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EXISTENCE OF SQUARE-MEAN ALMOST PERIODIC MILD
SOLUTIONS TO SOME NONAUTONOMOUS STOCHASTIC

SECOND-ORDER DIFFERENTIAL EQUATIONS

PAUL H. BEZANDRY, TOKA DIAGANA

Abstract. In this paper we use the well-known Schauder fixed point principle
to obtain the existence of square-mean almost periodic solutions to some classes

of nonautonomous second order stochastic differential equations on a Hilbert

space.

1. Introduction

Let B be a Banach space. In Goldstein and N’Guérékata [30], the existence of
almost automorphic solutions to the evolution

u′(t) = Au(t) + F (t, u(t)), t ∈ R
where A : D(A) ⊂ B → B is a closed linear operator on a Banach space B which
generates an exponentially stable C0-semigroup T = (T (t))t≥0 and the function
F : R × B → B is given by F (t, u) = P (t)Q(u) with P , Q being some appro-
priate continuous functions satisfying some additional conditions, was established.
The main tools used in [30] are fractional powers of operators and the fixed-point
theorem of Schauder.

Recently Diagana [20] generalized the results of [30] to the nonautonomous case
by obtaining the existence of almost automorphic mild solutions to

u′(t) = A(t)u(t) + f(t, u(t)), t ∈ R (1.1)

where A(t) for t ∈ R is a family of closed linear operators with domains D(A(t))
satisfying Acquistapace-Terreni conditions, and the function f : R × B 7→ B is
almost automorphic in t ∈ R uniformly in the second variable. For that, Diagana
utilized similar techniques as in [30], dichotomy tools, and the Schauder fixed point
theorem.

Let H be a Hilbert space. Motivated by the above mentioned papers, the present
paper is aimed at utilizing Schauder fixed point theorem to study the existence of
p-th mean almost periodic solutions to the nonautonomous stochastic differential
equations

dX(t) = A(t)X(t) dt + F1(t, X(t)) dt + F2(t, X(t)) dW(t), t ∈ R, (1.2)
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where (A(t))t∈R is a family of densely defined closed linear operators satisfying
Acquistapace and Terreni conditions, the functions F1 : R× Lp(Ω, H) → Lp(Ω, H)
and F2 : R×Lp(Ω, H) → Lp(Ω, L0

2) are jointly continuous satisfying some additional
conditions, and W is a Wiener process.

Then, we utilize our main results to study the existence of square-mean almost
periodic solutions to the second order stochastic differential equations

dX ′(ω, t) + a(t) dX(ω, t)

=
[
− b(t)AX(ω, t) + f1(t, X(ω, t))

]
dt

+f2(t, X(ω, t)) dW(ω, t),

(1.3)

for all ω ∈ Ω and t ∈ R, where A : D(A) ⊂ H → H is a self-adjoint linear operator
whose spectrum consists of isolated eigenvalues 0 < λ1 < λ2 < · · · < λn → ∞
with each eigenvalue having a finite multiplicity γj equals to the multiplicity of
the corresponding eigenspace, the functions a, b : R → (0,∞) are almost periodic
functions, and the function fi(i = 1, 2) : R× L2(Ω, H) → L2(Ω, H) are jointly con-
tinuous functions satisfying some additional conditions and W is a one dimensional
Brownian motion.

It should be mentioned the existence of almost periodic to (1.2) in the case
when A(t) is periodic, that is, A(t + T ) = A(t) for each t ∈ R for some T > 0
was established by Da Prato and Tudor in [17]. In the paper by Bezandry and
Diagana [9], upon assuming that the operators A(t) satisfy Acquistapace-Terreni
conditions and that Fi (i = 1, 2, 3,) satisfy Lipschitz conditions, the Banach fixed
point principle was utilized to obtain the existence of a square-mean almost periodic
solutions to (1.2). In this paper is goes back to utilizing Schauder fixed theorem
to establish the existence of p-th mean almost periodic solutions to (1.2). Next, we
make extensive use of those abstract results to deal with the existence of square-
mean almost periodic solutions to the second-order stochastic differential equations
formulated in (1.3).

2. Preliminaries

In this section, A : D(A) ⊂ H → H stands for a self-adjoint linear operator
whose spectrum consists of isolated eigenvalues 0 < λ1 < λ2 < · · · < λn → ∞
with each eigenvalue having a finite multiplicity γj equals to the multiplicity of the
corresponding eigenspace.

Let {ek
j } be a (complete) orthonormal sequence of eigenvectors associated with

the eigenvalues {λj}j≥1. Clearly, for each

u ∈ D(A) :=
{

x ∈ H :
∞∑

j=1

λ2
j‖Ejx‖2 < ∞

}
,

Ax =
∞∑

j=1

λj

γj∑
k=1

〈x, ek
j 〉ek

j =
∞∑

j=1

λjEjx

where Ejx =
∑γj

k=1〈x, ek
j 〉ek

j .
Note that {Ej}j≥1 is a sequence of orthogonal projections on H. Moreover, each

x ∈ H can written as follows:

x =
∞∑

j=1

Ejx.
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It should also be mentioned that the operator −A is the infinitesimal generator
of an analytic semigroup {T (t)}t≥0, which is explicitly expressed in terms of those
orthogonal projections Ej by, for all x ∈ H,

T (t)x =
∞∑

j=1

e−λjtEjx.

In addition, the fractional powers Ar (r ≥ 0) of A exist and are given by

D(Ar) =
{

x ∈ H :
∞∑

j=1

λ2r
j ‖Ejx‖2 < ∞

}
and

Arx =
∞∑

j=1

λ2r
j Ejx, ∀x ∈ D(Ar).

Let
(
B, ‖ · ‖

)
be a Banach space. If L is a linear operator on the Banach space B,

then D(L), ρ(L), σ(L), N(L), N(L), and R(L) stand respectively for the domain,
resolvent, spectrum, null space, and the range of L. also, we set R(λ, L) := (λI −
L)−1 for all λ ∈ ρ(L). If P is a projection, we then set Q = I − P . If B1, B2

are Banach spaces, then the space B(B1, B2) denotes the collection of all bounded
linear operators from B1 into B2 equipped with its natural topology. This is simply
denoted by B(B1) when B1 = B2.

2.1. Evolution Families. Let B be a Banach space equipped with the norm ‖ · ‖.
The family of closed linear operators A(t) for t ∈ R on B with domain D(A(t))
(possibly not densely defined) is said to satisfy Acquistapace-Terreni conditions if:
there exist constants ω ≥ 0, θ ∈

(
π
2 , π

)
, K, L ≥ 0 and µ, ν ∈ (0, 1] with µ + ν > 1

such that

Sθ ∪ {0} ⊂ ρ
(
A(t)− ω

)
3 λ, ‖R

(
λ, A(t)− ω

)
‖ ≤ K

1 + |λ|
(2.1)

and

‖
(
A(t)− ω

)
R
(
λ, A(t)− ω

)[
R
(
ω, A(t)

)
−R

(
ω, A(s)

)]
‖ ≤ L|t− s|µ |λ|−ν (2.2)

for t, s ∈ R, λ ∈ Sθ :=
{
λ ∈ C \ {0} : | arg λ| ≤ θ

}
.

It should mentioned that the conditions (2.1) and (2.2) were introduced in the
literature by Acquistapace and Terreni in [2, 3] for ω = 0. Among other things,
it ensures that there exists a unique evolution family U = U(t, s) on B associated
with A(t) satisfying

(a) U(t, s)U(s, r) = U(t, r);
(b) U(t, t) = I for t ≥ s ≥ r in R;
(c) (t, s) 7→ U(t, s) ∈ B(B) is continuous for t > s;
(d) U(·, s) ∈ C1((s,∞), B(B)), ∂U

∂t (t, s) = A(t)U(t, s) and

‖A(t)kU(t, s)‖ ≤ K (t− s)−k (2.3)

for 0 < t− s ≤ 1, k = 0, 1; and
(e) ∂+

s U(t, s)x = −U(t, s)A(s)x for t > s and x ∈ D(A(s)) with A(s)x ∈
D(A(s)).
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It should also be mentioned that the above-mentioned properties were mainly
established in [1, Theorem 2.3] and [50, Theorem 2.1], see also [3, 49]. In that case
we say that A(·) generates the evolution family U(·, ·).

