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C1-APPROXIMATE SOLUTIONS OF SECOND-ORDER
SINGULAR ORDINARY DIFFERENTIAL EQUATIONS

GEORGE L. KARAKOSTAS

Abstract. In this work a new method is developed to obtain C1-approximate

solutions of initial and boundary-value problems generated from a one - param-
eter second order singular ordinary differential equation. Information about

the order of approximation is also given by introducing the so called growth

index of a function. Conditions are given for the existence of such approxi-
mations for initial and boundary-value problems of several kinds. Examples

associated with the corresponding graphs of the approximate solutions, for

some values of the parameter, are also given.
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1. Introduction

A one-parameter perturbation singular problem associated with a second or-
der ordinary differential equation is a problem whose the solutions behave non-
uniformly near the initial (or the boundary) values, as the parameter approaches
extreme levels. In this work we develop a new method to obtain approximate so-
lutions of some problems of this kind. It is well known that under such a limiting
process two situations may occur:

(i) The limiting position of the system exists, thus one can talk about the con-
tinuous or discontinuous dependence of the solutions on the parameter.

Consider, for instance, the following one-parameter scalar autonomous Cauchy
problem

x′′ + f(x, p) = 0, x(0) = α, x′(0) = β,

when the parameter p takes large values (and tends to +∞). Under the assumption
that f satisfies some monotonicy conditions and it approaches a certain function
g as the parameter p tends to +∞, a geometric argument is used in the literature
(see, e.g., Elias and Gingold [9]) to show, among others, that if the initial values lie
in a suitable domain on the plane, then the solution approximates (in the C1-sense)
the corresponding solution of the limiting equation. The same behavior have the
periods (in case of periodic solutions) and the escape times (in case of non-periodic
solutions). Donal O’ Regan in his informative book [17, p. 14] presents a problem
involving a second-order differential equation, when the boundary conditions are of
the form y(0) = a (fixed) and y(1) = a

n and n is large enough. It is shown that for
a delay equation of the form

εẋ(t) + x(t) = f(x(t− 1)),

when f satisfies some rather mild conditions, there exists a periodic solution which
is close to the square wave corresponding to the limiting (as ε → 0+) difference
equation:

x(t) = f(x(t− 1)).

Similarly, as it is shown in the book of Ferdinand Verhulst [25, Ch. 10], the
equation

x′′ + x = εf(x, x′, ε), (x, x′) ∈ D ⊆ R2 (1.1)

(ε > 0 and small) associated with the initial values

x(0) = a(ε), x′(0) = 0,

under some conditions on f , has a periodic solution x(t; ε) satisfying

lim
ε→0+

x(t; ε) = a(0) cos t.

Notice that the limiting value a(0) cos t is the solution of (1.1) when ε = 0.
(ii) There exist some coefficients of the system, or of some initial-boundary val-

ues, which vanish, or tend to infinity, as the parameter approaches a liming value.
In this case we can not formulate a limiting equation; however we have an asymp-
totic approximate system for values of the parameter which are close to the limiting
value. The advantage of this situation is that in many circumstances it is possi-
ble to have information on the solutions of the limiting systems and, moreover, to
compute (in closed form) the so- called approximate solutions.
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A simple prototype of this situation is, for instance, the differential equation

ε
d2u

dt2
+ 2

du

dt
+ u = 0, t > 0,

associated with the initial values

u(0) = a,
du

dt
= b +

γ

ε
, (1.2)

which was discussed in the literature and especially in the classic detailed book
due to Donald R. Smith [21, p. 134]. Here the parameter ε is small enough and it
approaches zero.

A more general situation, which we will discuss later, in Section 5, is an equation
of the form

x′′ + [a1(t) + a2(t)pν ]x′ + [b1(t) + b2(t)pµ]x + a0p
mx sin(x) = 0, t > 0 (1.3)

associated with the initial values

x(0; p) = δ1 + δ2p
σ, x′(0; p) = η1 + η2p

τ . (1.4)

The entities µ, ν,m, σ and τ are real numbers and p is a large parameter.
The previous two problems have the general form

x′′(t) + a(t; p)x′(t) + b(t; p)x(t) + f(t, x(t); p) = 0, t > 0, (1.5)

where the parameter p is large enough, while the initial values are of the form

x(0; p) = x0(p), x′(0; p) = x̄0(p). (1.6)

It is well known that the Krylov-Bogoliubov method was developed in the 1930’s
to handle situations described by second order ordinary differential equations of the
form (1.5) motivated by problems in mechanics of the type generated by the Ein-
stein equation for Mercury. This approach, which was applied to various problems
presented in [21], is based on the so called O’Malley [14, 15] and Hoppensteadt [10]
method. According to this method (in case f does not depend on x) we seek an
additive decomposition of the solution x of (1.5) in the form

x(t; p) ∼ U(t; p) + U∗(τ ; p),

where τ := tp is the large variable and U,U∗ are suitable functions, which are to
be obtained in the form of asymptotic expansions, as

U(t; p) =
∞∑

k=0

Uk(t)p−k

and

U∗(t; p) =
∞∑

k=0

U∗
k (t)p−k.

After the coefficients Uk and U∗
k are determined, we define the remainder

RN := RN (t; p)

by the relation

x(t; p) =
∞∑

k=0

[Uk(t) + U∗
k (t)]p−k + RN (t; p)
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and then obtain suitable C1 estimates of RN (see, [21, p. 146]). This method is
applied when the solutions admit initial values as in (1.2). For the general O’Malley-
Hoppensteadt construction an analogous approach is followed elsewhere, see [21, p.
117]. In the book due to O’ Malley [16] an extended exhibition of the subject is
given. The central point of the method is to obtain approximation of the solution,
when the system depends on a small parameter tending to zero, (or equivalently, on
a large parameter tending to +∞). The small parameter ε is used in some of these
cases and the functions involved are smooth enough to guarantee the existence and
uniqueness of solutions.

In the literature one can find a great number of works dealing with singular
boundary-value problems, performing a set of different methods. And we do not
mean singularities with respect to the independent variable, as for example, are the
problems which are studied in the book due to R. P. Agarwal, D. O’ Regan [2], or
the papers [1, 24], but we mean singularities with respect to some parameter. For
instance, the work due to Kadalbajoo and Patidar [12] presents a (good background
and a very rich list of references on the subject, as well as a) deep survey of numer-
ical techniques used in many circumstances to solve singularly perturbed ordinary
differential equations depended on a small parameter. Also, in [23] a problem of
the form

−εu′′(t) + p(t)u′(t) + q(t)u(t) = f(x), u(a) = α0, u(b) = α1,

is discussed, by using splines fitted with delta sequences as numerical strategies for
the solution. See, also, [22]. A similar problem is discussed in [7], where the authors
apply a fourth-order finite-difference method. In [13] a problem of the form

εy′′(t) + [p(y(x))]′ + q(x, y(x)) = r(x), y(a) = α, y(b) = β,

is investigated by reducing it into an equivalent first order initial-value problem
and then by applying an appropriate non-linear one-step explicit scheme. In [19],
where a problem of the form

εy′′(t) = f(x, y, x′), y(a) = ya, y(b) = yb,

is discussed, a smooth locally-analytical method is suggested. According to this
method the author considers nonoverlapping intervals and then linearize the ordi-
nary differential equation around a fixed point of each interval. The method applies
by imposing some continuity conditions of the solution at the two end points of each
interval and of its first-order derivative at the common end point of two adjacent
intervals.

A similar problem as above, but with boundary conditions of the form

y′(0)− ay(0) = A, y′(1) + by(1) = B,

is presented in [3], where a constructive iteration procedure is provided yielding an
alternating sequence which gives pointwise upper and lower bounds of the solution.

The so called method of small intervals is used in [26], where the same problem as
above is discussed but having impulses. In some other works, as e.g. [6, 4] (see also
the references therein) two-point boundary-value problems concerning third order
differential equations are investigated, when the conditions depend on the (small)
parameter ε. The methods applied in these problems are mainly computational.

In this work our contribution to the subject is to give (assumptions and) infor-
mation on the existence of the solution x(t; p) of the ordinary differential equation
(1.5) and the existence and the form of a C1-approximate solution x̃(t; p) of it,
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when the parameter p tends to +∞, by following an approach, which differs than
the known ones: We suggest a smooth transformation of the time through which
the equation (1.5) looks like a perturbation of an equation of the same order and
with constant coefficients. The latter is used to get the approximate solution of
the original equation without using the Sturm transformation. Furthermore, these
arguments permit us to provide estimates of the quantities

x(t; p)− x̃(t; p) and
d

dt

(
x(t; p)− x̃(t; p)

)
as p tends to +∞, uniformly for t in compact intervals. To handle the ”size” of
the approximation we introduce and use a kind of measure of boundedness of a
function, which we term the growth index.

Our approach differs from that one used (recently) in [5] for the equation of the
form

x′′ + (p2q1(t) + q2(t))x = 0, (1.7)
when p approaches +∞. In [5] the authors suggest a method to approximate the
solutions of (1.7) satisfying the boundary conditions of the form

x(0) = x0, x(1) = mx(ξ). (1.8)

To do that they provide an approximation of the equation, and then (they claim
that) as the parameter p tends to +∞, the solution of the originaal equation ap-
proaches the solution of the new one. And this fact is an implication of the following
claim:

If a function δ(p), p ≥ 0 satisfies δ(p) = o(p−2), as p → +∞, then
the solution of the equation

v′′(z; p) + v(z; p) = δ(p)v(z; p),

approaches the solution of the equation v′′(z; p) + v(z; p) = 0.
However, as one can easily see, this is true only when v(z; p) = O(pr), as p →

+∞, uniformly for all z, for some r ∈ (0, 2). Therefore in order to handle such
cases more information on the solutions are needed.

This work is organized as follows: In Section 2 we introduce the meaning of
the growth index of a function and some useful characteristic properties of it. The
basic assumptions of our problem and the auxiliary transformation of the original
equation (1.5) is presented in Section 3, while in Sections 4 and 6 we give results
on the existence of C1-approximate solutions of the initial-value problem (1.3)-
(1.6). In Section 4 we consider equation (1.5) when the coefficient b(t; p) takes
(only) positive values and in Section 6 we discuss the case when b(t; p) takes (only)
negative values. Illustrative examples are given in Sections 5 and 7. Section 8 of
the work is devoted to the approximate solutions of the boundary-value problem

x′′(t) + a(t; p)x′(t) + b(t; p)x(t) + f(t, x(t); p) = 0, t ∈ (0, 1), (1.9)

associated with the boundary conditions of Dirichlet type

x(0; p) = x0(p), x(1; p) = x1(p), (1.10)

where the boundary values depend on the parameter p, as well. Here we use the
(fixed point theorem of) Nonlinear Alternative to show the existence of solutions
and then we present the approximate solutions. Some applications of these re-
sults are given in Section 9. In Section 10 we investigate the existence of C1-
approximate solutions of equation (1.9) associated with the boundary conditions
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(1.8). Again, the Nonlinear Alternative is used for the existence of solutions and
then C1-approximate solutions are given. An application of this result is given in
the last section 11. The work closes with a discussion and some comments on the
results.

2. The growth index of a function

Before proceeding to the investigation of the main problem it is convenient to
present some auxiliary facts concerning the growth of a real valued function f
defined in a neighborhood of +∞. For such a function we introduce an index,
which, in a certain sense, denotes the critical point at which the function stays in a
real estate as the parameter tends to +∞, relatively to a positive and unbounded
function E(·). This meaning, which we term the growth index of f , will help us to
calculate and better understand the approximation results. More facts about the
growth index of functions will be published in a subsequent work.

All the (approximation) results of this work are considered with respect to a
basic positive function E(p), p ≥ 0, as, e.g., E(p) := exp(p), or in general E(p) :=
exp(n)(p), for all integers n. Here exp(0)(p) := p, and exp(−k)(p) := log(k)(p), for
all positive integers k. Actually, the function E(p) denotes the level of convergence
to +∞ of a function h satisfying a relation of the form h(p) = O((E(p))µ), as
p → +∞. The latter stands for the well known big-O symbol.

From now on we shall keep fixed such a function E(p). To this item there
corresponds the set

AE := {h : [0,+∞) → R : ∃b ∈ R : lim sup
p→+∞

(E(p))b|h(p)| < +∞}.

Then, for any h ∈ AE we define the set

NE(h) := {b ∈ R : lim sup
p→+∞

(E(p))b|h(p)| < +∞}.

It is obvious that the set NE(h) is a connected interval of the real line of the form
(−∞, b̂). In this case a very characteristic property of the function h ∈ AE is the
quantity

GE(h) := supNE(h),
which we call the growth index of h with respect to E. To save space in the sequel
the expression with respect to E will not be used.

The simplest case for the growth index can be met in case of the logarithm of
the absolute value of an entire complex valued function of finite order. Indeed, if
F is such a function, its order is defined as the least of all reals α such that

|F (z)| ≤ exp(|z|α),

for all complex numbers z. Now, the function f(p) := log |F (p + i0)| satisfies

lim sup
p→+∞

(E(p))b|f(p)| < +∞

for all b ≤ −α, with respect to the level E(p) := p. Thus we have GE(f) ≥ −α.
More generally, the growth index of a function h such that h(p) = O(pk), as

p → +∞, for some k ∈ R, satisfies GE(h) ≥ −k. Also, we observe that, if it holds
GE(h) > b, then the function h satisfies

h(p) = O
(
[E(p)]−b

)
, as p → +∞,
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or equivalently,
|h(p)| ≤ K(E(p))−b,

for all p large enough and for some K > 0, not depending on p.
We present a list of characteristic properties of the growth index; some of them

will be useful in the sequel.

Proposition 2.1. If h1, h2 are elements of the class AE, then their product h1h2

also is an element of the class AE and moreover it holds

GE(h1h2) ≥ GE(h1) + GE(h2).

