
Electronic Journal of Differential Equations, Vol. 2010(2010), No. 126, pp. 1–16.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS
WITH p-LAPLACIAN

QINGKAI KONG, MIN WANG

Abstract. In this article, we study a class of boundary value problems with
p-Laplacian. By using a “Green-like” functional and applying the fixed point

index theory, we obtain eigenvalue criteria for the existence of positive so-

lutions. Several explicit conditions are derived as consequences, and further
results are established for the multiplicity and nonexistence of positive solu-

tions. Extensions are also given to partial differential BVPs with p-Laplacian
defined on annular domains.

1. Introduction

In this article, we study the following boundary value problem (BVP) that in-
cludes the equation with p-Laplacian

−(φ(q(t)u′))′ = w(t)f(t, u), 0 < t < 1, (1.1)

and the boundary condition (BC)

(qu′)(0) = 0, u(1) + a(qu′)(1) = 0, (1.2)

where φ(u) = |u|p−1u with p > 0, a > 0, f : [0, 1] × R+ → R+ is continuous,
q ∈ L[0, 1] with q(t) ≥ δ > 0 on [0, 1], and w ∈ L[0, 1] with w(t) ≥ 0 a.e. on [0, 1] ,
and

∫ 1

0
w(t)dt > 0.

BVPs with p-Laplacian have been investigated for decades. Results are obtained
for the existence of positive solutions for different BCs. To name a few, see [1, 12]
for Dirichlet BCs, [6, 31] for periodic BCs, and [32] for the general separated BCs.
For the work on m-point p-Laplacian BVPs, see [10, 11, 13, 28] and the references
therein. As a special case with p = 1, the BVPs consisting of (1.1) and various
BCs have been extensively studied. We refer to the reader [2, 3, 8, 15, 19, 20, 21,
22, 24, 25, 26, 30] and references therein.

Among various criteria for the existence of positive solutions, some were estab-
lished using the first eigenvalue of an associated Sturm-Liouville problem (SLP),
see, for example [8, 16, 23, 24, 26, 29]. Such eigenvalue criteria are usually sharper
than criteria obtained in some other ways especially when they involve the behavior
of f as u near 0 and ∞. Therefore, a natural question arises: Are there parallel
eigenvalue criteria for the p-Laplacian BVP (1.1), (1.2) using the first eigenvalue of
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an associated half-linear SLP? To the best knowledge of the authors, no answers
can be found in the literature although the spectral theory for half-linear SLPs has
been well developed, see [4, 7, 17, 18, 27]. The main difficulties for the extension lie
in the facts that no Green’s functions can be found for equations with p-Laplacian
since the solutions of half-linear equations do not form a linear space and the im-
portant Lagrange bracket property for linear SLPs is not satisfied by the half-linear
SLPs.

In this paper, by constructing a “Green-like” functional and applying a different
fixed point index theory, we obtain eigenvalue criteria for the p-Laplacian BVP
(1.1), (1.2). More specifically, we show that BVP (1.1), (1.2) has at least one posi-
tive solution if the first eigenvalue of an associated half-linear SLP satisfies certain
relations with the behavior of the function f as u near 0 and ∞. Some explicit
conditions are derived as consequences, and further results are also given for the
multiplicity and nonexistence of positive solutions. Our work is new and improves
most existing results on BVPs with p-Laplacian when restricted to problem (1.1),
(1.2).

Finally, we extend our results to partial differential BVPs with p-Laplacian on
annular domains and hence obtain criteria for the existence, multiplicity, and nonex-
istence of positive radial solutions.

This paper is organized as follows: after this introduction, we state our main
results in Section 2. The proofs are given in Section 3. Extensions to p-Laplacian
partial differential equations are given in Section 4. Several examples are presented
in Section 5 as applications.