One says that an evolution family U has an exponential dichotomy (or is hyper-
bolic) if there are projections P (t) (t ∈ R) that are uniformly bounded and strongly
continuous in t and constants δ > 0 and N ≥ 1 such that

(f) U(t, s)P (s) = P (t)U(t, s);
(g) the restriction UQ(t, s) : Q(s)B → Q(t)B of U(t, s) is invertible (we then

set ŨQ(s, t) := UQ(t, s)−1); and
(h) ‖U(t, s)P (s)‖ ≤ Ne−δ(t−s) and ‖ŨQ(s, t)Q(t)‖ ≤ Ne−δ(t−s) for t ≥ s and

t, s ∈ R.
This setting requires some estimates related to U(t, s). For that, we introduce the

interpolation spaces for A(t). We refer the reader to the following excellent books
[29], and [38] for proofs and further information on theses interpolation spaces.

Let A be a sectorial operator on B (for that, in (2.1)-(2.2), replace A(t) with A)
and let α ∈ (0, 1). Define the real interpolation space

BA
α :=

{
x ∈ B : ‖x‖A

α := sup
r>0

‖rα(A− ω)R(r, A− ω)x‖ < ∞
}

,

which, by the way, is a Banach space when endowed with the norm ‖ · ‖A
α . For

convenience we further write

BA
0 := B, ‖x‖A

0 := ‖x‖, BA
1 := D(A)

and
‖x‖A

1 := ‖(ω −A)x‖.
Moreover, let B̂A := D(A) of B. In particular, we have the following continuous
embedding

D(A) ↪→ BA
β ↪→ D((ω −A)α) ↪→ BA

α ↪→ B̂A ↪→ B, (2.4)
for all 0 < α < β < 1, where the fractional powers are defined in the usual way.

In general, D(A) is not dense in the spaces BA
α and B. However, we have the

following continuous injection

BA
β → D(A)

‖·‖A
α (2.5)

for 0 < α < β < 1.
Given the family of linear operators A(t) for t ∈ R, satisfying (2.1)-(2.2), we set

Bt
α := BA(t)

α , B̂t := B̂A(t)

for 0 ≤ α ≤ 1 and t ∈ R, with the corresponding norms. Then the embedding in
(2.4) holds with constants independent of t ∈ R. These interpolation spaces are of
class Jα [38, Definition 1.1.1 ] and hence there is a constant c(α) such that

‖y‖t
α ≤ c(α)‖y‖1−α‖A(t)y‖α, y ∈ D(A(t)). (2.6)

We have the following fundamental estimates for the evolution family U(t, s).

Proposition 2.1. [7] Suppose the evolution family U = U(t, s) has exponential
dichotomy. For x ∈ B, 0 ≤ α ≤ 1 and t > s, the following hold:

(i) There is a constant c(α), such that

‖U(t, s)P (s)x‖t
α ≤ c(α)e−

δ
2 (t−s)(t− s)−α‖x‖. (2.7)
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(ii) There is a constant m(α), such that

‖ŨQ(s, t)Q(t)x‖s
α ≤ m(α)e−δ(t−s)‖x‖. (2.8)

We need the following technical lemma.

Lemma 2.2 ([20, 21, Diagana]). For each x ∈ B, suppose that the family of oper-
ators A(t) (t ∈ R) satisfy Acquistapce-Terreni conditions, assumption (H.2) holds,
and that there exist real numbers µ, α, β such that 0 ≤ µ < α < β < 1 with
2α > µ + 1. Then there is a constant r(µ, α) > 0 such that

‖A(t)U(t, s)x‖α ≤ r(µ, α)e−
δ
4 (t−s)(t− s)−α‖x‖. (2.9)

for all t > s.

Proof. Let x ∈ B. First of all, note that ‖A(t)U(t, s)‖B(B,Bα) ≤ K(t− s)−(1−α) for
all t, s such that 0 < t− s ≤ 1 and α ∈ [0, 1]. Letting t− s ≥ 1 and using (H2) and
the above-mentioned approximate, we obtain

‖A(t)U(t, s)x‖α = ‖A(t)U(t, t− 1)U(t− 1, s)x‖α

≤ ‖A(t)U(t, t− 1)‖B(B,Bα)‖U(t− 1, s)x‖

≤ MKeδe−δ(t−s)‖x‖

= K1e
−δ(t−s)‖x‖

= K1e
− 3δ

4 (t−s)(t− s)α(t− s)−αe−
δ
4 (t−s)‖x‖.

Now since e−
3δ
4 (t−s)(t − s)α → 0 as t → ∞ it follows that there exists c4(α) > 0

such that
‖A(t)U(t, s)x‖α ≤ c4(α)(t− s)−αe−

δ
4 (t−s)‖x‖.

Now, let 0 < t− s ≤ 1. Using (2.7) and the fact 2α > µ + 1, we obtain

‖A(t)U(t, s)x‖α = ‖A(t)U(t,
t + s

2
)U(

t + s

2
, s)x‖α

≤ ‖A(t)U(t,
t + s

2
)‖B(B,Bα)‖U(

t + s

2
, s)x‖

≤ k1‖A(t)U(t,
t + s

2
)‖B(B,Bα)‖U(

t + s

2
, s)x‖µ

≤ k1K
( t− s

2

)α−1

c(µ)
( t− s

2

)−µ

e−
δ
4 (t−s)‖x‖

≤ c5(α, µ)(t− s)α−1−µe−
δ
4 (t−s)‖x‖

≤ c5(α, µ)(t− s)−αe−
δ
4 (t−s)‖x‖.

Therefore there exists r(α, µ) > 0 such that

‖A(t)U(t, s)x‖α ≤ r(α, µ)(t− s)−αe−
δ
4 (t−s)‖x‖

for all t, s ∈ R with t ≥ s. �

It should be mentioned that if U(t, s) is exponentially stable, then P (t) = I and
Q(t) = I −P (t) = 0 for all t ∈ R. In that case, (2.7) still holds and be rewritten as
follows: for all x ∈ B,

‖U(t, s)x‖t
α ≤ c(α)e−

δ
2 (t−s)(t− s)−α‖x‖. (2.10)
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2.2. Wiener process and P -th mean almost periodic stochastic processes.
For details of this subsection, we refer the reader to Bezandry and Diagana [9],
Corduneanu [14], and the references therein. Throughout this paper, H and K will
denote real separable Hilbert spaces with respective norms ‖ · ‖ and ‖ · ‖K. Let
(Ω,F ,P) be a complete probability space. We denote by L2(K, H) the space of
all Hilbert-Schmidt operators acting between K and H equipped with the Hilbert-
Schmidt norm ‖ · ‖2.

For a symmetric nonnegative operator Q ∈ L2(K, H) with finite trace we assume
that {W(t), t ∈ R} is a Q-Wiener process defined on (Ω,F ,P) and with values
in K. Recall that W can obtained as follows: let {Wi(t), t ∈ R}, i = 1, 2, be
independent K-valued Q-Wiener processes, then

W(t) =

{
W1(t) if t ≥ 0
W2(−t) if t ≤ 0

is Q-Wiener process with R as time parameter. We let Ft = σ{W(s), s ≤ t}.
Let p ≥ 2. The collection of all strongly measurable, p-th integrable H-valued

random variables, denoted by Lp(Ω, H), is a Banach space equipped with norm

‖X‖Lp(Ω,H) = (E‖X‖p)1/p ,

where the expectation E is defined by

E[g] =
∫

Ω

g(ω)dP(ω) .

Let K0 = Q
1
2 K and L0

2 = L2(K0, H) with respect to the norm

‖Φ‖2L0
2

= ‖Φ Q
1
2 ‖22 = Tr(ΦQΦ∗) .

Definition 2.3. A stochastic process X : R → Lp(Ω; B) is said to be continuous
whenever

lim
t→s

E‖X(t)−X(s)‖p = 0.

Definition 2.4. A stochastic process X : R → Lp(Ω; B) is said to be stochastically
bounded whenever

lim
N→∞

sup
t∈R

P
{
‖X(t)‖ > N

}
= 0.

Definition 2.5. A continuous stochastic process X : R → Lp(Ω; B) is said to be
p-th mean almost periodic if for each ε > 0 there exists l(ε) > 0 such that any
interval of length l(ε) contains at least a number τ for which

sup
t∈R

E‖X(t + τ)−X(t)‖p < ε . (2.11)

A continuous stochastic process X, which is 2-nd mean almost periodic will be
called square-mean almost periodic.

Like for classical almost periodic functions, the number τ will be called an ε-
translation of X.

The collection of all p-th mean almost periodic stochastic processes X : R →
Lp(Ω; B) will be denoted by AP (R;Lp(Ω; B)).

The next lemma provides with some properties of p-th mean almost periodic
processes.

Lemma 2.6. If X belongs to AP (R;Lp(Ω; B)), then
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(i) the mapping t → E‖X(t)‖p is uniformly continuous;
(ii) there exists a constant M > 0 such that E‖X(t)‖p ≤ M , for each t ∈ R;
(iii) X is stochastically bounded.