Proof. Given h1, h2 ∈ AE , take any b1, b2 such that bj < GE(hj), j = 1, 2. Thus we
have

lim sup
p→+∞

(E(p))b1 |h1(p)| < +∞, lim sup
p→+∞

(E(p))b2 |h2(p)| < +∞

and therefore

lim sup
p→+∞

(E(p))b1+b2 |h1(p)h2(p)|

≤ lim sup
p→+∞

(E(p))b1 |h1(p)| lim sup
p→+∞

(E(p))b2 |h2(p)| < +∞.

This shows, first, that h1h2 ∈ AE and, second, that GE(h1h2) ≥ b1 + b2. The latter
implies that

GE(h1h2) ≥ GE(h1) + GE(h2).
�

Lemma 2.2. Consider the functions h1, h2, . . . , hn in AE. Then, for all real num-
bers aj > 0, the function

∑n
j=1 ajhj belongs to AE and it satisfies

GE

( n∑
j=1

ajhj

)
= min{GE(hj) : j = 1, 2, . . . , n}. (2.1)

Proof. The fact that
∑n

j=1 ajhj is an element of AE is obvious. To show the
equality in (2.1), we assume that the left side of (2.1) is smaller than the right side.
Then there is a real number N such that

GE

( n∑
j=1

αjhj

)
< N < min{GE(hj) : j = 1, 2, . . . , n}.

Thus, on one hand we have

lim sup
p→+∞

n∑
j=1

aj

(
E(p))N |hj(p)| = lim sup

p→+∞
(E(p))N

( n∑
j=1

aj |hj(p)|
)

= +∞ (2.2)

and on the other hand it holds

lim sup
p→+∞

(E(p))N |hj(p)| < +∞, j = 1, 2, . . . , n.

The latter implies that

lim sup
p→+∞

n∑
j=1

aj

(
E(p))N |hj(p)| ≤

n∑
j=1

aj lim sup
p→+∞

(
E(p))N |hj(p)| < +∞,

contrary to (2.2).
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If the right side of (2.1) is smaller than the left one, there is a real number N
such that

GE

( n∑
j=1

ajhj

)
> N > min{GE(hj) : j = 1, 2, . . . , n}.

Thus, on one hand we have

lim sup
p→+∞

(E(p))N
n∑

j=1

aj |hj(p)| < +∞ (2.3)

and on the other hand it holds

lim sup
p→+∞

(E(p))N |hj0(p)| = +∞,

for some j0 ∈ {1, 2, . . . , n}. The latter implies

lim sup
p→+∞

(E(p))N
n∑

j=1

aj |hj(p)| ≥ lim sup
p→+∞

aj0(E(p))N |hj0(p)| = +∞,

contrary to (2.3). �

The growth index of a function denotes the way of convergence to zero at infinity
of the function. Indeed, we have the following result.

Proposition 2.3. For a given function h : [r0,+∞) → R it holds

GE(h) = sup{r ∈ R : lim sup
p→+∞

(E(p))r|h(p)| = 0}.

Proof. If b > GE(h), then

lim sup
p→+∞

(E(p))b|h(p)| = +∞.

Thus, it is clearly enough to show that for any real b with b < GE(h) it holds

lim sup
p→+∞

(E(p))b|h(p)| = 0.

To this end consider arbitrary real number b < GE(h) and then take any b1 ∈
(b,GE(h)). Then we have

lim sup
p→+∞

(E(p))b1 |h(p)| =: K < +∞

and therefore

lim sup
p→+∞

(E(p))b|h(p)| ≤ lim sup
p→+∞

(E(p))(b−b1) lim sup
p→+∞

(E(p))b1 |h(p)|

= lim sup
p→+∞

(E(p))(b−b1)K = 0.

�

In the sequel the choice of a variable t uniformly in compact subsets of a set U
will be denoted by t ∈ Co(U). Especially we make the following:
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Notation 2.4. Let H(t; p) be a function defined for t ∈ S ⊆ R and p large enough.
In the sequel, in case we write

H(t; p) ' 0, as p → +∞, t ∈ Co(S),

we shall mean that, given any compact set I ⊆ S and any ε > 0, there is some
p0 > 0 such that

|H(t; p)| ≤ ε,

for all t ∈ I and p ≥ p0.

Also, keeping in mind Proposition 2.3 we make the following:

Notation 2.5. Again, let h(t; p) be a function defined for t ∈ S ⊆ R and p large
enough. Writing

GE(h(t; ·)) ≥ b, t ∈ Co(S),
we shall mean that, for any m < b, it holds

(E(p))mh(t; p) ' 0, as p → +∞, t ∈ Co(S).

3. Transforming equation (1.5)

In this section our purpose is to present a transformation of the one-parameter
family of differential equations of the form (1.5), to a second order ordinary differ-
ential equation having constant coefficients.

Let T0 > 0 be fixed and define I := [0, T0). Assume that the functions a, b, f are
satisfying the following:

Condition 3.1. For all large p the following statements are true:
(1) The function f(·, ·; p) is continuous,
(2) a(·; p) ∈ C1(I),
(3) There exists some θ > 0 such that |b(t; p)| ≥ θ, for all t and all p large. Also

assume that b(·; p) ∈ C2(I) and sign[b(t; p)] =: c, a constant, for all t ∈ I.

The standard existence theory ensures that if, Condition 3.1 holds, then (1.5)
admits at least one solution defined on a (nontrivial) maximal interval of the form
[0, T ) ⊆ [0, T0).

To proceed, fix any t̂ ∈ (0, T ) and, for a moment, consider a strictly increasing
one parameter C2- mapping

v := v(t; p) : [0, t̂] −→ [0, v(t̂, p)] =: J

with v(0; p) = 0. Let φ(·; p) be the inverse of v(·; p). These functions will be defined
later. Now for any large p define the transformation

Sp : f −→ f(φ(·; p))
Y (φ(·; p); p)

: C([0, t̂], R) −→ C([0, v(t̂; p)], R).

Here Y (·; p), which will be specified later, is a certain C2-function, depending on
the parameter p.

If x(t; p), t ∈ [0, t̂] is a solution of (1.5), define the function

y(v; p) := (Spx(·; p))(v) =
x(t; p)
Y (t; p)

=
x(φ(v; p); p)
Y (φ(v; p); p)

, v ∈ J. (3.1)

We observe that it holds

x′(t; p) = Y ′(t; p)y(v(t; p); p) + Y (t; p)v′(t; p)y′(v(t; p); p), t ∈ [0, t̂]
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and

x′′(t; p) = Y ′′(t; p)y(v(t; p); p) + 2Y ′(t; p)v′(t; p)y′(v(t; p); p)

+ Y (t; p)v′′(t; p)y′(v(t; p); p)

+ Y (t; p)(v′(t; p))2y′′(v(t; p); p), t ∈ [0, t̂].

Then, equation (1.5) is transformed into the equation

y′′(v; p) + A(t; p)y′(v; p) + B(t; p)y(v; p) + g(t; p) = 0, v ∈ J, (3.2)

where the one-parameter functions A,B and g are defined as follows:

A(t; p) :=
2Y ′(t; p)v′(t; p) + Y (t; p)v′′(t; p) + a(t; p)Y (t; p)v′(t; p)

Y (t; p)(v′(t; p))2
,

B(t; p) :=
Y ′′(t; p) + a(t; p)Y ′(t; p) + b(t; p)Y (t; p)

Y (t; p)(v′(t; p))2
,

g(t; p) :=
f(t, Y (t; p)y(v; p); p)

Y (t; p)(v′(t; p))2
.

We will specify the new functions v and Y . To get the specific form of the
function v(·; p) we set

v′(t; p) =
√

cb(t; p), t ∈ I, (3.3)
where, recall that, c = sign[b(t; p)], t ∈ I. To have v(t; p) ≥ v(0; p) = 0, it is
sufficient to get

v(t; p) =
∫ t

0

√
cb(s; p)ds, t ∈ [0, t̂]. (3.4)

Setting the coefficient A(t; p) in (3.2) equal to zero, we obtain

2Y ′(t; p)v′(t; p) + Y (t; p)v′′(t; p) + a(t; p)Y (t; p)v′(t; p) = 0, t ∈ [0, t̂], (3.5)

which, due to (3.3), implies

Y ′(t; p) +
( b′(t; p)

4b(t; p)
+

a(t; p)
2

)
Y (t; p) = 0, t ∈ [0, t̂]. (3.6)

We solve this equation, by integration and obtain

Y (t; p) = Y (0; p) exp
( ∫ t

0

[− b′(s; p)
4b(s; p)

− a(s; p)
2

]ds
)
,

namely,

Y (t; p) =
(b(0; p)

b(t; p)

)1/4

exp
(
− 1

2

∫ t

0

a(s; p)ds
)
, t ∈ [0, t̂], (3.7)

where, without lost of generality, we have set Y (0; p) = 1.
From (3.6) it follows that

Y ′(t; p)
Y (t; p)

= − b′(t; p)
4b(t; p)

− a(t; p)
2

, (3.8)

from which we have

Y ′′(t; p) =− Y ′(t; p)
( b′(t; p)

4b(t; p)
+

a(t; p)
2

)
− Y (t; p)

(b(t; p)b′′(t; p)− [b′(t; p)]2

4[b(t; p)]2
+

a′(t; p)
2

)
.

(3.9)
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Then, from relations (3.6), (3.8) and (3.9) we obtain

Y ′′(t; p) + a(t; p)Y ′(t; p) + b(t; p)Y (t; p)

= −Y ′(t; p)
( b′(t; p)

4b(t; p)
− a(t; p)

2

)
− Y (t; p)

(b(t; p)b′′(t; p)− [b′(t; p)]2

4[b(t; p)]2
+

a′(t; p)
2

− b(t; p)
)

= Y (t; p)
[( b′(t; p)

4b(t; p)
+

a(t; p)
2

)( b′(t; p)
4b(t; p)

− a(t; p)
2

)
− b(t; p)b′′(t; p)− (b′(t; p))2

4(b(t; p))2
− a′(t; p)

2
+ b(t; p)

]
.

Hence, the expression of the function B appeared in (3.2) takes the form

B(t; p) = − 1
(v′(t; p))2

[( b′(t; p)
4b(t; p)

+
a(t; p)

2

)( b′(t; p)
4b(t; p)

− a(t; p)
2

)
− b(t; p)b′′(t; p)− [b′(t; p)]2

4[b(t; p)]2
− a′(t; p)

2
+ b(t; p)

]
=

1
cb(t; p)

[( [b′(t; p)]2

16[b(t; p)]2
− [a(t; p)]2

4

)
− b(t; p)b′′(t; p)− [b′(t; p)]2

4[b(t; p)]2
− a′(t; p)

2
+ b(t; p)

]
=

5
16c

[b′(t; p)]2

(b(t; p))3
− 1

4c

[a(t; p)]2

b(t; p)
− 1

4c

b′′(t; p)
[b(t; p)]2

− a′(t; p)
2cb(t; p)

+
1
c
.

Therefore, equation (3.2) becomes

y′′(v; p) + cy(v; p) = C(t, y(v; p); p)y(v; p), v ∈ J, (3.10)

where

C(t, u; p) := − 5c

16
[b′(t; p)]2

[b(t; p)]3
+ c

[a(t; p)]2

4b(t; p)
+

c

4
b′′(t; p)
[b(t; p)]2

+ c
a′(t; p)
2b(t; p)

− c
f(t, Y (t; p)u)
b(t; p)Y (t; p)u

.

(Recall that c = ±1, thus c2 = 1.) The expression of the function C(t, u; p) might
assume a certain kind of singularity for u = 0, but, as we shall see later, due to
condition (3.13), such a case is impossible.

Therefore we have proved the if part of the following theorem.

Theorem 3.2. Consider the differential equation (1.5) and assume that Condition
3.1 is satisfied. Then, a function y(v; p), v ∈ J is a solution of the differential
equation (3.10), if and only if, the function

x(t; p) = (S−1
p y(·; p))(t) = Y (t; p)y(v(t; p); p), t ∈ [0, t̂]

is a solution of (1.5). The quantities Y and v are functions defined in (3.7) and
(3.4) respectively.

Proof. It is sufficient to prove the only if part. From the expression of x(t; p) we
obtain

x′(t; p) = Y ′(t; p)y(v(t; p); p) + Y (t; p)v′(t; p)y′(v(t; p); p)
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and

x′′(t; p) = Y ′′(t; p)y(v(t; p); p) + 2Y ′(t; p)v′(t; p)y′(v(t; p); p)

+ Y (t; p)v′′(t; p)y′(v(t; p); p) + Y (t; p)(v′(t; p))2y′′(v(t; p); p).

Then, by using (3.5), (3.2) and the expression of the quantity B(t; p), we obtain

x′′(t) + a(t; p)x′(t) + b(t; p)x(t) + f(t, x(t); p)

= Y (t; p)(v′(t; p))2
[
y′′(v(t; p); p) + B(t; p)y(v(t; p); p) + g(t; p)

]
= 0.

�

To proceed we state the following condition.

Condition 3.3. For each j = 1, 2, . . . , 5, there is a nonnegative function Φj ∈ AE ,
such that, for all t ∈ [0, T ), z ∈ R and large p, the following inequalities hold:

|b′(t; p)|2 ≤ Φ1(p)|b(t; p)|3, |b′′(t; p)| ≤ Φ2(p)|b(t; p)|2, (3.11)

|a(t; p)|2 ≤ Φ3(p)|b(t; p)|, |a′(t; p)| ≤ Φ4(p)|b(t; p)|, (3.12)

|f(t, z; p)| ≤ Φ5(p)|zb(t; p)|. (3.13)

If Condition 3.3 is true, then we have the relation∣∣∣b′(0; p)
b(0; p)

∣∣∣ ≤ √
Φ1(p)b(0; p), (3.14)

as well as the estimate

|C(t, u; p)| ≤ 5
16

Φ1(p) +
1
4
(
Φ2(p) + Φ3(p)

)
+

1
2
Φ4(p) + Φ5(p) =: P (p), (3.15)

for all t ∈ [0, T ) and p large enough.