2. Main Results

For the function f given in (1.1), define

f0 = lim inf
u→0+

min
t∈[0,1]

f(t, u)/up, f0 = lim sup
u→0+

max
t∈[0,1]

f(t, u)/up,

f∞ = lim inf
u→∞

min
t∈[0,1]

f(t, u)/up, f∞ = lim sup
u→∞

max
t∈[0,1]

f(t, u)/up.
(2.1)

Consider the half-linear SLP consisting of the equation

− (φ(q(t)u′))′ = λw(t)φ(u), 0 < t < 1, (2.2)

and BC (1.2). SLP (2.2), (1.2) is called the SLP associated with BVP (1.1), (1.2). It
is well known that SLP (2.2), (1.2) has infinite number of real eigenvalues {λn}∞n=0

satisfying
−∞ < λ0 < λ1 < · · · < λn < · · · , and λn →∞;

and the eigenfunction vn associated with λn has exactly n zeros in (0, 1). We refer
to the reader Binding and Drábek [4] and Kong and Kong [17] for the details.
Moreover, we have the following result.

Lemma 2.1. The first eigenvalue λ0 of SLP (2.2), (1.2) is positive.

Our major result below is on the existence of positive solutions of BVP (1.1),
(1.2) using the relationships among λ0, f0, and f∞.

Theorem 2.2. Let λ0 be the first eigenvalue of SLP (2.2), (1.2). Then BVP (1.1),
(1.2) has at least one positive solution if either f0 < λ0 < f∞ or f∞ < λ0 < f0.
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Let

q∗ = sup
t∈[0,1]

1/q(t), α = a/(a + q∗), β = φ−1
( ∫ 1

0

w(τ)dτ
)
, (2.3)

where φ−1 is the inverse function of φ. It is easy to see that 0 < α < 1. The
following corollary, which gives explicit conditions without using λ0, follows directly
from Theorem 2.2.

Corollary 2.3. BVP (1.1), (1.2) has at least one positive solution if either of the
following holds:

(a) f0 < ((a + q∗)β)−p and f∞ > (aαβ)−p;
(b) f0 > (aαβ)−p and f∞ < ((a + q∗)β)−p.

Next, we derive criteria for the existence of positive solutions based on the be-
havior of f(t, u) for u in two disjoint closed intervals. Below we use the notation
‖u‖ = maxt∈[0,1] |u(t)|.

Theorem 2.4. Assume there exist 0 < l1 < l2 (respectively, 0 < l2 < l1), such that

f(t, u) ≤ lp1((a + q∗)β)−p for all (t, u) ∈ [0, 1]× [αl1, l1], (2.4)

f(t, u) ≥ lp2(aβ)−p for all (t, u) ∈ [0, 1]× [αl2, l2]. (2.5)

Then BVP (1.1), (1.2) has at least one positive solution u with l1 ≤ ‖u‖ ≤ l2
(respectively, l2 ≤ ‖u‖ ≤ l1).

As extensions of Theorems 2.2 and 2.4, we have the following results.

Theorem 2.5. Assume there exists l1 > 0 such that (2.4) holds. Then

(a) BVP (1.1), (1.2) has at least one positive solution u with ‖u‖ ≤ l1 if f0 >
λ0;

(b) BVP (1.1), (1.2) has at least one positive solution u with ‖u‖ ≥ l1 if f∞ >
λ0.

Theorem 2.6. Assume there exists l2 > 0 such that (2.5) holds. Then

(a) BVP (1.1), (1.2) has at least one positive solution u with ‖u‖ ≤ l2 if f0 <
λ0;

(b) BVP (1.1), (1.2) has at least one positive solution u with ‖u‖ ≥ l2 if f∞ <
λ0.

Combining Theorems 2.5 and 2.6 we obtain a result on the existence of at least
two positive solutions.

Theorem 2.7. Assume either

(a) f0 > λ0 and f∞ > λ0, and there exists l > 0 such that

f(t, u) < lp((a + q∗)β)−p for all (t, u) ∈ [0, 1]× [αl, l]; or (2.6)

(b) f0 < λ0 and f∞ < λ0, and there exists l > 0 such that

f(t, u) > lp(aβ)−p for all (t, u) ∈ [0, 1]× [αl, l]. (2.7)

Then BVP (1.1), (1.2) has at least two positive solutions u1 and u2 with ‖u1‖ <
l < ‖u2‖.
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Note that in Theorem 2.7, the inequalities in (2.6) and (2.7) are strict and hence
are different from those in (2.4) and (2.5) in Theorem 2.4. This is to guarantee that
the two solutions u1 and u2 are different.

By applying Theorem 2.4 repeatedly, we obtain criteria for the existence of
multiple positive solutions.