Lemma 2.7. AP (R;Lp(Ω; B)) ⊂ BUC(R;Lp(Ω; B)) is a closed subspace.

In view of Lemma 2.7, it follows that the space AP (R;Lp(Ω; B)) of p-th mean
almost periodic processes equipped with the sup norm ‖ · ‖∞ is a Banach space.

Let
(
B1, ‖ ·‖1

)
and

(
B2, ‖ ·‖2

)
be Banach spaces and let Lp(Ω; B1) and Lp(Ω; B2)

be their corresponding Lp-spaces, respectively.

Definition 2.8. A function F : R × Lp(Ω; B1) → Lp(Ω; B2)), (t, Y ) 7→ F (t, Y ),
which is jointly continuous, is said to be p-th mean almost periodic in t ∈ R
uniformly in Y ∈ K where K ⊂ Lp(Ω; B1) is a compact if for any ε > 0, there
exists lε(K) > 0 such that any interval of length lε(K) contains at least a number
τ for which

sup
t∈R

E‖F (t + τ, Y )− F (t, Y )‖p
2 < ε

for each stochastic process Y : R → K.

We have the following composition result.

Theorem 2.9. Let F : R × Lp(Ω; B1) → Lp(Ω; B2), (t, Y ) 7→ F (t, Y ) be a p-th
mean almost periodic process in t ∈ R uniformly in Y ∈ K, where K ⊂ Lp(Ω; B1)
is any compact subset. Suppose that F (t, ·) is uniformly continuous on bounded
subsets K ′ ⊂ Lp(Ω; B1) in the following sense: for all ε > 0 there exists δε > 0 such
that X, Y ∈ K ′ and E‖X − Y ‖p

1 < δε, then

E‖F (t, Y )− F (t, Z)‖p
2 < ε, ∀t ∈ R.

Then for any p-th mean almost periodic process Φ : R → Lp(Ω; B1), the stochastic
process t 7→ F (t,Φ(t)) is p-th mean almost periodic.

3. Main Results

In this section, we study the existence of p-th mean almost periodic solutions
to the class of nonautonomous stochastic differential equations of type (1.2) where
(A(t))t∈R is a family of closed linear operators on Lp(Ω; H) satisfying (2.1)-(2.2),
and the functions F1 : R × Lp(Ω, H) → Lp(Ω, H), F2 : R × Lp(Ω, H) → Lp(Ω, L0

2)
are p-th mean almost periodic in t ∈ R uniformly in the second variable, and
W is Q-Wiener process taking its values in K with the real number line as time
parameter.

Our method for investigating the existence and uniqueness of a p-th mean almost
periodic solution to (1.2) consists of making extensive use of ideas and techniques
utilized in [30], [21], and the Schauder fixed-point theorem.

To study the existence of p-th mean almost periodic solutions to (1.2), we suppose
that the following assumptions hold:

(H1) The injection Hα ↪→ H is compact.
(H2) The family of operators A(t) satisfy Acquistapace-Terreni conditions and

the evolution family U(t, s) associated with A(t) is exponentially stable;
that is, there exist constant M , δ > 0 such that

‖U(t, s)‖ ≤ Me−δ(t−s)

for all t ≥ s.
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(H3) Let µ, α, β be real numbers such that 0 ≤ µ < α < β < 1 with 2α > µ + 1.
Moreover, Ht

α = Hα and Ht
β = Hβ for all t ∈ R, with uniform equivalent

norms.
(H4) R(ζ, A(·)) ∈ AP (R, Lp(Ω; H)).
(H5) The function F1 : R × Lp(Ω, H) → Lp(Ω, H) is p-th mean almost periodic

in the first variable uniformly in the second variable. Furthermore, X →
F1(t,X) is uniformly continuous on any bounded subset O of Lp(Ω, H) for
each t ∈ R. Finally,

sup
t∈R

E‖F1(t, X)‖p ≤M1

(
‖X‖∞

)
where M1 : R+ → R+ is a continuous function satisfying

lim
r→∞

M1(r)
r

= 0 .

(H6) The function F2 : R× Lp(Ω, H) → Lp(Ω, L0
2) is p-th mean almost periodic

in the first variable uniformly in the second variable. Furthermore, X →
F2(t,X) is uniformly continuous on any bounded subset O′ of Lp(Ω, H) for
each t ∈ R. Finally,

sup
t∈R

E‖F2(t, X)‖p ≤M2

(
‖X‖∞

)
where M2 : R+ → R+ is a continuous function satisfying lim

r→∞
M2(r)/r =

0.
In this section, Γ1 and Γ2 stand respectively for the nonlinear integral operators

defined by

(Γ1X)(t) :=
∫ t

−∞
U(t, s)F1(s,X(s)) ds,

(Γ2X)(t) :=
∫ t

−∞
U(t, s)F2(s,X(s)) dW(s) .

In addition to the above-mentioned assumptions, we assume that α ∈
(
0, 1

2 −
1
p

)
if

p > 2 and α ∈
(
0, 1

2

)
if p = 2.

Lemma 3.1. Under assumptions (H2)–(H6), the mappings Γi : BC(R, Lp(Ω, H))
→ BC(R, Lp(Ω, Hα)) (i = 1, 2) are well defined and continuous.

Proof. We first show that Γi

(
BC

(
R, Lp(Ω, H)

))
⊂ BC

(
R, Lp(Ω, Hα)

)
(i = 1, 2).

Let us start with Γ1X. Using (2.10) it follows that for all X ∈ BC(R, Lp(Ω, H)),

E‖Γ1X(t)‖p
α

≤ E
[ ∫ t

−∞
c(α)(t− s)−αe−

δ
2 (t−s)‖F1(s,X(s))‖ ds

]p
≤ c(α)p

(∫ t

−∞
(t− s)−

p
p−1 αe−

δ
2 (t−s) ds

)p−1(∫ t

−∞
e−

δ
2 (t−s)E‖F1(s,X(s))‖p ds

)
≤ c(α)p

(
Γ
(
1− p

p− 1
α
)(2

δ

)1− p
p−1 α(2

δ

)p−1

M1

(
‖X‖∞

)
≤ c(α)p

(
Γ
(
1− p

p− 1
α
))p−1(2

δ

)p(1−α)

M1

(
‖X‖∞

)
,
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and hence

‖Γ1X‖p
α,∞ := sup

t∈R
E‖Γ1X(t)‖p

α ≤ l(α, δ, p)M1

(
‖X‖∞

)
,

where l(α, δ, p) = c(α)p
(
Γ
(
1− p

p−1α
))p−1(

2
δ

)p(1−α)

.
As to Γ2X, we proceed into two steps. For p > 2, we need the following estimates.

Lemma 3.2. Let p > 2, 0 < α < 1, α + 1
p < ξ < 1/2, and Ψ : Ω× R → L0

2 be an
(Ft)-adapted measurable stochastic process such that

sup
t∈R

E‖Ψ(t)‖p
L0
2

< ∞ .

Then
(i) E‖

∫ t

−∞(t− s)−ξU(t, s)Ψ(s) dW(s)‖p ≤ s(Γ, ξ, δ, p) supt∈R E‖Ψ(t)‖p
L0
2
;

(ii) E‖
∫ t

−∞ U(t, s)Ψ(s) dW(s)‖p
α ≤ k(Γ, α, ξ, δ, p) supt∈R E‖Ψ(t)‖p

L0
2

where s(Γ, ξ, δ, p) and k(Γ, α, ξ, δ, p) are positive constants with Γ a classical Gamma
function.

Proof. (i) A direct application of a Proposition due to De Prato and Zabczyk [18]
and Holder’s inequality allows us to write

E‖
∫ t

−∞
(t− σ)−ξU(t, σ)Ψ(σ) dW(σ)‖p

≤ CpE
[ ∫ t

−∞
(t− σ)−2ξ‖U(t, σ)Ψ(σ)‖2 dσ

]p/2

≤ CpN
pE
[ ∫ t

−∞
(t− σ)−2ξe−2δ(t−σ)‖Ψ(σ)‖2L0

2
dσ
]p/2

≤ CpN
p
(∫ t

−∞
(t− σ)−2ξe−2δ(t−σ) dσ

)p−1(∫ t

−∞
e−2δ(t−σ)E‖Ψ(σ)‖p

L0
2
dσ
)

≤ CpN
p
(
Γ(1− 2pξ

p− 2
)(2δ)

2pξ
p−2−1

) p−2
2
( 1

2δ

)
sup
t∈R

E‖Ψ(t)‖p
L0
2

≤ s(Γ, ξ, δ, p) sup
t∈R

E‖Ψ(t)‖p
L0
2
.