4. Approximate solutions of the initial-value problem (1.5)-(1.6) when
c = +1

The previous facts will now help us to provide useful information on the asymp-
totic properties of the solutions of equation (1.5) having initial values which depend
on the large parameter p, and are of the form (1.6).

In this subsection we assume that c = +1, thus the last requirement in Condition
3.1 is satisfied with b(t; p) > 0, for all t ≥ 0 and p large enough.

As we have shown above, given a solution x(t; p), t ∈ [0, t̂] of (1.5) the function
y(v; p), v ∈ J defined in (3.1) solves equation (3.10) on the interval J . (Recall
that J is the interval [0, v(t̂; p)].) We shall find the images of the initial values (1.6)
under this transformation.

First we note that

y(0; p) =: y0(p) =
x(0; p)
Y (0; p)

= x(0; p) = x0(p). (4.1)

Also, from the fact that

x′(0; p) = Y ′(0; p)y(0; p) + Y (0; p)v′(0; p)y′(0; p)

and relation (3.6) we obtain

y′(0; p) =: ŷ0(p) =
1√

b(0; p)

[
x̄0(p) +

( b′(0; p)
4b(0; p)

+
a(0; p)

2

)
x0(p)

]
. (4.2)
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Consider the solution w(v; p) of the homogeneous equation

w′′ + w = 0 (4.3)

having the same initial values (4.1)-(4.2) as the function y(·; p). This requirement
implies that the function w(v; p) has the form

w(v; p) = c1(p) cos v + c2(p) sin v, v ∈ R,

for some real numbers c1(p), c2(p), which are uniquely determined by the initial
values of y(·; p), namely c1(p) = y0(p) and c2(p) = ŷ0(p). Then the difference
function

R(v; p) := y(v; p)− w(v; p), (4.4)

satisfies

R(0; p) = R′(0; p) = 0,

and moreover

R′′(v; p) + R(v; p) = C(t, y(v; p); p)R(v; p) + C(t, y(v; p); p)w(v; p), v ∈ J. (4.5)

Since the general solution of (4.3) having zero initial values is the zero function,
applying the variation-of-constants formula in (4.5) we obtain

R(v; p) =
∫ v

0

K(v, s)C(s; p; y(s; p))w(s; p)ds+

+
∫ v

0

K(v, s)C(s; p; y(s; p))R(s; p)ds,

(4.6)

where K(v, s) = sin(v − s). Observe that∫ v

0

| sin(v − s)w(s; p)|ds ≤ (|c1(p)|+ |c2(p)|)v =: γ(p)v, v ∈ J

and therefore,

|R(v; p)| ≤ P (p)γ(p)v + P (p)
∫ v

0

|R(s; p)|ds.

Applying Gronwall’s inequality we obtain

|R(v; p)| ≤ γ(p)(eP (p)v − 1). (4.7)

Differentiating R(v; p) (with respect to v) in (4.6) and using (4.7), we see that
the quantity |R′(v; p)| has the same upper bound as |R(v; p)| namely, we obtain

max{|R(v; p)|, |R′(v; p)|} ≤ γ(p)(eP (p)v − 1), v ∈ J. (4.8)

By using the transformation Sp and relation (4.8) we get the following theorem.

Theorem 4.1. Consider the ordinary differential equation (1.5) associated with the
initial values (1.6), where assume that T0 = +∞ and Condition 3.1 holds with c =
+1. Assume also that there exist functions Φj, j = 1, 2, . . . , 5, satisfying Condition
3.3. If x(t; p), t ∈ [0, T ) is a maximally defined solution of the problem (1.5)-(1.6),
then it holds

T = +∞, (4.9)
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and

|x(t; p)− Y (t; p)w(v(t; p); p)|

≤
(b(0; p)

b(t; p)

)1/4

exp
(
−1

2

∫ t

0

a(s; p)ds
)

×
(
x̄0(p) +

1√
b(0; p)

[
|x̄0(p)|+ |x0(p)|

∣∣∣ b′(0; p)
4b(0; p)

+
a(0; p)

2

∣∣])
×

[
exp

(
P (p)

∫ t

0

√
b(s; p)ds

)
− 1

]
=: M(t; p),

(4.10)

as well as∣∣∣ d

dt
[x(t; p)− Y (t; p)w(v(t; p); p)]

∣∣∣
≤ Y (t; p)γ(p)

(
eP (p)v(t;p) − 1

)[√
Φ1(p)b(t; p)

4
+
|a(t; p)|

2
+

√
b(t; p)

]
,

(4.11)

for all t > 0 and p large enough. Here we have set

w(v; p) := x0(p) cos(v) +
1√

b(0; p)

(
x̂0(p) +

( b′(0; p)
4b(0; p)

+
a(0; p)

2

)
x0(p)

)
sin(v),

and P (p) is the quantity defined in (3.15).

Proof. Inequality (4.10) is easily implied from (4.8) and the relation

x(t; p) = Y (t; p)y(v(t; p); p).

Then property (4.9) follows from (4.10) and the fact that the solution is noncon-
tinuable (see, e.g., [18, p. 90]).

To show (4.11) observe that∣∣∣ d

dt
[x(t; p)− Y (t; p)w(v(t; p); p)]

∣∣∣ =
∣∣∣ d

dt
Y (t; p)[y(v(t; p); p)− w(v(t; p); p)]

∣∣∣
and therefore,∣∣∣ d

dt
[x(t; p)− Y (t; p)w(v(t; p); p)]

∣∣∣
≤

∣∣∣[y(v(t; p); p)− w(v(t; p); p)]
d

dt
Y (t; p)

∣∣∣
+

∣∣∣Y (t; p)
d

dt
[y(v(t; p); p)− w(v(t; p); p)]

∣∣∣|
≤

∣∣∣R(v(t; p); p)
d

dt
Y (t; p)

∣∣∣ +
∣∣∣Y (t; p)

d

dv
R(v(t; p); p)

d

dt
v(t; p)

∣∣∣
≤ Y (t; p)γ(p)

(
eP (p)v(t;p) − 1

)[√
Φ1(p)b(t; p)

4
+
|a(t; p)|

2
+

√
b(t; p)

]
.

We have used relations (3.8), (3.14) and (4.7). �

Now we present the main results concerning the existence of approximate solu-
tions of the initial-value problem (1.5)-(1.6).
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The function defined by

x̃(t; p) := Y (t; p)w(v(t; p); p)

= Y (t; p)[y0(p) cos
∫ t

0

√
b(s; p)ds + ŷ0(p) sin

∫ t

0

√
b(s; p)ds]

=
(b(0; p)

b(t; p)

)1/4

exp
(
− 1

2

∫ t

0

a(s; p)ds
){

x0(p) cos(v(t; p))

+
1√

b(0; p)

[
x̄0(p) +

( b′(0; p)
4b(0; p)

+
a(0; p)

2

)
x0(p) sin(v(t; p))

]}
(4.12)

is the so called approximate solution of the problem, since, as we shall see in the
sequel, this function approaches the exact solution, as the parameter tends to +∞.
Moreover, since this function approaches the solution x in the C1 sense, namely in
a sense given in the next theorem, we shall refer to it as a C1 approximate solution.
To make the notation short consider the error function

E(t; p) := x(t; p)− x̃(t; p). (4.13)

Then, from (4.10) and (4.11), we obtain

|E(t; p)| ≤ M(t; p) (4.14)

and

| d
dt
E(t; p)|

≤ Y (t; p)γ(p)
(
eP (p)v(t;p) − 1

)[√
Φ1(p)b(t; p)

4
+
|a(t; p)|

2
+

√
b(t; p)

]
,

(4.15)

respectively.

Theorem 4.2. Consider the initial-value problem (1.5)-(1.6), where the conditions
of Theorem 4.1 are satisfied and

min{GE(Φj), j = 1, . . . 5} > 0. (4.16)

Moreover, we assume that

x0, x1 ∈ AE , (4.17)

a(·; p) ≥ 0, for all large p, (4.18)

a(t; ·), b(t; ·) ∈ AE , t ∈ Co(R+). (4.19)

If E(t; p) is the error function defined in (4.13) and

min{GE(Φj), j = 1, . . . , 5}

+
[3
4
GE(b(t; ·) + min

{
GE(x̄0),GE(x0) +

1
2
GE(b(t; ·),GE(x0) + GE(a(t; ·)

}]
=: N0 > 0, t ∈ Co(R),

(4.20)
then we have

E(t; p) ' 0, p → +∞, t ∈ Co(R+) (4.21)

and the growth index of the error function satisfies

GE(E(t; ·)) ≥ N0, t ∈ Co(R+). (4.22)
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In addition to the assumptions above for the functions x0, x̄0, a, b assume the con-
dition

min{GE(Φj), j = 1, . . . , 5}+
[3
4
GE(b(t; ·) + min

{
GE(x̄0) + GE(a(t; ·),

1
2
GE(b(t; ·) + GE(x̄0),GE(x0) + GE(b(t; ·),

GE(x0) + 2GE(a(t; ·), 1
2
GE(b(t; ·) + GE(x0) + GE(a(t; ·)

}]
=: N1 > 0, t ∈ Co(R+),

(4.23)

instead of (4.20). Then we have
d

dt
E(t; p) ' 0, p → +∞, t ∈ Co(R+), (4.24)

and the growth index of the derivative of the error function satisfies

GE

( d

dt
E(t; ·)

)
≥ N1, t ∈ Co(R+). (4.25)

Proof. Due to our assumptions given ε > 0 small enough, we can find real num-
bers σ, τ , and µ, ν, close to the quantities −GE(x0), −GE(x̄0), −GE(a(t; ·)) and
−GE(b(t; ·)) respectively, such that, as p → +∞,

x0(p) = O(E(p))σ), x̄0(p) = O((E(p))τ ), (4.26)

a(t; p) = O((E(p))ν), as p → +∞, t ∈ Co(R+), (4.27)

b(t; p) = O((E(p))µ), as p → +∞, t ∈ Co(R+), (4.28)

as well as the relation

min{GE(Φj), j = 1 . . . , 5} −
[3µ

4
+ max{τ, σ +

µ

2
, σ + ν}

]
=: N0 − ε > 0. (4.29)

Assume that (4.18) holds. We start with the proof of (4.21). Fix any t̂ > 0 and
take any N ∈ (0, N0 − ε). Then, due to (4.29), we can let ζ > 0 such that

min{GE(Φj), j = 1, . . . , 5} > ζ > N +
[3µ

4
+ max{τ, σ +

µ

2
, σ + ν}

]
.

Therefore,

max{3µ

4
+ τ,

5µ

4
+ σ,

3µ

4
+ σ + ν} − ζ < −N, (4.30)

and, due to Lemma 2.2, it holds

GE(P ) > ζ, GE(Φ1) > ζ. (4.31)

The latter implies that there exist K > 0 and p0 > 1 such that

0 < P (p) ≤ K(E(p))−ζ ,

0 < Φ1(p) ≤ K(E(p))−ζ ,
(4.32)

for all p ≥ p0.
From relations (4.27), (4.28) and (4.26) it follows that there are positive real

numbers Kj , j = 1, 2, 3, 4 such that

|b(t; p) ≤ K1(E(p))µ, (4.33)

|x̄0(p)| ≤ K2(E(p))τ , |x0(p)| ≤ K3(E(p))σ, (4.34)

0 ≤ a(t; p) ≤ K4(E(p))ν , (4.35)
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for all t ≥ 0 and p ≥ p1, where p1 ≥ p0.
Also keep in mind that from Condition 3.1 we have

b(t; p) ≥ θ, (4.36)

In the sequel, for simplicity, we shall denote by q the quantity E(p).
Consider the function M(t; p) defined in (4.10). Then, due to (4.32), (3.14) and

(4.33)-(4.36), for all t ∈ [0, t̂] and p with q = E(p) ≥ p1, we have

M(t; p) ≤ K
1/4
1 θ−

1
4 q

µ
4

[
K2q

τ + θ−1/2
(
K2q

τ + K3q
σ
[1
4
(K1K)1/2q

−ζ+µ
2

+
1
2
K4q

ν
])]( +∞∑

n=1

1
n!

Knq−nζtn(K1)
n
2 q

nµ
2

)
.

(4.37)

Since the series

1 +
+∞∑
n=1

1
(n + 1)!

(tK)nq−nζ(K1)
n
2 q

nµ
2

converges uniformly for t in compact sets, it admits an upper bound K5(t̂) > 0,
say, on [0, t̂]. Therefore, for all t ∈ [0, t̂] and q := E(p) ≥ p1, it holds

+∞∑
n=1

1
n!

Knq−nζtn(K1)
n
2 q

nµ
2 ≤ K5(t̂)t̂Kq−ζ(K1)1/2q

µ
2 .

So, from (4.30) and (4.37) we obtain

M(t; p) ≤ K
1/4
1 θ−

1
4 q

µ
4 ×

[
(1 + θ−1/2)K2q

τ + K3θ
−1/2qσ 1

4
(K1K)1/2q

−ζ+µ
2

+ K3θ
−1/2qσ 1

2
K4q

ν
]
×K5(t̂)t̂Kq−ζ(K1)1/2q

µ
2

= K6q
µ
4 +τ−ζ+ µ

2 + K7q
µ
4 +σ+−ζ+µ

2 −ζ+ µ
2 + K8q

µ
4 +σ+ν−ζ+ µ

2

≤ K6q
−N + K7q

−N− ζ
2 + K8q

−N < K9q
−N ,

(4.38)

for some positive constants Kj , j = 6, 7, 8, 9. Recall that

q = E(p) ≥ p1 ≥ p0 > 1.

This and (4.14) complete the proof of (4.21).
Now, from the previous arguments, it follows that given any Λ ∈ (0, N) it holds

M(t; p)qΛ ≤ K9q
−N+Λ → 0, as p → +∞,

where the constant K9 is uniformly chosen for t in the compact interval [0, t̂]. Then
from (4.14) we get

E(t; p)qΛ → 0, as p → +∞,

which implies that the growth index of the error function satisfies

GE(E(t; p)) ≥ Λ.