Theorem 2.8. Let {li}N
i=1 ⊂ R such that 0 < l1 < l2 < · · · < lN . Assume either

(a) f satisfies (2.6) with r = li when i is odd, and satisfies (2.7) with r = li
when i is even; or

(b) f satisfies (2.6) with r = li when i is even, and satisfies (2.7) with r = li
when i is odd.

Then BVP (1.1), (1.2) has at least N−1 positive solutions ui with li < ‖ui‖ < li+1,
i = 1, 2, . . . , N − 1.

Theorem 2.9. Let {li}∞i=1 ⊂ R such that 0 < l1 < l2 < . . . and limi→∞ li = ∞.
Assume either

(a) f satisfies (2.4) with l1 = li when i is odd, and satisfies (2.5) with l2 = li
when i is even; or

(b) f satisfies (2.4) with l1 = li when i is even, and satisfies (2.5) with l2 = li
when i is odd.

Then BVP (1.1), (1.2) has an infinite number of positive solutions.

The following is an immediate consequence of Theorem 2.9.

Corollary 2.10. Let {li}∞i=1 ⊂ R such that 0 < l1 < l2 < . . . and limi→∞ li = ∞.
Let E1 = ∪∞i=1[αl2i−1, l2i−1] and E2 = ∪∞i=1[αl2i, l2i]. Assume

lim sup
E13u→∞

max
t∈[0,1]

f(t, u)
up

< ((a + q∗)β)−p, lim inf
E23u→∞

min
t∈[0,1]

f(t, u)
up

> (aαβ)−p.

Then BVP (1.1), (1.2) has an infinite number of positive solutions.

Finally, we present a result on the nonexistence of positive solutions of BVP
(1.1), (1.2).

Theorem 2.11. BVP (1.1), (1.2) has no positive solutions if
(a) f(t, u)/up < ((a + q∗)β)−p for all (t, u) ∈ [0, 1]× (0,∞), or
(b) f(t, u)/up > (aαβ)−p for all (t, u) ∈ [0, 1]× (0,∞).

3. Proofs

Proof of Lemma 2.1. To prove this lemma, we need to normalize BC (1.2) using
the generalized sine and cosine functions established by Elbert, see [7] for the detail.

It can be shown that (1.2) is equivalent to the BC

(qu′)(0) = 0, C(θ∗)u(1)− S(θ∗)(qu′)(1) = 0, (3.1)

where C(θ) and S(θ) are the generalized sine and cosine functions, θ∗ ∈ (πp/2, πp)
with πp = 2π((p + 1) sin(π/(p + 1)))−1 such that S(θ∗)/C(θ∗) = −a.

Now we treat (3.1) as a function of θ and let λ0(θ) be the first eigenvalue of SLP
(2.2), (3.1) for θ ∈ [πp/2, πp). By [17, Corollary 3.9], λ0 is strictly increasing. Note
that (3.1) with θ = πp/2 becomes

(qu′)(0) = 0, (qu′)(1) = 0. (3.2)
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In this case, λ0(πp/2) = 0 is the first eigenvalue of SLP (2.2), (3.2) with an associ-
ated eigenfunction v0 ≡ 1. As a result, λ0(θ) > 0 for θ ∈ (πp/2, πp). In particular,
λ0(θ∗) > 0, i.e., the first eigenvalue of SLP (2.2), (1.2) is positive. �

With ‖u‖ = maxt∈[0,1] |u(t)|, it is clear that (C[0, 1], ‖ · ‖) is a Banach space. Let
C+[0, 1] = {u ∈ C[0, 1] | u ≥ 0 on [0, 1]}. Define Γ : C+[0, 1] → C[0, 1] by

(Γu)(t) =
∫ 1

0

Gu(t, s)φ−1
( ∫ 1

0

w(τ)f(τ, u(τ))dτ
)
ds, t ∈ (0, 1), (3.3)

where φ−1 is the inverse function of φ, and

Gu(t, s) =

{
a, 0 ≤ s ≤ t,

a + 1
q(s)φ

−1
( R s

0 w(τ)f(τ,u(τ))dτR 1
0 w(τ)f(τ,u(τ))dτ

)
, t ≤ s ≤ 1.

(3.4)

Remark 3.1. We observe that the operator Γ defined by (3.3) is the same as

(Γu)(t) =
∫ 1

t

1
q(s)

φ−1
(∫ s

0

w(τ)f(τ, u(τ))dτ
)
ds

+ aφ−1
( ∫ 1

0

w(τ)f(τ, u(τ))dτ
)
.