To prove (ii), we use the factorization method of the stochastic convolution integral.∫ t

−∞
U(t, s)Ψ(s) dW(s) =

sinπξ

π
(RξSΨ)(t) a.s. (3.1)

where

(RξSΨ)(t) =
∫ t

−∞
(t− s)ξ−1U(t, s)SΨ(s) ds

with

SΨ(s) =
∫ s

−∞
(s− σ)−ξU(s, σ)Ψ(σ) dW(σ) ,

and ξ satisfying α + 1
p < ξ < 1/2. We can now evaluate

E‖
∫ t

−∞
U(t, s)Ψ(s) dW(s)‖p

α
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≤
∣∣ sin(πξ)

π

∣∣pE[ ∫ t

−∞
(t− s)−ξ‖U(t, s)SΨ(s)‖α ds

]p
≤ M(α)p

∣∣ sin(πξ)
π

∣∣pE[ ∫ t

−∞
(t− s)ξ−α−1e−δ(t−s)‖SΨ(s)‖α ds

]p
≤ M(α)p

∣∣ sin(πξ)
π

∣∣p(∫ t

−∞
(t− s)

p
p−1 (ξ−α−1)e−δ(t−s) ds

)p−1

×

×
(∫ t

−∞
e−δ(t−s)E‖SΨ(s)‖p ds

)
≤ r(Γ, α, ξ, δ, p) sup

s∈R
E‖SΨ(s)‖p .

On the other hand, it follows from part (i) that

E‖SΨ(t)‖p ≤ s(Γ, ξ, δ, p) sup
t∈R

E‖Ψ(t)‖p
L0
2
. (3.2)

Thus,

E‖
∫ t

−∞
U(t, s)Ψ(s) dW(s)‖p

α

≤ r(Γ, α, ξ, δ, p)s(Γ, ξ, δ, p) sup
t∈R

E‖Ψ(t)‖p
L0
2

≤ k(Γ, α, ξ, δ, p) sup
t∈R

E‖Ψ(t)‖p
L0
2
.

�

We now use the estimates obtained in Lemma 3.2 (ii) to obtain

E‖Γ2X(t)‖p
α ≤ k(α, ξ, δ, p) sup

t∈R
E‖F2(s,X(s))‖p

L0
2

≤ k(α, ξ, δ, p)M2

(
‖X‖∞

)
,

and hence
‖Γ2X‖p

α,∞ ≤ k(α, ξ, δ, p)M2

(
‖X‖∞

)
,

where k(α, ξ, δ, p) is a positive constant. For p = 2, we have

E‖Γ2X(t)‖2α = E‖
∫ t

−∞
U(t, s)F2(s,X(s)) dW(s)‖2α

≤ c(α)2
∫ t

−∞
(t− s)−2αe−δ(t−s)E‖F2(s,X(s))‖2L0

2

≤ c(α)2Γ
(
1− 2α

)
δ1−2αM2

(
‖X‖∞

)
,

and hence
‖Γ2X‖2α,∞ ≤ s(α, δ)M2

(
‖X‖∞

)
,

where s(α, δ) = c(α)2Γ
(
1− 2α

)
δ1−2α.

For the continuity, let Xn ∈ AP (R;Lp(Ω, H)) be a sequence which converges to
some X ∈ AP (R;Lp(Ω, H)); that is, ‖Xn −X‖∞ → 0 as n → ∞. It follows from
the estimates in Proposition 2.1 that

E‖
∫ t

−∞
U(t, s)[F1(s,Xn(s))− F1(s,X(s))] ds‖p

α
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≤ E
[ ∫ t

−∞
c(α)(t− s)−αe−

δ
2 (t−s)‖F1(s,Xn(s))− F1(s,X(s))‖ ds

]p
.

Now, using the continuity of F1 and the Lebesgue Dominated Convergence Theorem
we obtain that

E‖
∫ t

−∞
U(t, s)[F1(s,Xn(s))− F1(s,X(s))] ds‖p

α → 0 as n →∞ .

Therefore,
‖Γ1X

n − Γ1X‖∞,α → 0 as n →∞.

For the term containing the Wiener process W, we use the estimates in Lemma 3.2
to obtain

E‖
∫ t

−∞
U(t, s)[F2(s,Xn(s))− F2(s,X(s))] dW(s)‖p

α

≤ k(α, ξ, δ, p) sup
t∈R

E‖F2(t, Xn(t))− F2(t, X(t))‖p

for p > 2 and

E‖
∫ t

−∞
U(t, s)[F2(s,Xn(s))− F2(s,X(s))] dW(s)‖2α

≤ n(α)2
∫ t

−∞
(t− s)−2αe−δ(t−s)E‖F2(s,X(s)n)− F2(s,X(s))‖2 ds

for p = 2.
Now, using the continuity of G and the Lebesgue Dominated Convergence The-

orem we obtain that

E‖
∫ t

−∞
U(t, s)[F2(s,Xn(s))− F2(s,X(s))] dW(s)‖p

α → 0 as n →∞ .

Therefore,
‖Γ2X

n − Γ2X‖∞,α → 0 as n →∞.

�

Lemma 3.3. Under assumptions (H2)–(H6), the integral operator Γi (i = 1, 2)
maps AP

(
R, Lp(Ω, H)

)
into itself.

Proof. Let us first show that Γ1X(·) is p-th mean almost periodic et let f1(t) =
F1(t, X(t)). Indeed, assuming that X is p-th mean almost periodic and using
assumption (H5), Theorem 2.9, and [39, Proposition 4.4], given ε > 0, one can find
lε > 0 such that any interval of length lε contains at least τ with the property that

‖U(t + τ, s + τ)− U(t, s)‖ ≤ εe−
δ
2 (t−s)

for all t− s ≥ ε, and
E‖f1(σ + τ)− f1(σ)‖p < η

for each σ ∈ R, where η(ε) → 0 as ε → 0. Moreover, it follows from Lemma 2.6 (ii)
that there exists a positive constant K1 such that

sup
σ∈R

E‖f1(σ)‖p ≤ K1 .

Now, using assumption (H2) and Holder’s inequality, we obtain

E‖Γ1X(t + τ)− Γ1X(t)‖p
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≤ 3p−1E
[ ∫ ∞

0

‖U(t + τ, t + τ − s)‖‖f1(t + τ − s)− f1(t− s)‖ ds
]p

+ 3p−1 E
[ ∫ ∞

ε

‖U(t + τ, t + τ − s)− U(t, t− s)‖‖f1(t− s)‖ ds
]p

+ 3p−1 E
[ ∫ ε

0

‖U(t + τ, t + τ − s)− U(t, t− s)‖‖f1(t− s)‖ ds
]p

≤ 3p−1MpE
[ ∫ ∞

0

e−δs‖f1(t + τ − s)− f1(t− s)‖ ds
]p

+ 3p−1εp E
[ ∫ ∞

ε

e−
δ
2 s‖f1(t− s)‖ ds

]p
+ 3p−1Mp E

[ ∫ ε

0

2e−δs‖f1(t− s)‖ ds
]p

≤ 3p−1Mp
(∫ ∞

0

e−δs ds
)p−1(∫ ∞

0

e−δsE‖f1(t + τ − s)− f1(t− s)‖p ds
)

+ 3p−1εp
(∫ ∞

0

e−δs ds
)p−1(∫ ∞

ε

e−
δps
2 E‖f1(t− s)‖p ds

)
+ 6p−1Mp

(∫ ε

0

e−δs ds
)p−1(∫ ε

0

e−
δps
2 E‖f1(t− s)‖p ds

)
≤ 3p−1Mp

(∫ ∞

0

e−δs ds
)p

sup
s∈R

E‖f1(t + τ − s)− f1(t− s)‖p

+ 3p−1εp
(∫ ∞

ε

e−δs ds
)p

sup
s∈R

E‖f1(t− s)‖p

+ 6p−1Mp
(∫ ε

0

e−δs ds
)p

sup
s∈R

E‖f1(t− s)‖p

≤ 3p−1Mp
( 1

δp

)
η + 3p−1MpK1

( 1
δp

)
εp + 6p−1MpεpK1ε

p.