From here we get GE(E(t; p)) ≥ N . Since N is arbitrary in the interval (0, N0 − ε)
and ε is any small positive number, we obtain (4.22).
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We proceed to the proof of (4.24). Again, from our assumptions and (4.23),
for any small enough ε > 0, we can choose real numbers σ, τ , and µ, ν, as above,
satisfying (4.33), (4.34), (4.35), as well as

min{GE(Φj) : j = 1, . . . , 5}

−
[3µ

4
+ max{τ + ν,

µ

2
+ τ, σ + µ, σ + 2ν,

µ

2
+ σ + ν}

]
=: N1 − ε > 0.

(4.39)

Take any N ∈ (0, N1 − ε). Then, because of (4.39), we can choose ζ > 0 such that

min{GE(Φj) : j = 1, . . . , 5}

> ζ > N +
[3µ

4
+ max{τ + ν,

µ

2
+ τ, σ + µ, σ + 2ν,

µ

2
+ σ + ν}

]
,

From this relation it follows that

min{GE(Φj) : j = 1, . . . , 5} > N +
[3µ

4
+ max{µ

2
+ τ, σ + µ,

µ

2
+ σ + ν}

]
= (N +

µ

2
) +

[3µ

4
+ max{τ, σ +

µ

2
, σ + ν}

]
and

min{GE(Φj) : j = 1, . . . , 5} > N +
[3µ

4
+ max{τ + ν, σ + 2ν,

µ

2
+ σ + ν}

]
= (N + ν) +

[3µ

4
+ max{τ, σ + ν, σ +

µ

2
}
]
.

These inequalities with a double use of (4.38), with N being replaced with N + µ
2

and N + ν respectively imply

M(t; p) < K9q
−N−µ

2 and M(t; p) < K9q
−N−ν .

Then, from (4.15), (4.32) and conditions (4.33), (4.35) it follows that there are
constants K10,K11,K12 such that

| d
dt
E(t; p)| ≤ M(t; p)

[√
Φ1(p)b(t; p)

4
+
|a(t; p)|

2
+

√
b(t; p)

]
≤M(t; p)[K10q

− ζ
2 q

µ
2 + K11q

ν + K12q
µ
2 ]

≤ K10K9q
−N−µ

2 q−
ζ
2 q

µ
2 + K11K9q

−N−νpν + K12K9q
−N−µ

2 q
µ
2

= K10K9q
−N− ζ

2 + K11K9q
−N + K12K9q

−N

≤ (K10 + K11 + K12)q−N .

(4.40)

Since N is arbitrary, this relation completes the proof of (4.24). Relation (4.25)
follows from (4.40), exactly in the same way as (4.22) follows from (4.38). �

Theorem 4.3. Consider the initial-value problem (1.5)-(1.6), where the conditions
of Theorem 4.1 and conditions (4.17), (4.18), (4.19) are satisfied. Moreover, assume
that there is a measurable function ω : [0,+∞) → [0,+∞) such that

|a(t; p)| ≤ ω(t) log(E(p)), t ≥ 0 (4.41)

for p large enough. If E(t; p) is the error function defined in (4.13) and the relation

min{GE(Φj) : j = 1, . . . , 5}+
[3
4
GE(b(t; ·)

+ min{GE(x̄0),GE(x0) +
1
2
GE(b(t; ·)),GE(x0)}

]
=: M0 > 0,

(4.42)
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holds, then
E(t; p) ' 0, p → +∞, t ∈ Co([0, T (M0))), (4.43)

where, for any M > 0 we have set

T (M) := sup{t > 0 : Ω(t) :=
∫ t

0

ω(s)ds < 2M}. (4.44)

In this case the growth index of the error function satisfies

GE(E(t; ·)) ≥ M0, t ∈ Co([0, T (M0))). (4.45)

Also, if (4.41) is satisfied and the condition

min{GE(Φj) : j = 1, . . . , 5}+
[3
4
GE(b(t; ·)) + min{GE(x̄0),

1
2
GE(b(t; ·))

+ GE(x̄0),GE(x0) + GE(b(t; ·)),GE(x0),
1
2
GE(b(t; ·)) + GE(x0)}

]
=: M1 > 0

(4.46)

is satisfied, then

d

dt
E(t; p) ' 0, p → +∞, t ∈ Co([0, T (M1))) (4.47)

and the growth index of the first derivative of the error function is such that

GE

( d

dt
E(t; ·)

)
≥ M1, t ∈ Co([0, T (M1))). (4.48)

Proof. Let t̂ ∈ (0, T (M0)) be fixed. Then from (4.42) we can choose numbers µ, σ, τ
satisfying (4.33) and (4.34) and such that −µ,−σ,−τ are close to GE(b(t; ·)), GE(x0)
and GE(x̄0), respectively and moreover[3µ

4
+ max{τ, σ +

µ

2
, σ}

]
+

1
2
Ω(t̂) < min{GE(Φj) : j = 1, . . . , 5}.

Take ζ, ν,N (strictly) positive such that[3µ

4
+ max{τ, σ +

µ

2
, σ + ν}

]
+

1
2
Ω(t̂) + N

< ζ < min{GE(Φj) : j = 1, . . . , 5}.
(4.49)

Let p0 > 1 be chosen so that log(p) ≤ pν and (4.41) holds, for all p ≥ p0. Then,
due to (4.41), we have

|a(0; p)| ≤ ω(0)qν , (4.50)

for all p ≥ p0. Recall that q := E(p).
Now we proceed as in Theorem 4.2, where, due to (4.41) and (4.50), relation

(4.38) becomes

M(t; p) ≤ K
1/4
1 θ−

1
4 q

µ
4 e

1
2Ω(t̂) log(q)

×
[
(1 + θ−1/2)K2q

τ + K3θ
−1/2qσ 1

4
(K1K)1/2q

−ζ+µ
2

+ K3θ
−1/2qσ 1

2
ω(0) log(q)

]
×K5(t̂)t̂Kq−ζ(K1)1/2q

µ
2

≤ K6q
µ
4 +τ−ζ+ µ

2 + 1
2Ω(t̂) + K7q

µ
4 +σ+−ζ+µ

2 −ζ+ µ
2 + 1

2Ω(t̂)

+ K8q
µ
4 +σ+ν−ζ+ µ

2 + 1
2Ω(t̂).

(4.51)
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Notice that (4.51) holds for all q := E(p) with p ≥ p0 > 1. From this inequality
and (4.49) we obtain the estimate

M(t; p) ≤ (K6 + K7 + K8)q−N , (4.52)

which implies the approximation (4.43). Inequality (4.45) follows as the correspond-
ing one in Theorem 4.2. Finally, as in Theorem 4.2, we can use the above procedure
and relation (4.52) in order to get a relation similar to (4.40), from which (4.47)
and (4.48) follow. �

5. Application to the initial-value problem (1.3)-(1.4)

Consider the initial-value problem (1.3)-(1.4), where assume the following con-
ditions:

(i) The function b1 ∈ C2([0,+∞), [0,+∞)) it is bounded and it has bounded
derivatives.

(ii) The functions a1, a2 ∈ C1([0,+∞), [0,+∞)) are bounded with bounded
derivatives.

(iii) The function b2 is a nonzero positive constant and, as we said previously,
the exponents µ, ν,m, σ, τ of the model are real numbers.

Observe that Condition 3.3 is satisfied by choosing the following functions:

Φ1(p) = l1p
−3µ, Φ2(p) = l2p

−2µ, Φ3(p) = l3p
2ν−µ,

Φ4(p) = l4p
ν−µ, Φ5(p) = l5p

m−µ,

for some positive constants lj , j = 1, 2, . . . , 5. It is not hard to show that the growth
index of these functions with respect to the function E(p) := p, are

GE(Φ1) = 3µ, GE(Φ2) = 2µ, GE(Φ3) = −2ν + µ,

GE(Φ4) = −ν + µ, GE(Φ5) = −m + µ.

In this case the results (4.21)-(4.22) and (4.24)-(4.25) are satisfied with N0 and N1

being defined as

N0 := min{5µ

4
,
µ

4
− 2ν,

µ

4
−m} −max{τ, µ

2
+ σ, σ + ν}

and

N1 = min{5µ

4
,
µ

4
− 2ν,

µ

4
−m} −max{τ + ν, µ + σ,

µ

2
+ τ, σ + 2ν,

µ

2
+ σ + ν},

respectively, provided that they are positive.
To give a specific application let us assume that the functions a1, a2, b1 are con-

stants. Then we can obtain the approximate solution of the initial-value problem
(1.3)-(1.4) by finding the error function. Indeed, via (4.12), we can see that a
C1-approximate solution of problem (1.3)-(1.4) is the function defined by

x̃(t; p) := exp[−1
2
t(a1 + a2p

ν)]
[
(δ1 + δ2p

σ) cos[t(b1 + b2p
µ)] + (b1 + b2p

µ)−1/2

×
(
η1 + η2p

τ +
1
2
(δ1 + δ2p

σ)(a1 + a2p
ν)

)
sin[t(b1 + b2p

µ)]
]
, t ≥ 0.
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This approximation is uniform for t in compact intervals of the positive real axis.
For instance, for the values

a1 = 2, a2 = δ2 = 0, δ1 = b1 = b2 = η1 = η2 = 1,

µ =
9
10

, ν =
1
10

, m < 0, τ = − 9
20

, σ = −1,
(5.1)

we can find that the growth index of the error function E(t; ·)) satisfies

GE(E(t; ·)) ≥ 19
40

, GE(
d

dt
E(t; ·)) ≥ 1

40
.

In Figure 1 the approximate solution for the values p=50, p = 150 and p=250 are
shown.

Figure 1. Approximate solutions of the problem (1.3)-(1.4), with
the values (5.1) and when p = 50, p = 150 and p =250, respectively

6. Approximate solutions of the initial-value problem (1.5)-(1.6) when
c = −1

In this section we shall discuss the IVP (1.5)-(1.6), when c = −1, thus we assume
that b(t; p) < 0, for all t and large p. We shall assume throughout of this section
that Condition 3.3 (given in the end of Section 3) is satisfied. Here the function y
defined in (3.1) takes initial values y0(p) and ŷ0(p) as in (4.1) and (4.2). We wish
to proceed as in Section 4 and consider a fixed point t̂ > 0, as well as the solution

w(v; p) := c1(p)ev + c2(p)e−v, v ∈ [0, v̂]

of the equation
w′′ − w = 0, (6.1)

associated with the same initial values as y. We have set v̂ := v(t̂; p). Thus, for
j = 1, 2 we obtain

cj(p) =
1
2

[
x0(p)− (−1)j√

−b(0; p)

(
x̄0(p) + x0(p)

[ b′(0; p)
4b(0; p)

+
a(0; p)

2
])]

and therefore it holds

|cj(p)| ≤ 1
2

[
|x0(p)|+ 1√

−b(0; p)

∣∣∣x̄0(p) + x0(p)
[ b′(0; p)
4b(0; p)

+
a(0; p)

2
]∣∣∣] =: κ(p). (6.2)
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Also, the difference function R defined in (4.4) satisfies (4.6) where, now, we have
K(v, s) = sinh(v − s). Observe that∫ v

0

sinh(v − s)|w(s; p)|ds

≤ |c1(p)|
2

∫ v

0

(ev−s − e−v+s)esds +
|c2(p)|

2

∫ v

0

(ev−s − e−v+s)e−sds

≤ |c1(p)|
2

(vev − sinh(v)) +
|c2(p)|

2
(sinh(v)− ve−v)

≤ κ(p)v sinh(v)

and therefore, for any v ∈ [0, v̂], it holds

|R(v; p)| ≤ P (p)κ(p)v sinh(v) + P (p)
∫ v

0

sinh(v − s)|R(s; p)|ds

≤ P (p)κ(p)v sinh(v) + P (p) sinh(v)
∫ v

0

|R(s; p)|ds.

Here we apply the method of proving Gronwall’s inequality, but we follow a
different procedure. Indeed, we set

F (v) :=
∫ v

0

|R(s; p)|ds.

Then
F ′(v) = |R(v; p)| ≤ P (p)κ(p)v sinh(v) + P (p) sinh(v)F (v)

and therefore
F ′(v)− P (p) sinh(v)F (v) ≤ P (p)κ(p)v sinh(v).

Multiply both sides with the factor exp
(
− P (p) cosh(v)

)
and integrate from 0 to

v. Then we obtain

F (v)e−P (p) cosh(v) ≤ P (p)κ(p)
∫ v

0

s sinh(s)e−P (p) cosh(s)ds

= κ(p)(−ve−P (p) cosh(v) +
∫ v

0

e−P (p) cosh(s)ds

≤ κ(p)v(1− e−P (p) cosh(v)).

Therefore,

|R(v; p)| ≤ P (p)κ(p)v sinh(v) + P (p)κ(v)v sinh(v)(eP (p) cosh(v) − 1)

= P (p)κ(p)v sinh(v)eP (p) cosh(v).
(6.3)

Next we observe that∫ v

0

cosh(v − s)|w(s; p)|ds ≤ |c1(p)|
2

(vev + sinh(v)) +
|c2(p)|

2
(sinh(v) + ve−v)

≤ κ(p)(v cosh(v) + sinh(v))

and therefore, for any v ∈ [0, v̂], it holds

|R′(v; p)| ≤ P (p)κ(p)(v cosh(v) + sinh(v)) + P (p)
∫ v

0

cosh(v − s)|R(s; p)|ds

≤ P (p)κ(p)(v cosh(v) + sinh(v)) + P (p) cosh(v)
∫ v

0

|R(s; p)|ds.
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Using this inequality and (6.3) we obtain

|R′(v; p)| ≤ P (p)κ(p)(v cosh(v) + sinh(v))

+ P (p)κ(p)eP (p)v cosh(v)(eP (p)(cosh(v)−1) − 1).
(6.4)

The proof of the next theorem follows as the proof of Theorem 4.1, by using (6.3),
(6.4) and the expression of the functions v and Y from (3.4) and (3.7) respectively.
So we omit it.

