterra type single species growth model with deviating arguments and
feedback control, nonautonomous Gilpin-Ayala single species model with feedback
control, respectively, which have been studied extensively in the literature.



14 Z. ZENG EJDE-2010/123

Conclusion. In this paper, with the help of continuation theorem based on Gaines
and Mawhin’s coincidence degree theory, we study the existence of periodic solu-
tions for a class of delayed dynamic equations with feedback control. The system
under consideration is more general, including many specific dynamic equations.
We explore the periodicity on time scales. Specially, when the time scale T is cho-
sen as R or Z, the existence of the periodic solutions of many well-known continuous
or discrete time population models follows.
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Birkhäuser, Boston, 2001.

[5] M. Bohner, M. Fan, J. M. Zhang; Existence of periodic solutions in predator-prey and com-

petition dynamic systems, Nonlinear Anal.: Real World Appl. 7 (2006) 1193-1204.
[6] M. Bohner, M. Fan, J. M. Zhang; Peridicity of scalar dynamic equations and applications to

population models, J. Math. Anal. Appl. 330 (2007) 1-9.

[7] F. D. Chen; Permanence in nonautonomous multi-species predator-prey system with feedback
controls, Appl. Math. Comp. 173 (2006) 694-709.

[8] F. D. Chen; On the periodic solutions of periodic multi-species Kolmogorov type competive
system with delays and feedback controls, Appl. Math. Comp. 180 (2006) 366-373.

[9] G. H. Fan, Y. K. Li, M. C. Mao; The existence of positive periodic solutions for periodic

feedback control system with delays, Z. Angew. Math. Mech. 84 (2004) 435-430.
[10] M. Fan, K. Wang, P. J. Y. Wong, R. P. Agarwal; Periodicity and stability in periodic n-

species Lotka-Volterra competition system with feedback controls and deviating arguments,

Acta. Math. Sinica, English Series, 19 (4) (2003) 801-822.
[11] M. Fazly, M. Hesaaraki; Periodic solutions for predator-prey systems with Beddington-

DeAngelis functional response on time scales, Nonlinear Anal.: Real World Appl. 9 (3)

(2008) 1224-1235.
[12] R. E. Gaines, J. L. Mawhin; Coincidence degree and nonlinear differential equations,

Springer-Verlag, Berlin, 1977.

[13] K. Gopalsamy, P. X. Weng; Feedback regulation of Logistic growth, Internat. J. Math. Math.
Sci. 16 (1993) 177-192.

[14] S. Hilger; Analysis on measure chains-a unified approach to continuous and discrete calculus,

Results Math. 18 (1990) 18-56.
[15] H. F. Huo, W. T. Li; Positive periodic solutions of a class of delay differential system with

feedback control, Appl. Math. Comput. 148 (2004) 35-46.
[16] V. Lakshmikantham, S. Sivasundaram, B. Kaymakcalan; Dynamic systems on measure

chains, Kluwer Academic Publishers, Dordrecht, 1996.

[17] L. S. Liao, J. S. Yu, L. Wang; Global attractivity in a logistic difference model with a feedbck
control, Comp. Math. Appl. 44 (2002) 1403-1411.

[18] Z. Liu; Persistence and periodic solution in two species competitive system with feedback
controls, J. Biomath. 17 (2002) 251- 255.

[19] Y. H. Xia, J. D. Cao, H. Y. Zhang, F. D. Chen; Almost periodic solutions of n-species
competitive system with feedback controls, J. Math. Anal. Appl. 294 (2004) 503-522.

[20] Y, Xiao, S. Tang, J. Chen; Permanence and periodic soluton in competitive system with
feedback controls, Math. Comput. Modelling 27 (1998) 33-37.



EJDE-2010/123 PERIODICITY OF SOLUTIONS 15

[21] W. P. Zhang, P. Bi, D. M. Zhu; Periodicity in a ratio-dependent predator-prey system with

stage-structured predator on time scales, Nonlinear Anal.: Real World Appl. 2008, 9 (2008)

344-353

Zhijun Zeng
School of Mathematics and Statistics, Northeast Normal University

5268 Renmin Street, Changchun, Jilin 130024, China

E-mail address: zthzzj@amss.ac.cn


	1. Introduction
	2. Preliminaries
	3. Existence of periodic solutions
	4. Applications
	Conclusion
	Acknowledgements

	References