As for Γ2X(·), we split the proof in two cases: p > 2 and p = 2. To this end,
we let f2(t) = F2(t, X(t)). Let us start with the case where p > 2. Assuming that
X is p-th mean almost periodic and using assumption (H6), Theorem 2.9, and [39,
Proposition 4.4], given ε > 0, one can find lε > 0 such that any interval of length
lε contains at least τ with the property that

‖U(t + τ, s + τ)− U(t, s)‖ ≤ εe−
δ
2 (t−s)

for all t− s ≥ ε, and
E‖f2(σ + τ)− f2(σ)‖p < η

for each σ ∈ R, where η(ε) → 0 as ε → 0.
Moreover, it follows from Lemma 2.6 (ii) that there exists a positive constant

K2 such that
sup
σ∈R

E‖f2(σ)‖p ≤ K2 .

Now

E‖f2(t + τ)− f2(t)‖p

≤ 3p−1E
∥∥∥∫ ∞

0

U(t + τ, t + τ − s)
[
f2(t + τ − s)− f2(t− s)

]
dW(s)‖p

+ 3p−1 E
∥∥∥∫ ∞

ε

[
U(t + τ, t + τ − s)− U(t, t− s)

]
f2(t− s) dW(s)‖p
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+ 3p−1 E
∥∥∥∫ ε

0

[
U(t + τ, t + τ − s)− U(t, t− s)

]
f2(t− s) dW(s)‖p.

We then have

E‖Γ2X(t + τ)− Γ2X(t)‖p

≤ 3p−1CpE
[ ∫ ∞

0

‖U(t + τ, t + τ − s)‖2‖f2(t + τ − s)− f2(t− s)‖2L0
2
ds
]p/2

+ 3p−1Cp E
[ ∫ ∞

ε

‖U(t + τ, t + τ − s)− U(t, t− s)‖2‖f2(t− s)‖2L0
2
ds
]p/2

+ 3p−1Cp E
[ ∫ ε

0

‖U(t + τ, t + τ − s)− U(t, t− s)‖2‖f2(t− s)‖2L0
2
ds
]p/2

≤ 3p−1CpM
pE
[ ∫ ∞

0

e−2δs‖f2(t + τ − s)− f2(t− s)‖2L0
2
ds
]p/2

+ 3p−1Cpε
pE
[ ∫ ∞

ε

e−δs‖f2(t− s)‖2L0
2
ds
]p/2

+ 3p−12p/2Cp E
[ ∫ ε

0

e−2δs‖f2(t− s)‖2L0
2
ds
]p/2

≤ 3p−1CpM
p
(∫ ∞

0

e−
pδs
p−2 ds

) p−2
2
(∫ ∞

0

e−
pδs
2 ‖f2(t + τ − s)− f2(t− s)‖p

L0
2
ds
)

+ 3p−1Cpε
p
(∫ ∞

ε

e−
pδs

2(p−2) ds
) p−2

2
(∫ ∞

ε

e−
pδs
4 E‖f2(t− s)‖p

L0
2
ds
)

+ 3p−12p/2Cp Mp
(∫ ε

0

e−
pδs
p−2 ds

) p−2
2
(∫ ε

0

e−
pδs
2 E‖f2(t− s)‖p

L0
2
ds
)

≤ 3p−1CpM
pη
(∫ ∞

0

e−
pδs
p−2 ds

) p−2
2
(∫ ∞

0

e−
pδs
2 ds

)
+ 3p−1Cpε

pK2

(∫ ∞

ε

e−
pδs

2(p−2) ds
) p−2

2
(∫ ∞

ε

e−
pδs
4 ds

)
+ 3p−12p/2Cp MpK2

(∫ ε

0

e−
pδs
p−2 ds

) p−2
2
(∫ ε

0

e−
pδs
2 ds

)
≤ 3p−1CpM

pη
(p− 2

pδ

)p−2( 2
pδ

)
+ 3p−1Cpε

pK2

(2(p− 2)
pδ

) p−2
2
( 4

pδ

)
+ 3p−12p/2Cp MpK2ε

p.

As to the case p = 2, we proceed in the same way an using isometry inequality to
obtain

E‖Γ2X(t + τ)− Γ2X(t)‖2

≤ 3 M2
(∫ ∞

0

e−2δs ds
)

sup
σ∈R

E‖f2(σ + τ)− f − 2(σ)‖2L0
2

+ 3ε2
(∫ ∞

ε

e−δ s ds
)

sup
σ∈R

E‖f2(σ)‖2L0
2
+ 6M2

(∫ ε

0

e−2δs ds
)

sup
σ∈R

E‖f2(σ)‖2L0
2

≤ 3
[
η
M2

2δ
+ ε

K2

δ
+ 2εK2

]
.
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Hence, Γ2X(·) is p-th mean almost periodic. �

Let γ ∈ (0, 1] and let

BCγ
(
R, Lp(Ω, Hα)

)
=
{

X ∈ BC
(
R, Lp(Ω, Hα)

)
: ‖X‖α,γ < ∞

}
,

where

‖X‖α,γ = sup
t∈R

[
E‖X(t)‖p

α

]1/p

+ γ sup
t,s∈R,s 6=t

[
E‖X(t)−X(s)‖p

α

]1/p∣∣t− s|γ
.

Clearly, the space BCγ
(
R, Lp(Ω, Hα)

)
equipped with the norm ‖ · ‖α,γ is a Banach

space, which is in fact the Banach space of all bounded continuous Holder functions
from R to Lp(Ω, Hα) whose Holder exponent is γ.

Lemma 3.4. Under assumptions (H1)–(H6), the mapping Γ1 defined previously
maps bounded sets of BC

(
R, Lp(Ω, H)

)
into bounded sets of BCγ(R, Lp(Ω, Hα))

for some 0 < γ < 1.

Proof. Let X ∈ BC(R, Lp(Ω, H)) and let f1(t) = F1(t, X(t)) for each t ∈ R. Pro-
ceeding as before, we have

E‖Γ1X(t)‖p
α ≤ cE‖Γ1X(t)‖p

β ≤ c · l(β, δ, p)M1

(
‖X‖∞

)
.

Let t1 < t2. Clearly, we have

E‖(Γ1X)(t2)− (Γ1X)(t1)‖p
α

≤ 2p−1E‖
∫ t2

t1

U(t2, s)f1(s) ds‖p
α + 2p−1E‖

∫ t1

−∞
[U(t2, s)− U(t1, s)]f1(s) ds‖p

α

= 2p−1E‖
∫ t2

t1

U(t2, s)f1(s) ds‖p
α + 2p−1E‖

∫ t1

−∞

(∫ t2

t1

∂U(τ, s)
∂τ

dτ
)
f1(s) ds‖p

α

= 2p−1E‖
∫ t2

t1

U(t2, s)f1(s) ds‖p
α + 2p−1E‖

∫ t1

−∞

(∫ t2

t1

A(τ)U(τ, s)f1(s) dτ
)

ds‖p
α

= N1 + N2.

Clearly,

N1 ≤ E
{∫ t2

t1

‖U(t2, s)f1(s)‖α ds
}p

≤ c(α)pE
{∫ t2

t1

(t2 − s)−αe−
δ
2 (t2−s)‖f1(s)‖ ds

}p

≤ c(α)p
(
M1

(
‖X‖

))(∫ t2

t1

(t2 − s)−
p

p−1 αe−
δ
2 (t2−s)

)p−1(∫ t2

t1

e−
δ
2 (t2−s) ds

)
≤ c(α)p

(
M1

(
‖X‖

))(∫ t2

t1

(t2 − s)−
p

p−1 α
)p−1(

t2 − t1

)
≤ c(α)pM1

(
‖X‖

)(
1− p

p− 1
α
)−(p−1)

(t2 − t1)p(1−α) .

Similarly, using estimates in Lemma 2.2

N2 ≤ E
{∫ t1

−∞

(∫ t2

t1

‖A(τ)U(τ, s)f1(s)‖α dτ
)

ds
}p
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≤ r(µ, α)pE
{∫ t1

−∞

(∫ t2

t1

(τ − s)−αe−
δ
4 (τ−s)‖f1(s)‖ dτ

)
ds
}p

≤ r(µ, α)pE
[ ∫ t2

t1

(∫ t1

−∞
(τ − s)−

p
p−1 αe−

δ
4 (τ−s) ds

) p−1
p
)

×
(∫ t1

−∞
e−

δ
4 (τ−s)‖f1(s)‖p ds

)1/p

dτ
]p

≤ r(µ, α)p
(∫ t1

−∞
e−

δ
4 (t1−s)E‖f1(s)‖p ds

)
×
[ ∫ t2

t1

(∫ t1

−∞
(τ − s)−

p
p−1 αe−

δ
4 (τ−s) ds

) p−1
p
)

dτ
]p

≤ r(µ, α)p
(∫ t1

−∞
e−

δ
4 (t1−s)E‖f1(s)‖p ds

)
×
[ ∫ t2

t1

(τ − t1)−α
(∫ t1

−∞
e−

δ
4 (τ−s) ds

) p−1
p
)

dτ
]p

≤ r(µ, α)p
(∫ t1

−∞
e−

δ
4 (t1−s)E‖f1(s)‖p ds

)
×
[ ∫ t2

t1

(τ − t1)−α
(∫ ∞

τ−t1

e−
δ
4 r dr

) p−1
p
)

dτ
]p

≤ r(µ, α)pM1

(
‖X‖

)(2
p

)p

(1− β)−p(t2 − t1)p(1−α) .