Theorem 6.1. Consider the ordinary differential equation (1.5) associated with
the initial values (1.6), where assume that the Condition 3.1 holds with c = −1.
Assume also that there exist functions Φj, j = 1, 2, . . . , 5, satisfying (3.11), (3.12),
(3.13). If x(t; p), t ∈ [0, T ) is a maximally defined solution of the problem (1.5)-
(1.6), then it holds T = +∞, and if we set

w(v; p) :=
1
2

2∑
j=1

e−(−1)jv
[
x0(p)− (−1)j√

−b(0; p)

(
x̄0(p) + x0(p)

[ b′(0; p)
4b(0; p)

+
a(0; p)

2
])]

and
E(t; p) := x(t; p)− Y (t; p)w(v(t; p); p),

then

|E(t; p)| ≤ P (p)κ(p)
(b(0; p)

b(t; p)

)1/4

exp
(
−1

2

∫ t

0

a(s; p)ds
)

×
∫ t

0

√
−b(s; p)ds sinh

[ ∫ t

0

√
−b(s; p)ds

]
× exp

(
P (p) cosh(

∫ t

0

√
−b(s; p)ds)

)
=: L(t; p),

(6.5)

as well as∣∣∣ d

dt
E(t; p)

∣∣∣
≤ L(t; p)

[√
Φ1(p)|b(t; p)|

4
+
|a(t; p)|

2

]
+

(b(0; p)
b(t; p)

)1/4

exp
(
−1

2

∫ t

0

a(s; p)ds
)√

−b(t; p)

× P (p)κ(p)
[( ∫ t

0

√
−b(s; p)ds

)
cosh(

∫ t

0

√
−b(s; p)ds)

+ sinh(
∫ t

0

√
−b(s; p)ds) + eP (p)

∫ t

0

√
−b(s; p)ds cosh(

∫ t

0

√
−b(s; p)ds)

×
(
eP (p)(cosh(

R t
0

√
−b(s;p)ds)−1 − 1

)]
,

(6.6)

for all t ∈ I and p. Here P is defined in (3.15) and κ in (6.2).

Now we give the main results of this section.

Theorem 6.2. Consider the initial-value problem (1.5)-(1.6), where the conditions
of Theorem 6.1 are satisfied. Moreover, assume that a(·; p) ≥ 0, for all large p, as
well as the following properties:

(i) It holds supt>0 b(t; p) < 0, for all large p.
(ii) It holds GE(Φj) > 0, for all j = 1, 2, . . . , 5.
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(iii) It holds x0, x1 ∈ AE.
Define the function

x̃(t; p) :=
(b(0; p)

b(t; p)

)1/4

exp
(
−1

2

∫ t

0

a(s; p)ds
)1

2

2∑
j=1

e−(−1)jv
[
x0(p)

− (−1)j√
−b(0; p)

(
x̄0(p) + x0(p)

[ b′(0; p)
4b(0; p)

+
a(0; p)

2
])]

.

(6.7)

Let x be a solution of the problem and we let E(t; p) be the error function defined
by

E(t; p) := x(t; p)− x̃(t; p).
(a) If a(t; ·) ∈ AE, t ∈ Co(R+) holds and there is a measurable function z(t),

t ≥ 0 such that
|b(t; p)| ≤ z(t)

[
log(log(E(p)))

]2
, (6.8)

for all t ≥ 0 and p large enough, then we have

E(t; p) ' 0, p → +∞, t ∈ Co(R+), (6.9)

provided that the quantities above satisfy the relation

min{GE(Φj) : j = 1, . . . , 5}+ min{GE(x̄0),GE(x0),GE(x0) + GE(a(t; ·))}
=: L0 > 0, t ∈ Co(R+).

(6.10)

The growth index of the error function satisfies

GE(E(t; ·)) ≥ L0, t ∈ Co(R+). (6.11)

(b) Assume that (6.8) holds and z(t), t ≥ 0 is a constant, z(t) = η, say. If the
condition

min{GE(Φj) : j = 1, . . . , 5} − 1 + min{GE(x̄0), GE(x0),

GE(x0) + GE(a(t; ·)),GE(a(t; ·)) + GE(x̄0),GE(x0) + 2GE(a(t; ·))}
=: L1 > 0, t ∈ Co(R+)

(6.12)

holds, then
d

dt
E(t; p) ' 0, p → +∞, t ∈ Co(R+), (6.13)

GE

( d

dt
E(t; ·)

)
≥ L1, t ∈ Co(R+). (6.14)

Proof. (a) We start with the proof of (6.9). Due to (6.10), given any small ε > 0
and N ∈ (0, L0 − ε) we take real numbers ζ > 0 and τ, σ, ν close to −GE(x̂0),
−GE(x0), −GE(a(t; ·)) respectively, such that

min{GE(Φj) : j = 1, . . . , 5} > ζ > N + max{τ, σ, σ + ν}.

Hence (4.34) and (4.35) are satisfied. These arguments and Lemma 2.2 imply that
inequalities (4.32) hold, for some K > 0 and p ≥ p0 ≥ 1. Notice, also, that

max{τ, σ, σ + ν} − ζ < −N. (6.15)

Because of (6.15) we can obtain some δ > 0 and p1 ≥ p0 such that

5δ

2
+

K

2
q−ζ + max{τ, σ + δ, σ + ν} − ζ < −N, p ≥ p1. (6.16)
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Keep in mind assumption (i) of the theorem, relations (4.34) and (4.35), for some
positive constants K2,K3,K4 and, moreover,

b(t; p) ≤ −θ, (6.17)

for all t and p large. Fix any t̂ > 0 and define

λ :=
∫ t̂

0

√
z(s)ds.

Obviously there is a p2 ≥ p1 such that for all q ≥ p2, we have

Kq−ζ ≤ 1, q ≥ p2, (6.18)

log(log(u)) ≤ log(u) ≤ uδ, u ≥ p2. (6.19)

Now, consider the function L(t; p) defined in (6.5). Then, due to (4.32), (3.14),
(4.33), (4.34), (6.17), (6.8) and (6.19), for all t ∈ [0, t̂] and q ≥ p2, we have

L(t; p) ≤ P (p)κ(p)
(z(0)

θ

)1/4

GE

[
log(log(q))

]3/2

sinh[GE log(log(q))]

× exp
[
P (p) cosh[log(log(q))]

]
≤ GEP (p)κ(p)

(z(0)
θ

)1/4

q3δ/2 1
2
qδp

P (p)
2 exp(

GEP (p)
2 log(q)

)

≤ GEKq−ζ 1
2

[
K3q

σ +
K2√

θ
qτ +

K3√
θ
qσ

(√K

4
q−

ζ
2 qδ

√
z(0) +

K4

2
qν

)]
×

(z(0)
θ

)1/4

q3δ/2 1
2
qδq

P (p)
2 exp(

GEP (p)
2 log(p)

)e1/λ.

Therefore,

L(t; p) ≤ Λ1q
−ζ+σ+ 3δ

2 +δ+ K
2 q−ζ

+ Λ2q
−ζ+τ+ 3δ

2 +δ+ K
2 q−ζ

+ Λ3q
−ζ+σ− ζ

2 +δ+ 3δ
2 +δ+ K

2 q−ζ

+ Λ4q
−ζ+σ+ν+ 3δ

2 +δ+ K
2 q−ζ

,
(6.20)

for some constants Λj , j = 1, 2, 3, 4. From (6.16) and (6.20) we obtain

L(t; p) ≤ Λ0q
−N , t ∈ [0, t̂] (6.21)

for some Λ0 > 0. This and (6.5) complete the proof of (6.9).
Now, from the previous arguments it follows that given any L ∈ (0, N) it holds

L(t; p)qL ≤ Λ0q
−N+L → 0, as p → +∞,

where, notice that, the constant Λ0 is uniformly chosen for t in the interval [0, t̂]
and p with E(p) ≥ p2. This gives

E(t; p)qL → 0, as p → +∞, t ∈ Co(R+).

Hence the growth index of the error function E satisfies GE(E(t; p)) ≥ L and so we
get

GE(E(t; p)) ≥ N as p → +∞.

Since N is arbitrary in the interval (0, N0 − ε) and ε is small, we get (6.11).
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(b) Fix any t̂ > 0 and take any small ε > 0 and N ∈ (0, L1−ε). Also from (6.12)
we can get ζ > 0, δ > 0 and reals σ, ν, τ as above, such that

max
{5δ

2
+ 1 + max{δ + σ + ν, δ + τ, ν + τ, 2δ + σ, 2ν + σ},

2δ + t̂
√

ηδ + 1 + max{τ, δ + σ, σ + ν}
}

+ N

< ζ < min{GE(Φj) : j = 1, . . . , 5}.

(6.22)

Such a δ may be chosen in such way that t̂
√

ηδ < 1.
By using inequality (6.6) and relation (3.8), we obtain

| d
dt
E(t; p)| ≤ L(t; p)

[√
Φ1(p)|b(t; p)|

4
+
|a(t; p)|

2

]
+

(b(0; p)
b(t; p)

)1/4

exp
(
− 1

2

∫ t̂

0

a(s)ds
)√

−b(t; p)

×
[ ∫ t

0

√
−b(s; p)ds cosh(

∫ t

0

√
−b(s; p)ds) + sinh(

∫ t

0

√
−b(s; p)ds)

+ eP (p)

∫ t

0

√
−b(s; p)ds cosh(

∫ t

0

√
−b(s; p)ds)

×
(

exp
(
P (p)(cosh(

∫ t

0

√
−b(s; p)ds)− 1)

)
− 1

)]
,

namely

| d
dt
E(t; p)| ≤ L(t; p)

[1
4
K1/2p

−ζ
2
√

η log(log(q)) +
K4q

ν

2

]
+

(η

θ

)1/4(
log(log(q))

)1/2
Kq−ζ 1

2

[
K3q

σ +
1
√

η

(
K2q

τ

+ K3q
σ
[1
4
K1/2q

−ζ
2
√

η log(log(q)) +
K4p

ν

2

]
×

[
t̂
√

η(log(log(q))) cosh(t̂
√

η log(log(q)) + sinh(t̂
√

η log(log(q)))

+ eKq−ζ

t̂
√

η log(log(q)) cosh(t̂
√

η log(log(q)))

×
(

exp
(
Kq−ζ(cosh(t̂

√
η log(log(q)))− 1)

)
− 1

)]
λq

δ
2 .

Letting for any p with q := E(p) ≥ p0 > e, and p0 being such that

q ≥ p0 =⇒ log(q) ≤ qδ

and using the fact that

x > 0 =⇒ cosh(x) ≤ ex and sinh(x) ≤ 1
2
ex,
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from the previous estimate, we obtain

| d
dt
E(t; p)| ≤

[
Λ1q

−ζ+σ+ 3δ
2 +δ+ K

2 q−ζ

+ Λ2q
−ζ+τ+ 3δ

2 +δ+ K
2 q−ζ

+ Λ3q
−ζ+σ− ζ

2 +δ+ 3δ
2 +δ+ K

2 q−ζ

+ Λ4q
−ζ+σ+ν+ 3δ

2 +δ+ K
2 q−ζ

]
×

[1
4
K1/2q

−ζ
2
√

ηqδ +
K4q

ν

2

]
+

(η

θ

)1/4

q
δ
2 Kq−ζ

× 1
2

[
K3q

σ +
1
√

η

(
K2q

τ + K3q
σ
[1
4
K1/2q

−ζ
2
√

ηqδ +
K4q

ν

2

]
×

[
t̂
√

ηqδpt̂
√

ηδ +
1
2
qt̂
√

ηδ + eKq−ζ

t̂
√

ηqδqt̂
√

ηδ

×
(

exp
(
Kq−ζ((log(q))t̂

√
ηδ)

)]
λq

δ
2 .

Therefore it follows that

| d
dt
E(t; p)| ≤

20∑
j=1

Γjq
rj , (6.23)

for some positive constants Γj , j = 1, 2, . . . , 20 and

r1 := −ζ − ζ

2
+ σ +

7δ

2
+ 1, r2 := −ζ + σ +

5δ

2
+ 1 + ν,

r3 := −ζ − ζ

2
+ τ +

7δ

2
+ 1, r4 := −ζ + τ +

5δ

2
+ 1 + ν,

r5 := −2ζ + σ +
9δ

2
+ 1, r6 = r7 := −ζ − ζ

2
+ σ +

7δ

2
+ 1 + ν,

r8 := −ζ + σ +
5δ

2
+ 1 + 2ν, r9 := 2δ − ζ + σ + t̂

√
ηδ,

r10 := δ − ζ + σ + t̂
√

ηδ, r11 := 2δ − ζ + σ + t̂
√

ηδ + 1,

r12 := 2δ − ζ + τ + t̂
√

ηδ, r13 := δ − ζ + τ + t̂
√

ηδ,

r14 := 2δ − ζ + τ + t̂
√

ηδ + 1, r15 := 3δ − ζ − ζ

2
+ σ + t̂

√
ηδ,

r16 := 2δ − ζ + σ − ζ

2
+ t̂
√

ηδ, r17 := 3δ − ζ + σ − ζ

2
+ t̂
√

ηδ + 1,

r18 := 2δ − ζ + σ + ν + t̂
√

ηδ, r19 := δ − ζ + σ + ν + t̂
√

ηδ,

r20 := 2δ − ζ + σ + ν + t̂
√

ηδ + 1.

Due to (6.22) all the previous constants are smaller than−N . Then, for the quantity
Γ0 := maxj Γj , inequality (6.23) gives

| d
dt
E(t; p)| ≤ Γ0q

−N , q ≥ p0, (6.24)

which leads to (6.13), since the constant N is arbitrary.
The proof of the claim (6.14) follows from (6.24) in the same way as (4.22) follows

from (4.38). �

Theorem 6.3. Consider the initial-value problem (1.5)-(1.6), where the conditions
of Theorem 6.1 and (i), (ii), (iii) of Theorem 6.2 are satisfied. Assume, also, that
(4.41) and (6.8) keep in force.
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(a) If relation (6.12) is true, then

E(t; p) ' 0, p → +∞, t ∈ Co([0, T (L0))).