(3.5)

Remark 3.2. It is easy to see that for any u ∈ C+[0, 1]

a ≤ Gu(t, s) ≤ a + q∗ on [0, 1]× [0, 1], (3.6)

where q∗ is defined by (2.3).

Lemma 3.3. A function u(t) is a solution of (1.1), (1.2) if and only if u is a fixed
point of Γ.

Proof. Assume u(t) is a solution of BVP (1.1), (1.2). From (1.1) and the first BC
in (1.2) we see that for any t ∈ (0, 1)

(qu′)(t) = −φ−1
(∫ t

0

w(τ)f(τ, u(τ))dτ
)
,

u(t) = u(0)−
∫ t

0

1
q(s)

φ−1
(∫ s

0

w(τ)f(τ, u(τ))dτ
)
ds. (3.7)

Then by the second BC in (1.2), we have

u(0) =
∫ 1

0

1
q(s)

φ−1
( ∫ s

0

w(τ)f(τ, u(τ))dτ
)
ds + aφ−1

( ∫ 1

0

w(τ)f(τ, u(τ))dτ
)
.

By (3.7) and (3.5),

u(t) =
∫ 1

t

1
q(s)

φ−1
( ∫ s

0

w(τ)f(τ, u(τ))dτ
)
ds

+ aφ−1
( ∫ 1

0

w(τ)f(τ, u(τ))dτ
)

= (Γu)(t).

Thus, u is a fixed point of the operator Γ. The opposite direction can be verified
by reversing the argument. We omit the details. �
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Let
K = {u ∈ C[0, 1] | min

t∈[0,1]
u(t) ≥ α‖u‖}, (3.8)

where α is defined by (2.3). Clearly, K is a cone contained in C+[0, 1]. For l > 0,
define

Kl = {u ∈ K|‖u‖ < l}, ∂Kl = {u ∈ K|‖u‖ = l}, (3.9)
and let i(Γ,Kl,K) be the fixed point index of Γ on Kl with respect to K.

Lemma 3.4. Γ is completely continuous and ΓK ⊂ K.

Proof. By (3.5), it is easy to see that Γ is completely continuous on C+[0, 1]. For
any u ∈ K, by (2.3), (3.3), and (3.6)

min
t∈[0,1]

(Γu)(t) = min
t∈[0,1]

∫ 1

0

Gu(t, s)φ−1
( ∫ 1

0

w(τ)f(τ, u(τ))dτ
)
ds

≥
∫ 1

0

aφ−1
( ∫ 1

0

w(τ)f(τ, u(τ))dτ
)
ds

= α

∫ 1

0

(a + q∗)φ−1
( ∫ 1

0

w(τ)f(τ, u(τ))dτ
)
ds

≥ α max
t∈[0,1]

∫ 1

0

Gu(t, s)φ−1
( ∫ 1

0

w(τ)f(τ, u(τ))dτ
)
ds

= α‖Γu‖.

(3.10)

Therefore, ΓK ⊂ K. �

Our proofs for the existence of positive solutions are based on the following fixed
point index theorem, see [33, page 529, A2, A3] for the detail.

Lemma 3.5. Let 0 < l1 < l2 satisfy

i(Γ,Kl1 ,K) = 0 and i(Γ,Kl2 ,K) = 1;

or
i(Γ,Kl1 ,K) = 1 and i(Γ,Kl2 ,K) = 0.

Then Γ has a fixed point in Kl2 \Kl1 .

To prove Theorem 2.2, we also need the lemma below, see [14, Lemma 2.3.1 and
Corollary 2.3.1] for details.

Lemma 3.6. Let l > 0. Then
(a) i(Γ,Kl,K) = 1 if u 6= µΓu for all u ∈ ∂Kl and µ ∈ [0, 1];
(b) i(Γ,Kl,K) = 0 if there exists v0 ∈ K \ {0} such that u − Γu 6= µv0 for all

u ∈ ∂Kl and µ ≥ 0.