For γ = 1− α, one has

E‖(Γ1X)(t2)− (Γ1X)(t1)‖p
α ≤ s(α, β, δ)M1

(
‖X‖

)∣∣t2 − t1
∣∣pγ

where s(α, β, δ) is a positive constant. �

Lemma 3.5. Let α, β ∈
(
0, 1

2

)
with α < β. Under assumptions (H1)-(H6), the

mapping Γ2 defined previously maps bounded sets of BC
(
R, Lp(Ω, H)

)
into bounded

sets of BCγ(R, Lp(Ω, Hα)) for some 0 < γ < 1.

Proof. Let X ∈ BC(R, Lp(Ω, H)) and let f2(t) = F2(t,X(t)) for each t ∈ R. We
break down the computations in two cases: p > 2 and p = 2.

For p > 2, we have

E‖Γ2X(t)‖p
α ≤ cE‖Γ2X(t)‖p

β ≤ c · k(β, ξ, δ, p)M2

(
‖X‖∞

)
.

Let t1 < t2. Clearly,

E‖(Γ2X)(t2)− (Γ2X)(t1)‖p
α

≤ 2p−1E‖
∫ t2

t1

U(t2, s)f2(s) dW(s)‖p
α

+ 2p−1E‖
∫ t1

−∞
[U(t2, s)− U(t1, s)]f2(s) dW(s)‖p

α

= N ′
1 + N ′

2.
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We use the factorization method (3.1) to obtain

N ′
1 =

∣∣ sin(πξ)
π

∣∣pE‖∫ t2

t1

(t2 − s)ξ−1U(t2, s)Sf2(s) ds‖p
α

≤
∣∣ sin(πξ)

π

∣∣pE[ ∫ t2

t1

(t2 − s)ξ−1‖U(t2, s)Sf2(s)‖α ds
]p

≤ M(α)p
∣∣ sin(πξ)

π

∣∣pE[ ∫ t2

t1

(t2 − s)ξ−1(t2 − s)αe−
δ
2 (t2−s)‖Sf2(s)‖ ds

]p
≤ M(α)p

∣∣ sin(πξ)
π

∣∣p(∫ t2

t1

(t2 − s)−
p

p−1 α ds
)p−1

×
(∫ t2

t1

(t2 − s)−p(1−ξ)e−p δ
2 (t2−s)E‖Sf2(s)‖p ds

)
≤ M(α)p

∣∣ sin(πξ)
π

∣∣p(∫ t2

t1

(t2 − s)−
p

p−1 α ds
)p−1

×

×
(∫ t2

t1

(t2 − s)−p(1−ξ)e−p δ
2 (t2−s) ds

)
sup
t∈R

E‖Sf2(t)‖p

≤ s(ξ, δ,Γ, p)
(
1− p

p− 1
α
)−(p−1)

M2

(
‖X‖∞

)
(t2 − t1)p(1−α)

where s(ξ, δ,Γ, p) is a positive constant. Similarly,

N ′
2 = E‖

∫ t1

−∞

[ ∫ t2

t1

∂

∂τ
U(τ, s) dτ

]
f2(s) dW(s)‖p

α

= E‖
∫ t1

−∞

[ ∫ t2

t1

A(τ)U(τ, s) dτ
]
f2(s) dW(s)‖p

α .

Now, using the representation (3.1) together with a stochastic version of the Fubini
theorem with the help of Lemma 2.2 gives us

N ′
2 =

∣∣ sin(πξ)
π

∣∣pE‖∫ t2

t1

(
A(τ)U(τ, t1)

∫ t1

−∞
(t1 − s)ξ−1U(t1, s)Sf2(s) ds

)
dτ‖p

α

≤
∣∣ sin(πξ)

π

∣∣pE[ ∫ t2

t1

(∫ t1

−∞
(t1 − s)ξ−1‖A(τ)U(τ, s)Sf2(s)‖α ds

)
dτ
]p

≤ r(µ, α)
∣∣ sin(πξ)

π

∣∣pE[ ∫ t2

t1

(∫ t1

−∞
(t1 − s)ξ−1(τ − s)−αe

δ
4 (τ−s)‖Sf2(s)‖ ds

)
dτ
]p

where ξ satisfies β + 1
p < ξ < 1/2. Since τ > t1, it follows from Holder’s inequality

that

N ′
2

≤ r(µ, α)
∣∣ sin(πξ

π

∣∣pE[ ∫ t2

t1

(τ − t1)−α
(∫ t1

−∞
(t1 − s)ξ−1e−

δ
4 (τ−s)‖Sf2(s)‖ ds

)
dτ
]p

≤ r(µ, α)
∣∣ sin(πξ

π

∣∣pE[( ∫ t2

t1

(τ − t1)−α dτ
)p
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×
(∫ t1

−∞
(t1 − s)ξ−1e−

δ
4 (t1−s)‖Sf2(s)‖ ds

)p]
≤ r(µ, α)

∣∣ sin(πξ

π

∣∣p(t2 − t1)p(1−α)
(∫ t1

−∞
(t1 − s)

p
p−1 (ξ−α−1)e

δ
4 (t1−s) ds

)p−1

×
(∫ t1

−∞
e−

δ
4 (t1−s) ds

)
sup
s∈R

E‖Sf2(s)‖p

≤ r(ξ, β, δ, Γ, p)(1− α)−pM2

(
‖X‖∞

)
(t2 − t1)p(1−α) .

For γ = 1− α, one has[
E‖(Γ2X)(t2)− (Γ2X)(t1)‖p

α

]1/p

≤ r(ξ, β, δ, Γ, p)(1− α)−1
[
M2

(
‖X‖∞

)]1/p

(t2 − t1)γ .

As for p = 2, we have

E‖Γ2X(t)‖2α ≤ cE‖Γ2X(t)‖2β ≤ c · s(β, δ)M2

(
‖X‖∞

)
.

For t1 < t2, let us start with the first term. By Ito isometry identity, we have

N ′
1 ≤ c(α)2

{∫ t2

t1

(t2 − s)−2αe−δ(t2−s)E‖f2(s)‖2L0
2
ds

≤ c(α)2
(∫ t2

t1

(t2 − s)−2α ds
)

sup
s∈R

E‖f2(s)‖2L0
2

≤ c(α)(1− 2α)−1M2

(
‖X‖∞

)
(t2 − t1)1−2α .

Similarly, using the estimates in Lemma 2.2 we have

N ′
2 = E‖

∫ t1

−∞

[ ∫ t2

t1

∂

∂τ
U(τ, s) dτ

]
f2(s) dW(s)‖2α

= E‖
∫ t1

−∞

[ ∫ t2

t1

A(τ)U(τ, s) dτ
]
f2(s) dW(s)‖2α

= E‖
∫ t2

t1

A(τ)U(τ, t1)
{∫ t1

−∞
U(t1, s)f2(s) dW(s)

}
dτ‖2α

≤ E
[ ∫ t2

t1

‖
∫ t1

−∞
A(τ)U(τ, s)f2(s) dW(s)‖2α dτ

]2
≤ r(µ, α)2(t2 − t1)

∫ t2

t1

{∫ t1

−∞
(τ − s)−2αe−

δ
2 (τ−s)E‖f2(s)‖2L0

2
ds
}

dτ

≤ r(µ, α)2(t2 − t1)
(∫ t2

t1

(τ − t1)−2α dτ
)(∫ t1

−∞
e−

δ
2 (t1−s)E‖f2(s)‖2L0

2
ds
)

≤ r(µ, α)2(1− 2α)−1M2

(
‖X‖∞

)
(t2 − t1)2(1−α) .

For γ = 1
2 − α, one has[

E‖(Γ2X)(t2)−(Γ2X)(t1)‖2α
]1/2

≤ r(ξ, β, δ)(1−2β)−1/2
[
M2

(
‖X‖∞

)]1/2

(t2−t1)γ .