Moreover, the growth index of the error function satisfies

GE(E(t; ·)) ≥ L0, t ∈ Co([0, T (L0))).

(b) If (6.12) is satisfied, then

d

dt
E(t; p) ' 0, p → +∞, t ∈ Co([0, T (L1))),

GE(
d

dt
E(t; p)) ≥ L1, t ∈ Co([0, T (L1))).

Proof. First of all we can see that for a fixed t̂ ∈ (0, T (L0)), due to (4.41) and (4.44)
we can find reals τ, σ, ν close to −GE(x̂0), −GE(x0), −GE(a(t; ·)), respectively, such
that

exp
(
− 1

2

∫ t̂

0

a(s; p)ds
)
≤ pΩ(t̂)/2.

Taking into account this fact and relation (6.10), we can see that

max{τ, σ, σ + ν}+
1
2
Ω(t̂) < min{GE(Φj) : j = 1, . . . , 5}.

Now, we proceed as in the proof of Theorem 6.2, where it is enough to observe that
the right hand side of relation (6.20) is multiplied by the factor

exp(−1
2

∫ t̂

0

a(s; p)ds).

A similar procedure is followed for the proof of part (b) of the theorem. �

7. A specific case of the initial-value problem (1.3)-(1.4)

We shall apply the results of theorem 6.2 to a specific case of the problem (1.3)-
(1.4), namely to the problem

x′′ + 2apνx′ − a2p2µx + pmx sin(x) = 0, (7.1)

associated with the initial conditions

x(0; p) = apσ, x′(0; p) = apτ , (7.2)

where, for simplicity, we have set

a :=
1
10

, µ := 2, ν :=
1
9
, τ = σ :=

1
2
, m ≤ 2

9
.

Using these quantities we can see that all assumptions of Theorem 6.2 hold, with
E(p) = p,

L0 =
19
6

, L1 =
7
6
.

Then an approximate solution of the problem is given by

x̃t; p) :=
1
10

e−
t
10 p

1
9 p1/2 cosh(

p2t

10
) + (10p−

3
2 + p

11
18 ) sinh(

p2t

10
), t ≥ 0.

In Figure 2 the approximate solution for the values p=1, 3.45, 5.90, 8.38, 10.80,
13.25, 15.70, 18.15 is shown.



EJDE-2010/125 APPROXIMATE SOLUTIONS 29

Figure 2. Approximate solutions of (7.1)-(7.2), when p=1, 3.45,
5.90, 8.38, 10.80, 13.25, 15.70, 18.15 respectively

8. Approximate solutions of the boundary-value problem (1.9)-(1.10)

In this section we consider (1.9) associated with the boundary conditions (1.10).
Our purpose is to use the results of section 3 in order to approximate the solutions
of the boundary-value problem, when the parameter p approaches the critical value
+∞.

To begin with, define τ := v(1; p) and from now on the letter Jp will denote the
interval [0, τ ]. Also, in order to unify our results, we make the following convention:
We shall denote by

Sc(v) =

{
sin(v), if c = +1
sinh(v), if c = −1,

Cc(v) =

{
cos(v), if c = +1
cos(v), if c = −1.

Our basic hypothesis which will be assumed in all the sequel without any mention
is the following:
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Condition 8.1. In case c = +1 let

τ := v(1; p) =
∫ 1

0

√
b(s; p)ds < π, (8.1)

for all p large enough.

Suppose that the problem (1.9)-(1.10) admits a solution x(t; p), t ∈ [0, 1]. Then,
Theorem 3.2 implies, and inversely, that y(v; p) = (Spx(·; p))(v) is a solution of
(3.10) having boundary conditions

y(0; p) = x0(p) =: y0(p)

y(τ ; p) = y(v(1; p); p) =
x(1; p)
Y (1; p)

= x1(p)
(b(1; p)

b(0; p)

)1/4

e
1
2

R 1
0 a(s;p)ds =: yτ (p).

(8.2)

Before we seek for approximate solutions of (1.9)-(1.10), we shall give conditions
for the existence of solutions. To do that we need the following classical fixed point
theorem.

Theorem 8.2 (Nonlinear alternative [8]). Let D be a convex subset of a Banach
space X, let U be an open subset of D, and let A : Ū → D be a completely continuous
mapping. If q ∈ U is a fixed element, then either A has a fixed point in Ū , or there
is a point u ∈ ∂U and λ ∈ (0, 1), such that u = λAu + (1− λ)q.

To proceed we shall formulate the integral form of the problem and then we
shall apply Theorem 8.2. To this end we let w be the solution of the homogeneous
equation

w′′ + cw = 0,
with boundary conditions w(0; p) = y0(p) and w(τ ; p) = yτ (p). This means that w
is defined as

w(v; p) =
1

Sc(τ)
(
y0(p)(Sc(τ − v) + yτ (p)Sc(v)

)
. (8.3)

(Notice that because of (8.1) in case c = +1 the factor Sc(τ) is positive for all τ .)
Hence we see that

|w(v; p)| ≤ qc(|y0|+ |yτ |),
where

qc :=


1

min{sin(
√

θ),sin(τ)} , c = +1
sinh(τ)

sinh(
√

θ)
, c = −1.

Next we let R(v; p), v ∈ J be the solution of equation

R′′(v; p) + cR(v; p) = H(v; p), v ∈ Jp (8.4)

satisfying the boundary conditions

R(0; p) = R(τ ; p) = 0. (8.5)

where

H(v; p) := C(t, y(v; p); p)y(v; p) = C(t, y(v; p); p)R(v; p) + C(t, y(v; p); p)w(v; p).

The latter, due to (3.15), implies that

|H(v; p)| ≤ P (p)|R(v; p)|+ P (p)qc(|y0(p)|+ |yτ (p)|). (8.6)
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To formulate an integral form of the problem we follow an elementary method and
obtain

R(v; p) = d1Cc(v) + d2Sc(v) +
∫ v

0

Sc(v − s)H(s; p)ds, v ∈ Jp, (8.7)

for some constants d1, d2 to be determined from the boundary values (8.5). Indeed,
we have 0 = R(0; p) = d1 and

0 = R(τ ; p) = d1Cs(τ) + d2Sc(τ) +
∫ τ

0

Sc(τ − s)H(s; p)ds.

This implies

d2 = − 1
Sc(τ)

∫ τ

0

Sc(τ − s)H(s; p)ds

and so we have

R(v; p) =
∫ τ

0

G(v, s; p)H(s; p)ds, (8.8)

where the one-parameter Green’s function G is defined by

G(v, s; p) :=
−Sc(v)Sc(τ − s)

Sc(τ)
+ Sc(v − s)χ[0,v](s). (8.9)

Here the symbol χA denotes the characteristic function of the set A. From (8.9)
we can see that

G(v, s; p) =

−
Sc(s)Sc(τ−v)

Sc(τ) , 0 ≤ s ≤ v ≤ τ

−Sc(v)Sc(τ−s)
Sc(τ) , 0 ≤ v ≤ s ≤ τ

From 3.1 and (8.1) it follows that for all s, v ∈ [0, τ ] it holds

max{|G(v, s; p)|, | ∂

∂v
G(v, s; p)|} ≤ Qc, (8.10)

where

Qc :=


1

min{sin(
√

θ),sin(τ)} , c = +1
(sinh(τ))2

sinh(
√

θ)
, c = −1.

Now we see that the integral form of the boundary-value problem (3.10)-(8.2) is
the following:

y(v; p) = w(v; p) +
∫ τ

0

G(v, s; p)C(φ(s; p), y(s; p); p)y(s; p)ds, v ∈ Jp. (8.11)

To show the existence of a solution of (8.11) we consider the space C(Jp, R) of all
continuous functions y : Jp → R endowed with the sup-norm ‖ · ‖-topology. This
is a Banach space. Fix a p large enough and define the operator A : C(Jp, R) →
C(Jp, R) by

(Az)(v) := w(v; p) +
∫ τ

0

G(v, s; p)C(φ(s; p), z(s); p)z(s)ds

which is completely continuous (due to Properties 3.1 and 3.3).
To proceed we assume for a moment that

1− P (p)v(1; p)Qc =: ∆(p) > 0, p large (8.12)
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where (recall that) P (p) is defined in (3.15). Take any large p and let τ = v(1; p) =:
v. Then, from (8.12), for some ∆ > 0, we have

1− P (p)τQc ≥ ∆ > 0

Consider the open ball B(0, l) in the space C(Jp, R), where

l :=
‖w‖

1− P (p)τQc
+ 1.

Here ‖w‖ is the sup-norm of w on Jp.
Assume that the operator A does not have any fixed point in B(0, l). Thus, due

to Theorem 8.2 and by setting q = 0, there exists a point z in the boundary of
B(0, l) satisfying

z = λAz,

for some λ ∈ (0, 1). This means that, for each v ∈ Jp, it holds

|z(v)| ≤ ‖w‖+
∫ τ

0

|G(v, s; p)||C(φ(s; p), z(s); p)||z(s)|ds.

Then, from (8.10) we have

|z(v)| ≤ ‖w‖+ QcP (p)
∫ τ

0

|z(s)|ds.

Thus,
|z(v)| ≤ ‖w‖+ QcP (p)τ‖z‖, (8.13)

which leads to the contradiction

l = ‖z‖ ≤ ‖w‖
1− P (p)τQc

= l − 1.

Taking into account the relation between the solutions of the original problem and
the solution of the problem (1.9)-(1.10), as well the previous arguments, we conclude
the following result:

Theorem 8.3. If Properties 3.1, 3.3 and (8.12) are true, then the boundary-value
problem (1.9)-(1.10) admits at least one solution.

Now, we give the main results of this section. First we define the function

x̃(t; p) :=
(b(0; p)

b(t; p)

)1/4

exp
(
− 1

2

∫ t

0

a(s; p)ds
) 1

Sc(
∫ 1

0

√
b(s; p)ds)

×
{

x0(p)Sc(
∫ 1

t

√
b(s; p)ds)

+ x1(p)
(b(1; p)

b(0; p)

)1/4

e
1
2

R 1
0 a(s;p)dsSc(

∫ t

0

√
b(s; p)ds))

}
=

1

Sc(
∫ 1

0

√
b(s; p)ds)

{(b(0; p)
b(t; p)

)1/4

× exp
(
− 1

2

∫ t

0

a(s; p)ds
)
Sc(

∫ 1

t

√
b(s; p)ds)x0(p)

+
(b(1; p)

b(t; p)

)1/4

e
1
2

R 1
0 a(s;p)dsSc(

∫ t

0

√
b(s; p)ds))x1(p)

}

(8.14)

which, as we shall see, is an approximate solution of the problem.
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Theorem 8.4. Consider the boundary-value problem (1.9)-(1.10), where assume
that Properties 3.1, 3.3, 8.1, the conditions (i), (ii) of Theorem 4.2 and assumption
(4.41) are satisfied. Also, assume that the boundary values have a behavior like

x0, x1 ∈ AE . (8.15)

(a) If ω is given in assumption (4.41) and for

Ω :=
1
2

∫ 1

0

ω(s)ds

the condition

min{GE(Φj) : j = 1, . . . , 5}+
3
4
GE(b(t; ·))− Ω + min{GE(x0),GE(x1)}

=: L0 > 0
(8.16)

is satisfied, then the existence of a solution x of the problem is guaranteed, and if

E(t; p) := x(t; p)− x̃(t; p) (8.17)

is the error function, where x̃ is defined by (8.14), then we have

E(t; p) ' 0, p → +∞, t ∈ Co([0, 1]). (8.18)

Also, the growth index of the error function satisfies

GE(E(t; ·)) ≥ L0, t ∈ Co([0, 1]). (8.19)

(b) Assume that the condition

min{GE(Φj) : j = 1, . . . , 5}+
3
4
GE(b(t; ·))− Ω + min{GE(x0) +

1
2
GE(b(t; ·)),

GE(x0) + GE(b(t; ·)),GE(x1) +
1
2
GE(b(t; ·)),GE(x0),GE(x1)}

=: L1, t ∈ Co([0, 1]) > 0,

(8.20)
holds. Then the existence of a solution x of the problem is guaranteed and it satisfies

d

dt
E(t; p) ' 0, p → +∞, t ∈ Co([0, 1]), (8.21)

GE

( d

dt
E(t; ·)

)
≥ L1, t ∈ Co([0, 1]). (8.22)

Proof. (a) Take any N ∈ (0, L0) and, because of (8.16), we can choose ζ > 0 and
real numbers µ, σ, % near −GE(b(t; ·)), −GE(x0), −GE(x1), respectively, such that

min{λ(Φj) : j = 1, . . . , 5} > ζ ≥ N +
µ

4
+ Ω + max{σ, %}. (8.23)

Thus, we have
µ

4
+ Ω + max{σ, %} − ζ ≤ −N (8.24)

and, and due to Lemma 2.2,

P (p) ≤ K(E(p))−ζ , (8.25)

for some K > 0. Thus (8.12) is satisfied for p large enough. This makes Theorem
8.3 applicable and the existence of a solution is guaranteed.
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Let E(t; p) be the error function defined in (8.17). From (8.8), (8.10) and (8.6)
we have

|R(v; p)| ≤ qcQcP (p)τ(|y0|+ |yτ |) + QcP (p)
∫ τ

0

|R(s; p)|ds,

and therefore

|R(v; p)| ≤ qcQcP (p)τ(|y0|+ |yτ |)
1−QcP (p)τ

≤ 1
∆

qcQcP (p)τ(|y0|+ |yτ |), v ∈ Jp. (8.26)

Then observe that
|E(t; p)| = |x(t; p)− Y (t; p)w(v(t; p); p)|

= |Y (t; p)||y(v(t; p); p)− w(v(t; p); p)|
= |Y (t; p)||R(v(t; p); p)|,

because of (4.4). Thus, from (8.26) it follows that for all t ∈ [0, 1] it holds

|E(t; p)| ≤ ∆−1|Y (t; p)|qcQcP (p)τ(|y0|+ |yτ |)

= ∆−1
(b(0; p)

b(t; p)

)1/4

e−
1
2

R t
0 a(s;p)dsqcQcP (p)τ

(
|y0|+ |yτ |

)
= ∆−1qcQc

√
‖b(·; p)||P (p)

[(b(0; p)
b(t; p)

)1/4

e−
1
2

R t
0 a(s;p)ds|x0(p)|

+
(b(1; p)

b(t; p)

)1/4

e
1
2

R 1
t

a(s;p)ds|x1(p)|
]
.