Proof of Theorem 2.2. Assume f0 < λ0 < f∞. Let λ0 be the first eigenvalue of SLP
(2.2), (1.2) with an associated positive eigenfunction v0. Define Γ1 : C+[0, 1] →
C+[0, 1] as

(Γ1u)(t)

=
∫ 1

t

1
q(s)

φ−1
(∫ s

0

w(τ)φ(u(τ))dτ
)
ds + aφ−1

( ∫ 1

0

w(s)φ(u(s))ds
)
.

(3.11)

It is easy to verify that λ
−1/p
0 is an eigenvalue of Γ1 with v0 as an associated

eigenfunction, i.e., Γ1v0 = λ
−1/p
0 v0. Hence v0 = λ

1/p
0 Γ1v0.



EJDE-2010/126 p-LAPLACIAN BOUNDARY VALUE PROBLEMS 7

Since f0 < λ0, there exists l > 0 such that f(t, u) < λ0u
p = λ0φ(u) for any

(t, u) ∈ [0, 1]× [0, l]. For any u ∈ ∂Kl, αl ≤ u(t) ≤ l on [0, 1]. By (3.5) and (3.11),
for t ∈ [0, 1]

(Γu)(t)

=
∫ 1

t

1
q(s)

φ−1
(∫ s

0

w(τ)f(τ, u(τ))dτ
)
ds + aφ−1

( ∫ 1

0

w(τ)f(τ, u(τ))dτ
)

< λ
1/p
0

[ ∫ 1

t

1
q(s)

φ−1
(∫ s

0

w(τ)φ(u(τ))dτ
)
ds + aφ−1

( ∫ 1

0

w(τ)φ(u(τ))dτ
)]

= λ
1/p
0 (Γ1u)(t).

(3.12)
Without loss of generality, we assume that Γu has no fixed point on ∂Kl. For
otherwise, the proof is done. We show that u 6= µΓu for all u ∈ ∂Kl and µ ∈ [0, 1].
Obviously, it is true for µ = 0, 1. So we only consider µ ∈ (0, 1). Assume the
contrary, i.e., there exist u0 ∈ ∂Kl and µ0 ∈ (0, 1) such that u0(t) = µ0(Γu0)(t).
By (3.12), for t ∈ [0, 1]

u0(t) = µ0(Γu0)(t) < µ0λ
1/p
0 (Γ1u0)(t). (3.13)

In view of the fact that u0(t) > 0 and v0(t) > 0 on [0, 1], the set {µ | u0(t) ≤
µv0(t) for t ∈ [0, 1]} is not empty. Define µ1 = min{µ | u0(t) ≤ µv0(t) for t ∈ [0, 1]}.
Then µ1 > 0, and from (3.11) and by the nondecreasing property of Γ1 we have
that for t ∈ [0, 1]

λ
1/p
0 (Γ1u0)(t) ≤ λ

1/p
0 (Γ1(µ1v0))(t) = µ1λ

1/p
0 (Γ1v0)(t) = µ1v0(t).

Thus by (3.13) u0(t) < µ0µ1v0(t) < µ1v0(t) on [0, 1], which contradicts the defini-
tion of µ1. Therefore, u 6= µΓu for all u ∈ ∂Kl and µ ∈ [0, 1]. By Lemma 3.6 (a),
i(Γ,Kl,K) = 1.

Since f∞ > λ0, there exists l̃ > l such that f(t, u) > λ0u
p = λ0φ(u) for all

(t, u) ∈ [0, 1] × (l̃,∞). Choose l̄ ≥ α−1 l̃. Then for any u ∈ ∂Kl̄, u(t) ≥ αl̄ = l̃ on
[0, 1]. By (3.5) and (3.11), for t ∈ [0, 1]

(Γu)(t)

=
∫ 1

t

1
q(s)

φ−1
(∫ s

0

w(τ)f(τ, u(τ))dτ
)
ds + aφ−1

( ∫ 1

0

w(τ)f(τ, u(τ))dτ
)

> λ
1/p
0

[ ∫ 1

t

1
q(s)

φ−1
(∫ s

0

w(τ)φ(u(τ))dτ
)
ds + aφ−1

( ∫ 1

0

w(τ)φ(u(τ))dτ
)]

= λ
1/p
0 (Γ1u)(t).