Therefore, for each X ∈ BC(R, Lp(Ω, H)) such that E‖X(t)‖p ≤ R for all t ∈
R, then ΓiX(t) belongs to BCγ(R, Lp(Ω, Hα)) with E‖ΓiX(t)‖p ≤ R′ where R′

depends on R. �
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Lemma 3.6. The integral operators Γi map bounded sets of AP (Ω, Lp(Ω, H)) into
bounded sets of BCγ(R, Lp(Ω, Hα)) ∩AP (R, Lp(Ω, H)) for 0 < γ < α , i = 1, 2.

The proof of the above lemma follows the same lines as that of Lemma 3.4, and
hence it is omitted. Similarly, the next lemma is a consequence of [30, Proposition
3.3]. Note in this context that X = Lp(Ω, H) and Y = Lp(Ω, Hα).

Lemma 3.7. For 0 < γ < α, BCγ(R, Lp(Ω, Hα)) is compactly contained in
BC(R, Lp(Ω, H)); that is, the canonical injection

id : BCγ(R, Lp(Ω, Hα)) ↪→ BC(R, Lp(Ω, H))

is compact, which yields

id : BCγ(R, Lp(Ω, Hα)) ∩AP (R, Lp(Ω, H)) → AP (R, Lp(Ω, H))

is also compact.

The next theorem is the main result of Section 3 and is a nondeterministic
counterpart of the main result in Diagana [21].

Theorem 3.8. Suppose assumptions (H1)–(H6) hold, then the nonautonomous
differential equation Equation (1.2) has at least one p-th mean almost periodic so-
lution.

Proof. Let us recall that in view of Lemmas 3.7 and 3.3, we have

‖
(
Γ1 + Γ2

)
X‖α,∞ ≤ d(β, δ)

(
M1

(
‖X‖∞

)
+M2

(
‖X‖∞

))
and

E‖
(
Γ1 + Γ2

)
X(t2)−

(
Γ1 + Γ2

)
X(t1)‖p

α

≤ s(α, β, δ)
(
M1

(
‖X‖∞

))
+M2

(
‖X‖∞

))∣∣t2 − t1
∣∣γ

for all X ∈ BC(R, Lp(Ω, Hα)), t1, t2 ∈ R with t1 6= t2, where d(β, δ) and s(α, β, δ)
are positive constants. Consequently, X ∈ BC(R, Lp(Ω, H)) and ‖X‖∞ < R
yield (Γ1 + Γ2)X ∈ BCγ(R, Lp(Ω, Hα)) and ‖

(
Γ1 + Γ2

)
X‖p

α,∞ < R1 where R1 =
c(α, β, δ)

(
M1(R) +M2(R)

)
. since M(R)/R → 0 as R → ∞, and since E‖X‖p ≤

cE‖X‖p
α for all X ∈ Lp(Ω, Hα), it follows that exists an r > 0 such that for all

R ≥ r, the following hold(
Γ1 + Γ2

)(
BAP (R,Lp(Ω,H))(0, R)

)
⊂ BBCγ(R,Lp(Ω,Hα)) ∩BAP (R,Lp(Ω,H))(0, R) .

In view of the above, it follows that
(
Γ1 +Γ2

)
: D → D is continuous and compact,

where D is the ball in AP (R, Lp(Ω, H)) of radius R with R ≥ r. Using the Schauder
fixed point it follows that

(
Γ1 + Γ2

)
has a fixed point, which is obviously a p-th

mean almost periodic mild solution to (1.2). �

4. Square-mean almost periodic solutions to some second order
stochastic differential equations

In this section we study and obtain under some reasonable assumptions, the ex-
istence of square-mean almost periodic solutions to some classes of nonautonomous
second-order stochastic differential equations of type (1.3) on a Hilbert space H
using Schauder’s fixed-point theorem.

For that, the main idea consists of rewriting (1.3) as a nonautonomous first-order
differential equation on H×H involving the family of 2×2-operator matrices L(t).



EJDE-2010/124 SQUARE-MEAN ALMOST PERIODIC SOLUTIONS 19

Indeed, setting Z :=
(

X
dX(t)

)
, Equation (1.3) can be rewritten in the Hilbert space

H×H in the form

dZ(ω, t) = [L(t)Z(ω, t) + F1(t, Z(ω, t))] dt + F2(t, Z(ω, t))dW(ω, t), (4.1)

where t ∈ R, L(t) is the family of 2 × 2-operator matrices defined on H = H × H
by

L(t) =
(

0 IH
−b(t)A −a(t)IH

)
(4.2)

whose domain D = D(L(t)) is constant in t ∈ R and is given by D(L(t)) = D(A)×
H. Moreover, the semilinear term Fi(i = 1, 2) appearing in (4.1) is defined on
R×Hα for some α ∈ (0, 1) by

Fi(t, Z) =
(

0
fi(t, X)

)
,

where Hα = H̃α ×H with H̃α is the real interpolation space between B and D(A)
given by H̃α :=

(
H, D(A)

)
α,∞

.

First of all, note that for 0 < α < β < 1, then

L2(Ω,Hβ) ↪→ L2(Ω,Hα) ↪→ L2(Ω;H)

are continuously embedded and hence therefore exist constants k1 > 0, k(α) > 0
such that

E‖Z‖2 ≤ k1E‖Z‖2α for each Z ∈ L2(Ω,Hα),

E‖Z‖2α ≤ k(α)E‖Z‖2β for each Z ∈ L2(Ω,Hβ).

To study the existence of square-mean solutions of (4.1), in addition to (H1) we
adopt the following assumptions.

(H7) Let fi(i = 1, 2) : R×L2(Ω; H) → L2(Ω; H) be square-mean almost periodic.
Furthermore, X 7→ fi(t, X) is uniformly continuous on any bounded subset
K of L2(Ω; H) for each t ∈ R. Finally,

sup
t∈R

E‖fi(t, X)‖2 ≤Mi

(
‖X‖∞

)
where Mi : R+ → R+ is continuous function satisfying

lim
r→∞

Mi(r)
r

= 0 .

Under the above assumptions, it will be shown that the linear operator matrices
L(t) satisfy the well-known Acquistapace-Terreni conditions, which does guarantee
the existence of an evolution family U(t, s) associated with it. Moreover, it will be
shown that U(t, s) is exponentially stable under those assumptions.

4.1. Square-Mean Almost Periodic Solutions. To analyze (4.1), our strategy
consists in studying the existence of square-mean almost periodic solutions to the
corresponding class of stochastic differential equations of the form

dZ(t) = [L(t)Z(t) + F1(t, Z(t))]dt + F2(t, Z(t))dW(t) (4.3)

for all t ∈ R, where the operators L(t) : D(L(t)) ⊂ L2(Ω,H) → L2(Ω,H) satisfy
Acquistapace-Terreni conditions, Fi(i = 1, 2) as before, and W is a one-dimensional
Brownian motion.
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Note that each Z ∈ L2(Ω,H) can be written in terms of the sequence of orthog-
onal projections En as

X =
∞∑

n=1

γn∑
k=1

〈X, ek
n〉ek

n =
∞∑

n=1

EnX.

Moreover, for each X ∈ D(A),

AX =
∞∑

j=1

λj

γj∑
k=1

〈X, ek
j 〉ek

j =
∞∑

j=1

λjEjX.

Therefore, for all Z :=
(

X
Y

)
∈ D(L) = D(A)× L2(Ω,H), we obtain

L(t)Z =
(

0 IL2(Ω,H)

−b(t)A −a(t)IL2(Ω,H)

)(
X
Y

)
=
(

Y
−b(t)AX − a(t)Y

)
=
( ∑∞

n=1 EnY
−b(t)

∑∞
n=1 λnEnX − a(t)

∑∞
n=1 EnY

)
=

∞∑
n=1

(
0 1

−b(t)λn −a(t)

)(
En 0
0 En

)(
X
Y

)

=
∞∑

n=1

An(t)PnZ,

where

Pn :=
(

En 0
0 En

)
, n ≥ 1,

and

An(t) :=
(

0 1
−b(t)λn −a(t)

)
, n ≥ 1.

Now, the characteristic equation for An(t) is

λ2 + a(t)λ + λnb(t) = 0 (4.4)

with discriminant ∆n(t) = a2(t) − 4λnb(t) for all t ∈ R. We assume that there
exists δ0, γ0 > 0 such that

inf
t∈R

a(t) > 2δ0 > 0, inf
t∈R

b(t) > γ0 > 0. (4.5)

From (4.5) it easily follows that all the roots of (4.4) are nonzero (with nonzero
real parts) given by

λn
1 (t) =

−a(t) +
√

∆n(t)
2

, λn
2 (t) =

−a(t)−
√

∆n(t)
2

;

that is,
σ(An(t)) =

{
λn

1 (t), λn
2 (t)

}
.