(8.27)

From (8.25) and (8.27) for all large p (especially for all p with q := E(p) > 1) it
follows that

|E(t; p)| ≤ ∆−1qcQcτKq−ζ K
3
4
1 q

3µ
4

θ1/4
exp

(
log(q)

1
2

∫ 1

0

ω(s)ds
)(

K2q
σ + K3q

%
)

≤ K4q
−ζ+ 3µ

4 +Ω(K2q
σ + K3q

%).

Finally, from (8.24) we obtain

|E(t; p)| ≤ K̂q−N , (8.28)

for some K̂ > 0, which, obviously, leads to (8.18). Relation (8.19) follows from
(8.28) as exactly relation (4.22) follows from (4.38).

(b) Next consider the first order derivative of the error function E(t; p). Due
to (8.20), given any N1 ∈ (0, L1), we get reals ζ > 0 and µ, ν, σ, % > 0, close to
−GE(b(t; ·)), −GE(a(t; ·)), −GE(x0), GE(x1), respectively, such that

min{GE(Φj) : j = 1, . . . , 5}

> ζ > N1 +
3µ

4
+ Ω + max{σ +

µ

2
, σ + ν, % +

µ

2
, % + ν, µ + %, µ + σ}.

(8.29)

From (8.9) and (8.10) we observe that

| d

dv
R(v; p)| = | d

dv

∫ τ

0

G(v, s; p)H(s; p)ds|

≤ Qcτ(P (p)|R(v; p)|+ P (p)qc(|y0|+ |yτ |)

≤ qcQcτP (p)[∆−1QcτP (p) + 1](|y0|+ |yτ |).
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From this relation it follows that

| d
dt
E(t; p)|

= | d
dt

Y (t; p)R(v(t; p); p) + Y (t; p)
d

dv
R(v(t; p); p)

d

dt
v(t; p)|

≤ |Y (t; p)|
{(√

Φ1(p)b(t; p)
4

+
|a(t; p)|

2

)
|R(v(t; p); p)|+ | d

dv
R(v(t; p); p)|

√
b(t; p)

}
≤ |Y (t; p)|

{(√
Φ1(p)b(t; p)

4
+
|a(t; p)|

2

)
∆−1qcQcP (p)τ(|y0|+ |yτ |)

+
√

b(t; p)qcQcτP (p)[∆−1QcτP (p) + 1](|y0|+ |yτ |)
}

.

Therefore, for all large p (especially for p with q := E(p) > 1) we obtain

| d
dt
E(t; p)| ≤ qcQcτ̂P (p)

[
|x0(p)|

(b(0; p)
b(t; p)

)1/4

e−
R t
0 a(s;p)ds

+ |x1(p)|
(b(1; p)

b(t; p)

)1/4

e
R 1

t
a(s;p)ds

]{(√
Φ1(p)b(t; p)

4
+
|a(t; p)|

2

)
∆−1

+
√

b(t; p)[∆−1QcτP (p) + 1]
}

≤ q−ζ+Ω+ 3µ
4 (M1q

σ+ µ
2 + M2q

σ+ν

+ M3q
ρ+ µ

2 + M4q
ρ+ν + M5q

%+µ + M6q
%+σ),

(8.30)
for some positive constants M1,M2,M3,M4,M5,M6 not depending on the param-
eter p. Taking into account the condition (8.29) we conclude that

| d
dt
E(t; p)| ≤ Mq−N1 ,

for all large p. Now, the rest of the proof follows as previously. �

From inequalities (8.27) and (8.30) we can easily see that if the function a(·; p)
is non-negative uniformly for all p and x1(p) = 0, or a(·; p) is non-positive for all p
and x0(p) = 0, then the conditions of Theorem 8.4 can be weaken. Indeed, we have
the following results, whose the proofs follow the same lines as in Theorem 8.4.

Theorem 8.5. Consider the boundary-value problem (1.9)-(1.10), where assume
that Properties 3.1, 3.3, 8.1 and the conditions (i), (ii) of Theorem 4.2 hold. Also,
assume that a(t; p) ≥ 0 [respectively a(t; p) ≤ 0], for all t ∈ [0, 1] and p large, as
well as

x0 ∈ AE and x1(p) = 0, for all large p

[resp.
x0(p) = 0, for all large p and x1 ∈ AE ].

(a) If the condition

min{GE(Φj) : j = 1, . . . , 5}+
1
4
GE(b(t; ·)) + GE(x0) =: L0 > 0

[resp.

min{GE(Φj) : j = 1, . . . , 5}+
1
4
GE(b(t; ·)) + GE(x1) =: L0 > 0]
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is satisfied, then the existence of a solution x of the problem is guaranteed and if

E(t; p) = x(t; p)− x̃(t; p)

is the error function, where x̃ is defined by (8.14), then (8.18) holds. Also, the
growth index of the error function satisfies (8.19).

(b) If the condition

min{GE(Φj) : j = 1, . . . , 5}+
1
4
GE(b(t; ·)) + GE(x0) + min{1

2
GE(b(t; ·)),GE(a(t; ·))}

=: L1 > 0

[resp.

min{GE(Φj) : j = 1, . . . , 5}+
1
4
GE(b(t; ·)) + GE(x1) + min{1

2
GE(b(t; ·),GE(a(t; ·))}

=: L1 > 0]

holds, then the existence of a solution x of the problem is guaranteed and it satisfies
(8.21) and (6.14).

9. Applications

1. Consider the equation

x′′ +
2

sin(1)
cos(t) log(p)x′ − [1 + p10]x + p−1x sin(x) = 0, (9.1)

associated with the boundary values

x0(p) =
1
5
p, x1(p) =

1
10

(p +
1
p
). (9.2)

Conditions (3.11), (3.12) and (3.13) are satisfied, if we set the functions

Φ1(p) = Φ2(p) = Φ3(p) = Φ4(p) = k1p
− 39

4 , Φ5(p) := k2p
−10,

for some k1, k2 > 0. So case (a) of Theorem 8.4 is applicable with E(p) := p. It is
not hard to see that an approximate solution of the problem is the function

x̃(t; p) := e−
sin(t)
sin(1)

[
p
sinh

(
(1− t)

√
1 + p10

)
sinh

(√
1 + p10

) + e(p +
1
p
)
sinh

(
t
√

1 + p10
)

sinh
(√

1 + p10
) ]

,

satisfying

GE

(
x(t; ·)− x̃(t; ·)

)
≥ 1

4
.

The function for the values of p = 1, 1.5, 2, 2.5 has a graph shown in Figure 3.
2. Consider the equation

x′′ +
2
√

p
x′ + [

π

4
+ p−0.1]x +

x sin(x)
p

= 0, (9.3)

associated with boundary values

x0(p) = 0.2
√

p, x1(p) = 0. (9.4)

We can take E(p) := p and

Φ1(p) = Φ2(p) = Φ3(p) = Φ4(p) = Φ5(p) := k1p
−0.9.

Then conditions (3.11), (3.12) and (3.13) are satisfied and so Theorem 8.4 is ap-
plicable with L0 = 3

8 and L1 = 23
40 . In this case it is not hard to see that an
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Figure 3. Approximate solutions of (9.1)-(9.2), when p = 1, 1.5,
2, 2.5, respectively

approximate solution of the problem is the function defined on the interval [0, 1] by
the type

x̃(t; p) := 0.1
√

p(1 + cos(15
√

t) exp
(−t
√

p

) sin
(
(1− t)

√
π
4 + p−0.1

)
sin

(√
π
4 + p−0.1

) .

The graph of this function for the values of p = 4, 10, 20, 30 is shown in Figure 4

10. Approximate solutions of the boundary-value problem (1.9)-(1.8)

In this section we shall discuss the approximate solutions of the problem (1.9)-
(1.8). We shall use the results of section 3 to obtain approximate solutions when the
parameter p tends to +∞. Again, as in section 8 we define τ := v(1; p), Jp := [0, τ ]
and use the symbols Sc and Cc.

Our basic hypothesis which will be assumed in all the sequel without any mention
is that Properties 3.1 and 3.3 will be satisfied for all t ∈ [0, 1].

Assume that equation (1.9) admits a solution satisfying the conditions

x(0; p) = x0(p), x(1; p) = m(p)x(ξ; p),

for a certain point ξ ∈ [0, 1) and a real number m(p). Then Theorem 3.2 implies
that a function x(·; p) is a solution of the problem, if and only if y(·; p) is a solution
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Figure 4. Approximate solutions of (9.3)-(9.4), when p = 4, 10,
20, 30 respectively

of equation (3.10) and boundary conditions

y(0; p) = x0(p) =: y0(p)

y(τ ; p) = y(v(1); p) =
x(1; p)
Y (1; p)

= m(p)
x(ξ; p)
Y (1; p)

= m(p)
Y (ξ; p)
Y (1; p)

y(v(ξ; p); p) =: m∗(p)y(v(ξ; p); p).

(10.1)

Before we seek for approximate solutions of the problem (1.9)-(1.8) we shall
impose conditions for the existence of solutions. To do that we shall use, again, the
Fixed Point Theorem 8.2. To proceed we assume the following condition.

Condition 10.1. (i) There is some ρ > 0 such that

Sc(
∫ ξ

0

√
b(s; p)ds

Sc(
∫ 1

0

√
b(s; p)ds

≥ ρ,

for all p large enough.
(ii) It holds limp→+∞ m(p) = +∞.
(iv) There is some ā > 0 such that 0 ≤ a(t; p) ≤ 2ā, for all t ∈ [0, 1] and p large

enough.
(iii) There are θ, b0 > 0 such that θ ≤ b(t; p) ≤ b0, for all t ∈ (0, 1) and p large

enough.
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Before we seek for approximate solutions of the problem (3.10)-(10.1), we shall
investigate the existence of solutions. Let w solve the equation w′′ + cw = 0 and
satisfies the conditions

w(0; p) = y0(p),

w(τ ; p) = m∗(p)w(v(ξ; p); p).

Solving this problem we obtain

w(v; p) =
Sc(τ − v)−m∗(p)Sc(v(ξ; p)− v)

Sc(τ)−m∗(p)Sc(v(ξ; p))
y0(p). (10.2)

We shall show that the solution w is bounded. Indeed, from (10.2) we observe
that

|w(v; p)| ≤ Sc(τ) + m∗(p)Sc(τ)
m∗(p)Sc(v(ξ; p))− Sc(τ)

|y0(p)|

and by using obvious bounds of all arguments involved we obtain

|w(v; p)| ≤
m(p)

(
b(1;p)
b(ξ;p)

)1/4

e
1
2

R 1
0 a(s;p)ds + 1

m(p)
(

b(1;p)
b(ξ;p)

)1/4 Sc(
R ξ
0

√
b(s;p)ds)

Sc(
R 1
0

√
b(s;p)ds)

− 1
|y0(p)|.

Hence, because of Condition 10.1, we obtain

|w(v; p)| ≤ m(p)
√

b0e
ā + (b0θ)1/4

m(p)
√

θρ− (b0θ)1/4
|y0(p)| ≤ ρ0|y0(p)|, (10.3)

for all large p, where

ρ0 :=
(√b0e

ā

√
θρ

+ 1
)
.

As in previous sections, we set R := y−w. We shall search for constants d1 and
d2 such that the function

R(v; p) := d1Cc(v) + d2Sc(v) +
∫ v

0

Sc(v − s)H(s; p)ds

be a solution of the nonhomogeneous equation

R′′ + cR = H

satisfying the conditions

R(0; p) = 0 and R(τ ; p) = y(τ ; p)− w(τ ; p) = m∗R(v(ξ; p)). (10.4)

Here H is the function defined by

H(t; p) := C(t, y(v; p); p)R(v; p) + C(t, y(v; p); p)w(v; p),

which, due to (10.3), satisfies the inequality

|H(v; p)| ≤ P (p)|R(v; p)|+ P (p)ρ0|y0(p)|. (10.5)

Then we obtain that d1 = 0 and

d2 =
1

Sc(τ)−m∗(p)Sc(v(ξ; p))

×
[ ∫ v(ξ;p)

0

Sc(v(ξ; p))− s)H(s; p)ds−
∫ τ

0

Sc(τ − s)H(s; p)ds
]
.
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Therefore, the solution R(v; p) has the form

R(v; p) =
Sc(v)

Sc(τ)−m∗(p)Sc(v(ξ; p))

×
[ ∫ v(ξ;p)

0

Sc(v(ξ; p))− s)H(s; p)ds−
∫ τ

0

Sc(τ − s)H(s; p)ds
]

+
∫ v

0

Sc(v − s)H(s; p)ds;

namely,

R(v; p) =
∫ τ

0

G(v, s; p)H(s; p)ds,

where the Green’s function G is defined by

G(v, s; p) :=


Sc(v)

[
Sc(vξ−s)−Sc(τ−s)

]
Sc(τ)−m∗(p)Sc(v(ξ;p)) + Sc(v − s), 0 ≤ s ≤ vξ ≤ v

− Sc(v)Sc(τ−s)
Sc(τ)−m∗(p)Sc(v(ξ;p)) + Sc(v − s), 0 ≤ vξ ≤ s ≤ v

− Sc(v)Sc(τ−s)
Sc(τ)−m∗(p)Sc(v(ξ;p)) , 0 ≤ vξ ≤ v ≤ s.