(3.14)
Without loss of generality, we assume that Γu has no fixed point on ∂Kl̄. For
otherwise, the proof is done. We show that u − Γu 6= µv0 for any u ∈ ∂Kl̄ and
µ ≥ 0. Obviously, it is true for µ = 0. so we only consider µ > 0. Assume the
contrary, i.e., there exist u0 ∈ ∂Kl̄ and µ0 > 0 such that u0 − Γu0 = µ0v0. Then
on [0,1] we have

u0(t) = (Γu0)(t) + µ0v0(t) > µ0v0(t).
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Define µ2 = max{µ | u0(t) ≥ µv0(t) for t ∈ [0, 1]}. Then µ2 ≥ µ0 and u0(t) ≥
µ2v0(t) on [0,1]. From (3.14) we see that for t ∈ [0, 1]

u0(t) = Γu0(t) + µ0v0(t) > λ
1/p
0 (Γ1u

0)(t) + µ0v0(t)

≥ λ
1/p
0 (Γ1µ2v0)(t) + µ0v0(t) = µ2λ

1/p
0 (Γ1v0)(t) + µ0v0(t)

= µ2v0(t) + µ0v0(t) = (µ2 + µ0)v0(t),

which contradicts the definition of µ2. Therefore, u − Γu 6= µv0 for any u ∈ ∂Kl̄

and µ ≥ 0. By Lemma 3.6 (b), i(Γ,Kl̄,K) = 0. By Lemma 3.5, BVP (1.1), (1.2)
has at least one positive solution.

The case for f∞ < λ0 < f0 can be proved similarly. We omit the details. �

Proof of Corollary 2.3. It suffices to show that

((a + q∗)β)−p ≤ λ0 ≤ (aαβ)−p,

and then the conclusion follows from Theorem 2.2. Let λ0 be the first eigenvalue
of SLP (2.2), (1.2) with an associated positive eigenfunction v0. Let Γ1 be defined
by (3.11). Then as shown in the proof of Theorem 2.2, we have v0 = λ

1/p
0 Γ1v0.

Moreover, for t ∈ [0, 1],

(Γ1v0)(t) =
∫ 1

0

G1(t, s)φ−1
( ∫ 1

0

w(τ)φ(v0(τ))dτ
)
ds, (3.15)

where

G1(t, s) =

{
a, 0 ≤ s ≤ t,

a + 1
q(s)φ

−1
( R s

0 w(τ)φ(v0(τ))dτR 1
0 w(τ)φ(v0(τ))dτ

)
, t ≤ s ≤ 1.

Clearly, a ≤ G1(t, s) ≤ a + q∗. By (2.3)

‖v0‖ = max
t∈[0,1]

v0(t) = max
t∈[0,1]

λ
1/p
0 (Γ1v0)(t)

= max
t∈[0,1]

λ
1/p
0

∫ 1

0

G1(t, s)φ−1
( ∫ 1

0

w(τ)φ(v0(τ))dτ
)
ds

≤ λ
1/p
0

∫ 1

0

(a + q∗)φ−1
( ∫ s

0

w(τ)dτ
)
‖v0‖ds

= λ
1/p
0 (a + q∗)β‖v0‖.

Therefore, λ0 ≥ ((a + q∗)β)−p.
Similar to (3.10) we have that v0(t) ≥ α‖v0‖ for t ∈ [0, 1]. Thus

‖v0‖ ≥ λ
1/p
0 (Γ1v0)(t) = λ

1/p
0

∫ 1

0

G1(t, s)φ−1
( ∫ 1

0

w(τ)φ(v0(τ))dτ
)
ds

≥ λ
1/p
0

∫ 1

0

aφ−1
( ∫ 1

0

w(τ)dτ
)
α‖v0‖ds

= λ
1/p
0 aαβ‖v0‖;

i.e., λ0 ≤ (aαβ)−p. This completes the proof. �

To prove Theorem 2.4 we need the following well-known lemma on fixed point
indices. See [5, 14] for details.

Lemma 3.7. Let l > 0 and assume Γu 6= u for u ∈ ∂Kl. Then
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(a) i(Γ,Kl,K) = 1 if ‖Γu‖ ≤ ‖u‖ for u ∈ ∂Kl.
(b) i(Γ,Kl,K) = 0 if ‖Γu‖ ≥ ‖u‖ for u ∈ ∂Kl.

Proof of Theorem 2.4. Without loss of generality, we assume Γu 6= u on ∂Kl1 ∪
∂Kl2 . For otherwise, Γ has a positive fixed point.