In view of the above, it is easy to see that there exist γ0 ≥ 0 and θ ∈
(

π
2 , π

)
such

that
Sθ ∪ {0} ⊂ ρ (L(t)− γ0I)

for each t ∈ R where

Sθ =
{

z ∈ C \ {0} :
∣∣ arg z

∣∣ ≤ θ
}

.
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On the other hand, one can show without difficulty that An(t) = K−1
n (t)Jn(t)Kn(t),

where

Jn(t) =
(

λn
1 (t) 0
0 λn

2 (t)

)
, Kn(t) =

(
1 1

λn
1 (t) λn

2 (t)

)
and

K−1
n (t) =

1
λn

1 (t)− λn
2 (t)

(
−λn

2 (t) 1
λn

1 (t) −1

)
.

For λ ∈ Sθ and Z ∈ L2(Ω,H), one has

R(λ, L)Z =
∞∑

n=1

(λ−An(t))−1PnZ

=
∞∑

n=1

Kn(t)(λ− Jn(t)Pn)−1K−1
n (t)PnZ.

Hence,

E‖R(λ, L)Z‖2 ≤
∞∑

n=1

‖Kn(t)Pn(λ− Jn(t)Pn)−1K−1
n (t)Pn‖2B(H)E‖PnZ‖2

≤
∞∑

n=1

‖Kn(t)Pn‖2B(H)‖(λ− Jn(t)Pn)−1‖2B(H)‖K
−1
n (t)Pn‖2B(H)E‖PnZ‖2.

Moreover, for Z :=
(

Z1

Z2

)
∈ L2(Ω,H), we obtain

E‖Kn(t)PnZ‖2 = E‖EnZ1 + EnZ2‖2 + E‖λn
1EnZ1 + λn

2EnZ2‖2

≤ 3
(
1 +

∣∣λ1
n(t)

∣∣2)E‖Z‖2.
Thus, there exists C1 > 0 such that

E‖Kn(t)PnZ‖2 ≤ C1

∣∣λ1
n(t)

∣∣E‖Z‖2 for all n ≥ 1.

Similarly, for Z :=
(

Z1

Z2

)
∈ L2(Ω,H), one can show that there is C2 > 0 such that

E‖K−1
n (t)PnZ‖2 ≤ C2∣∣λ1

n(t)
∣∣E‖Z‖2 for all n ≥ 1.

Now, for Z ∈ L2(Ω,H), we have

E‖(λ− Jn(t)Pn)−1Z‖2 = E
∥∥∥( 1

λ−λ1
n(t) 0
0 1

λ−λ2
n

)(
Z1

Z2

)∥∥∥2

≤ 1
|λ− λ1

n(t)|2
E‖Z1‖2 +

1
|λ− λ2

n(t)|2
E‖Z2‖2.

Let λ0 > 0. Define the function

ηt(λ) :=
1 + |λ|

|λ− λ2
n(t)|

.

It is clear that ηt is continuous and bounded on the closed set

Σ := {λ ∈ C : |λ| ≤ λ0, | arg λ| ≤ θ}.
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On the other hand, it is clear that η is bounded for |λ| > λ0. Thus η is bounded
on Sθ. If we take

N = sup
{ 1 + |λ|
|λ− λj

n(t)|
: λ ∈ Sθ, n ≥ 1, j = 1, 2,

}
.

Therefore,

E‖(λ− Jn(t)Pn)−1Z‖2 ≤ N

1 + |λ|
E‖Z‖2, λ ∈ Sθ.

Consequently,

‖R(λ, L(t))‖ ≤ K

1 + |λ|
for all λ ∈ Sθ.

First of all, note that the domain D = D(L(t)) is independent of t. Now note
that the operator L(t) is invertible with

L(t)−1 =
(
−a(t)b−1(t)A−1 −b−1(t)A−1

IH 0

)
, t ∈ R.

Hence, for t, s, r ∈ R, computing
(
L(t)−L(s)

)
L(r)−1 and assuming that there exist

La, Lb ≥ 0 and µ ∈ (0, 1] such that∣∣a(t)− a(s)
∣∣ ≤ La

∣∣t− s
∣∣µ,

∣∣b(t)− b(s)
∣∣ ≤ Lb

∣∣t− s
∣∣µ, (4.6)

it easily follows that there exists C > 0 such that

E‖(L(t)− L(s))L(r)−1Z‖2 ≤ C
∣∣t− s

∣∣2µ
E‖Z‖2.

In summary, the family of operators
{
L(t)

}
t∈R satisfy Acquistpace-Terreni condi-

tions. Consequently, there exists an evolution family U(t, s) associated with it. Let
us now check that U(t, s) has exponential dichotomy. First of all note that For
every t ∈ R, the family of linear operators L(t) generate an analytic semigroup
(eτL(t))τ≥0 on L2(Ω,H) given by

eτL(t)Z =
∞∑

l=1

Kl(t)−1Ple
τJlPlKl(t)PlZ, Z ∈ L2(Ω,H).

On the other hand,

E‖eτL(t)Z‖2 =
∞∑

l=1

‖Kl(t)−1Pl‖2B(H)‖e
τJlPl‖2B(H)‖Kl(t)Pl‖2B(H)E‖PlZ‖2,

with for each Z =
(

Z1

Z2

)
,

E‖eτJlPlZ‖2 =
∥∥∥(eρl

1τEl 0
0 eρl

2τEl

)(
Z1

Z2

)∥∥∥2

≤ E‖eρl
1τElZ1‖2 + E‖eρl

2τElZ2‖2

≤ e−2δ0τE‖Z‖2.
Therefore,

‖eτL(t)‖ ≤ Ce−δ0τ , τ ≥ 0. (4.7)
Using the continuity of a, b and the equality

R(λ, L(t))−R(λ, L(s)) = R(λ, L(t))(L(t)− L(s))R(λ, L(s)),
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it follows that the mapping J 3 t 7→ R(λ, L(t)) is strongly continuous for λ ∈
Sω where J ⊂ R is an arbitrary compact interval. Therefore, L(t) satisfies the
assumptions of [42, Corollary 2.3], and thus the evolution family (U(t, s))t≥s is
exponentially stable.

It remains to verify that R(γ0, L(·)) ∈ AP (R, B(L2(Ω;H))). For that we need to
show that L−1(·) ∈ AP (R, B(L2(Ω,H))). Since t → a(t), t → b(t), and t → b(t)−1

are almost periodic it follows that t → d(t) = −a(t)
b(t) is almost periodic, too. So for

all ε > 0 there exists l(ε) > 0 such that every interval of length l(ε) contains a τ
such that ∣∣ 1

b(t + τ)
− 1

b(t)

∣∣ < ε

‖A−1‖
√

2
,
∣∣d(t + τ)− d(t)

∣∣ < ε

‖A−1‖
√

2

for all t ∈ R. Clearly,

‖L−1(t + τ)− L−1(t)‖ ≤
(∣∣ 1

b(t + τ)
− 1

b(t)

∣∣2 +
∣∣d(t + τ)− d(t)

∣∣2)1/2

‖A−1‖B(H)

< ε

and hence t → L−1(t) is almost periodic with respect to L2(Ω,H)-operator topol-
ogy. Therefore, R(γ0, L(·)) ∈ AP (R, B(L2(Ω;H))).

To study the existence of square-mean almost periodic solutions of (4.3), we use
the general results obtained in Section 3.

Definition 4.1. A continuous random function, Z : R → L2(Ω;H) is said to be a
bounded solution of (4.3) on R provided that

Z(t) =
∫ t

s

U(t, s)F1(s, Z(s)) ds +
∫ t

s

U(t, s)P (s) F2(s, Z(s)) dW(s)

for each t ≥ s and for all t, s ∈ R.

Remark 4.2. Note that it follows from (H7) that Fi(i = 1, 2) : R × L2(Ω;H) →
L2(Ω;H) is square-mean almost periodic. Furthermore, Z 7→ Fi(t, Z) is uniformly
continuous on any bounded subset K of L2(Ω;H) for each t ∈ R. Finally,

sup
t∈R

E‖Fi(t, Z)‖2 ≤Mi

(
‖Z‖∞

)
where Mi : R+ → R+ is continuous function satisfying

lim
r→∞

Mi(r)
r

= 0 .

Theorem 4.3. Suppose assumptions (H1), (H3), (H7) hold, then the nonauto-
nomous differential equation (4.3) has at least one square-mean almost periodic
solution.

In view of Remark 4.2, the proof of the above theorem follows along the same
lines as that of Theorem 3.8 and hence it is omitted.
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