To obtain upper C1 bounds of the kernel G we distinguish the following cases:
Case 0 ≤ s ≤ vξ ≤ v. In this case for p large enough it holds

|G(v, s; p)| ≤ 2(Sc(τ))2

m∗(p)Sc(v(ξ; p))− Sc(τ)
+ Sc(τ)

≤
2Sc

( ∫ 1

0

√
b(s; p)ds

)
m(p)

(
b(1;p)
b(ξ;p)

)1/4

e
1
2

R 1
0 a(s)ds Sc

( R ξ
0

√
b(s;p)ds

)
Sc

( R 1
0

√
b(s;p)ds

) − 1
+ Sc

( ∫ 1

0

√
b(s; p)ds

)
.

Thus, due to Condition 10.1, there exists some p̂ such that for all p ≥ p̂ it holds

|G(v, s; p)| ≤
[ 2
m(p)( θ

b0
)1/4ρ− 1

+ 1
]
k1 ≤ 2k1,

where

k1 :=

{
e
√

b0 , c = −1
1, c = 1.
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Also, we can easily see that, for large enough p the first partial derivative of G
(with respect to v) satisfies∣∣∣ ∂

∂v
G(v, s; p)

∣∣∣
≤ Sc(τ)Cc(τ)

m∗(p)Sc(v(ξ; p))− Sc(τ)
+ Cc(τ)

≤
Cc

( ∫ 1

0

√
b(s; p)ds

)
m(p)

(
b(1;p)
b(ξ;p)

)1/4

e
1
2

R 1
0 a(s)ds Sc

( R ξ
0

√
b(s;p)ds

)
Sc

( R 1
0

√
b(s;p)ds

) − 1
+ Cc

( ∫ 1

0

√
b(s; p)ds

)

≤ 2k1

m(p)( θ
b0

)1/4ρ− 1
+ 2k1

= 2k1

[ 1
m(p)( θ

b0
)1/4ρ− 1

+ 1
]
≤ 4k1.

Case 0 ≤ vξ ≤ s ≤ v. In this case for p large enough it holds

|G(v, s; p)|

≤ (Sc(τ))2

m∗(p)Sc(v(ξ; p))− Sc(τ)
+ Sc(τ)

≤
Sc

( ∫ 1

0

√
b(s; p)ds

)
m(p)

(
b(1;p)
b(ξ;p)

)1/4

e
1
2

R 1
0 a(s)ds Sc

( R ξ
0

√
b(s;p)ds

)
Sc

( R 1
0

√
b(s;p)ds

) − 1
+ Sc

( ∫ 1

0

√
b(s; p)ds

)
≤ · · · ≤ 2k1.

Similarly, we can obtain that for 0 ≤ vξ ≤ s ≤ v and p large enough, it holds

|G(v; s; p)| ≤ 2k1,
∣∣∣ ∂

∂v
G(v, s; p)

∣∣∣ ≤ 4k1,

while, for 0 ≤ vξ ≤ v ≤ s, it holds

|G(v; s; p)| ≤ k1,
∣∣∣ ∂

∂v
G(v, s; p)

∣∣∣ ≤ 2k1.

Therefore, for all s, v we have

max{|G(v, s; p)|,
∣∣ ∂

∂v
G(v, s; p)

∣∣} ≤ 4k1. (10.6)

Applying the previous arguments we obtain

|R(v; p)| ≤ 4k1ρ0b
1/2
0

∆1
P (p)|x0(p)|. (10.7)

Here ∆1 is defined as

∆1 := 1− 4k1P (p)b1/2
0 =: ∆1(p) > 0, (10.8)

where P (p) is defined in (3.15).
Hence the operator form of the boundary-value problem (3.10)-(10.1) is the fol-

lowing:

y(v; p) = w(v; p) +
∫ τ

0

G(v, s; p)C(φ(s; p), y(s; p); p)y(s; p)ds, v ∈ Jp. (10.9)
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To show the existence of a solution of (10.9), as in Section 8, we consider the
Banach space C(Jp, R) of all continuous functions y : Jp → R endowed with the sup-
norm ‖ · ‖-topology. Fix a p large enough and define the operator A : C(Jp, R) →
C(Jp, R) by

(Az)(v) := w(v; p) +
∫ τ

0

G(v, s; p)C(φ(s; p), z(s); p)z(s)ds

which is completely continuous (due to Properties 3.1 and 3.3).
To proceed we assume for a moment that (10.8) holds for all p large enough.
Take a large enough p and set τ = v(1; p) =: v. Then we have v ≤ b

1/2
0 and so it

holds
1− 4k1P (p)τ ≥ ∆1 > 0.

Consider the open ball B(0, l1) in the space C(J, R), where

l1 :=
‖w‖

1− 4k1P (p)τ
+ 1.

As in Section 8, assume that the operator A does not have any fixed point in
B(0, l1). Thus, due to Theorem 8.2 and by setting q = 0, there exists a point z in
the boundary of B(0, l1) satisfying z = λAz, for some λ ∈ (0, 1). This means that,
for each v ∈ Jp, it holds

|z(v)| ≤ ‖w‖+
∫ τ

0

|G(v, s; p)||C(φ(s; p), z(s); p)||z(s)|ds.

Then we have

|z(v)| ≤ ‖w‖+ 4k1P (p)
∫ τ

0

|z(s)|ds.

Therefore,
|z(v)| ≤ ‖w‖+ 4k1P (p)τ‖z‖,

which leads to the contradiction

l1 = ‖z‖ ≤ ‖w‖
1− 4k1P (p)τ

= l1 − 1.

Taking into account the relation between the solutions of the original problem and
the solution of the problem (1.9)-(1.8), as well the previous arguments, we conclude
the following result:

Theorem 10.2. If Properties 3.1, 3.3 and (10.8) are satisfied, then the boundary-
value problem (1.9)-(1.8) admits at least one solution.

Now, we give the main results of this section. If w is the function defined in
(10.2) we define the function

x̃(t; p) := Y (t; p)w(v(t; p); p)

= Y (t; p)
Sc(τ − v)−m∗Sc(v(ξ; p)− v)

Sc(τ)−m∗Sc(v(ξ; p))
y0(p)

=
(b(0; p)

b(t; p)

)1/4

exp
(
− 1

2

∫ t

0

a(s; p)ds
) X(t; p)
X(0; p)

x0(p),

(10.10)

where

X(t; p) := Sc(
∫ 1

t

√
b(s; p)ds)−m(p)

(b(1; p)
b(ξ; p)

)1/4

e
1
2

R 1
ξ

a(s)dsSc(
∫ ξ

t

√
b(s; p)ds),
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which, as we shall show, it is an approximate solution of the problem under discus-
sion.

Theorem 10.3. Consider the boundary-value problem (1.9)-(1.8), where assume
that Properties 3.1, 3.3, 8.1, the conditions (10.8) and (i), (ii) of Theorem 4.2 are
satisfied. Also, assume that x0 ∈ AE.

(a) If the condition

min{GE(Φj) : j = 1, . . . , 5}+ GE(x0) =: L > 0 (10.11)

is satisfied, then the existence of a solution x of the problem is guaranteed and if

E(t; p) := x(t; p)− x̃(t; p)

is the error function, where x̃ is defined by (8.14), then we have

E(t; p) ' 0, p → +∞, t ∈ Co([0, 1]). (10.12)

Also, the growth index of the error function satisfies

GE(E(t; ·)) ≥ L, t ∈ Co([0, 1]). (10.13)

(b) Moreover we have

d

dt
E(t; p) ' 0, p → +∞, t ∈ Co([0, 1]), (10.14)

GE

( d

dt
E(t; ·)

)
≥ L, t ∈ Co([0, 1]). (10.15)

Proof. (a) Take a N ∈ (0, L) and choose ζ > 0 as well as −σ < GE(x0), (thus we
have

|x0(p)| ≤ K3(E(p))σ,

for some K3 > 0) such that

min{GE(Φj) : j = 1, . . . , 5} > ζ ≥ N + σ. (10.16)

Therefore,

σ − ζ ≤ −N, (10.17)

P (p) ≤ K(E(p))−ζ , (10.18)

for some K > 0. Thus (10.8) is satisfied for p large enough. This makes Theorem
10.2 applicable and the existence of a solution is guaranteed. Let E(t; p) be the
error function defined in (8.17). From (10.7) it is easy to obtain

|E(t; p)| ≤ Λ1(E(p))σ−ζ .

for all large p, for some Λ1 > 0. Obviously, this relation implies (10.12) as well as
(10.13).

(b) Next consider the first order derivative of the error function E(t; p). Again,
as above, we obtain

| d
dt

R(v(t; p); p)| = | d

dv

∫ τ

0

G(v, s; p)H(s; p)ds
d

t
v(t; p)|

≤ Y (t; p)
[1
4

√
Φ1(p)b(0; p) +

a(t; p)
2

+
∫ τ

0

(
G(v, s; p)|+ | d

dt
v(t; p)|| ∂

∂v
G(v, s; p)|

)
|H(s; p)|ds

]
.
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Now, we use (10.16), (10.18), (10.17), (10.6), (10.5) and (10.7) to conclude that for
some positive constants k3, k4 it holds

| d
dt
E(t; p)| ≤ k3P (p)|x0(p)| ≤ k4(E(p))σ−ζ < k4(E(p))−N ,

from which the result follows. �

11. An application

Consider the equation

x′′ + x′ + x +
x sin(x)

p
= 0, t ∈ [0, 1] (11.1)

associated with the following boundary value conditions:

x(0; p) = p−1, x(1; p) = epx(
1
2
; p). (11.2)

We can easily see that with respect to the unbounded function E(p) := p we have
GE(Φj) = 1, j = 1, 2, 3, 4, 5 and GE(x0) = 2. Therefore L = 2 and, so, Theorem 10.3
applies. This means that there is a solution of (11.1)-(11.2) and an approximate
solution of it is the following (according to (10.10)):

x̃(t; p) :=
sin(1− t)− epe1/4 sin( 1

2 − t)
sin(1)− epe1/4 sin( 1

2 )
e−

t
2 p−2, t ∈ [0, 1].

The graph of this function for the values of p = 3.83, 6.33, 8.83, 15.50 is shown in
Figure 5

12. Discussion

We have presented a method of computing the approximate solutions of two
initial-value problems and two boundary-value problems concerning the second or-
der ordinary differential equation (1.5). First of all, in section 2 we have given the
meaning of measuring the approximation, by introducing the growth index of a
function. It is proved that this meaning helps a lot to get information on how close
to the actual solution is the approximate solution, as the parameter p tends to +∞.
Section 3 of the work provided the first step of the method and we have shown the
way of using (3.1) to transform the original equation to an auxiliary differential
equation (3.10).

The sign of the response coefficient b(t; p) plays an essential role. If this coef-
ficient is positive, we have an wave featured solution, while, in case it is negative,
we have exponential behavior. This is the reason for discussing the two cases sepa-
rately, especially in the initial-value problems. The first case is exhibited in Section
4, where in Theorem 4.1 we show first the existence of a solution of the initial-value
problem and prepare the ground for the proof of existence of C1-approximate solu-
tions presented in Theorems 4.2 and Theorem 4.3. The two theorems give, mainly,
analogous results, where in the first theorem we assumed that the coefficient a(t; p)
is positive and in the second one it is assumed that it may take negative values as
well.

Applications of the results to examples where the two coefficients a(t; p) and
b(t; p) are positive, are given in Section 5, where the C1-approximate solution is
computed. The case of negative b(t; p) is discussed in section 6 and the results are
applied to an initial-value problem given in Section 7.
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Figure 5. Approximate solutions of (11.1)-(11.2), when p = 3.83,
6.33, 8.83, 15.50, respectively

The boundary-value problem (1.9)-(1.10) is discussed in Section 8. First, by
the help of the (Fixed Point Theorem of) Nonlinear Alternative in Theorem 8.3 we
have guaranteed the existence of solutions of the problem. Then, in Theorem 8.4 we
have given estimates of the error function E(t; p) := x(t; p)− x̃(t; p), where x̃(t; p) is
the C1-approximate solution. We are able to give simultaneously our results in the
cases of positive and negative functions b(t; p). A specific case, when the function
a(t; p) is nonnegative and the solution vanishes in an edge of the existence interval,
is discussed separately in Theorem 8.5, while two applications of the results were
given in Section 9.

In Section 10 we investigated the boundary-value problem (1.9)-(1.8). Again,
first in Theorem 10.2 we solved the existence problem by using the Nonlinear
Alternative Method and then we proceeded to the proof of the existence of C1-
approximate solutions in Theorem 10.3. An application to a specific equation were
given in the last section 11.

All examples which we have presented are associated with the graphs 1 of the
functions for various values of the parameter, which show the change of the variation
of the solutions, as the parameter p takes large values and tends to +∞.

1made with the help of Graphing Calculator 3.5 of Pacific Tech



46 G. L. KARAKOSTAS EJDE-2010/125

As we have seen, in order to apply the method to a problem we have to do two
things: First to transform the original equation to a new one and then to transform
the initial values, or to the boundary values to the new ones. Both of them are
significant in the process of the method.

As the transformation of the original equation was already given in (3.10), what
one has to do is to proceed to the transformation of the boundary values. For
instance, in case the boundary values of the original problem are of the form

x(0; p) = x′(0; p), x(1; p) = x′(1; p),

then, it is not hard to show that, under the transformation Sp the new function
y(·; p) is required to satisfy the boundary values

y′(0; p) =
1√

b(0; p)

[
1 +

1
4

b′(0; p)
b(0; p)

+
1
2
a(0; p)

]
y(0; p)

and

y′(τ ; p) =
1√

b(1; p)

[
1 +

1
4

b′(1; p)
b(1; p)

+
1
2
a(1; p)

]
y(1; p).

Now one can proceed to the investigation of the existence of approximate solutions
as well as to their computation.
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