For any u ∈ ∂Kl1 , αl1 ≤ u(t) ≤ l1 on [0, 1]. From (2.4), f(t, u(t)) ≤ lp1((a +
q∗)β)−p on [0, 1]. Then by (2.3) and (3.6),

‖Γu‖ = max
t∈[0,1]

∫ 1

0

Gu(t, s)φ−1
( ∫ 1

0

w(τ)f(τ, u(τ))dτ
)
ds

≤ max
t∈[0,1]

∫ 1

0

Gu(t, s)φ−1
( ∫ 1

0

w(τ)dτ
)
l1((a + q∗)β)−1ds ≤ l1.

Thus ‖Γu‖ ≤ ‖u‖. By Lemma 3.7 (a), i(Γ,Kl1 ,K) = 1.
For any u ∈ Kl2 , αl2 ≤ u(t) ≤ l2 on [0, 1]. From (2.5), f(t, u(t)) ≥ lp2(aβ)−p on

[0, 1]. Then by (2.3) and (3.6)

‖Γu‖ ≥
∫ 1

0

Gu(t, s)φ−1
( ∫ 1

0

w(τ)f(τ, u(τ))dτ
)
ds

≥
∫ 1

0

Gu(t, s)φ−1
( ∫ 1

0

w(τ)dτ
)
l2(aβ)−1ds ≥ l2.

Thus ‖Γu‖ ≥ ‖u‖. By Lemma 3.7 (b), i(Γ,Kl2 ,K) = 0.
By Lemma 3.5, Γ has a fixed point u ∈ Kl2 \ Kl1 if l1 < l2, and Γ has a

fixed point u ∈ Kl1 \ Kl2 if l1 > l2. In each case, u is a positive function with
min{l1, l2} ≤ ‖u‖ ≤ max{l1, l2}. �

The proofs of Theorems 2.5 and 2.6 are in the same way and hence we only give
the proof of Theorem 2.5.

Proof of Theorem 2.5. (a) If there exists l1 > 0 such that (2.4) holds, then by the
proof of Theorem 2.4, i(Γ,Kl1 ,K) = 1. By the proof of Theorem 2.2, f0 > λ0

implies there exists 0 < l2 < l1 with i(Γ,Kl2 ,K) = 0. Then the conclusion follows
from Lemma 3.5. Part (b) can be proved similarly. �

Proof of Theorem 2.7. (a) Assume there exists l > 0 such that (2.6) holds. Then
there exist l1 and l2 such that l1 < l < l2 and f(t, u) < (lpi ((a + q∗)β)−p on
[0, 1] × [αli, li], i = 1, 2. By Theorem 2.5 (a) and (b), BVP (1.1), (1.2) has two
positive solutions u1 and u2 satisfying ‖u1‖ ≤ l1 and ‖u2‖ ≥ l2.

Part (b) can be proved similarly. �

Theorems 2.8 and 2.9 can be obtained by applying Theorem 2.4 repeatedly. We
omit the details.

Proof of Corollary 2.10. From the assumption we see that for sufficiently large i

f(t, u)
up

< ((a + q∗)β)−p for all (t, u) ∈ [0, 1]× [αl2i−1, l2i−1]

and
f(t, u)

up
> (aαβ)−p for all (t, u) ∈ [0, 1]× [αl2i, l2i].

This shows that for sufficiently large i,

f(t, u) < up((a + q∗)β)−p ≤ lp2i−1((a + q∗)β)−p on [0, 1]× [αl2i−1, l2i−1]
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and

f(t, u) > up(aαβ)−p ≥ (αl2i)p(aαβ)−p = lp2i(aβ)−p on [0, 1]× [αl2i, l2i].

Therefore, the conclusion follows from Theorem 2.9. �

Proof of Theorem 2.11. (a) Assume BVP (1.1), (1.2) has a positive solution u with
‖u‖ = l for some l > 0. Then u is a fixed point of the operator Γ defined by
(3.3). From the assumption, for any t ∈ [0, 1], f(t, u(t)) < up(t)((a + q∗)β)−p ≤
lp((a + q∗)β)−p. Hence

u(t) = (Γu)(t) =
∫ 1

0

Gu(t, s)φ−1
( ∫ 1

0

w(τ)f(τ, u(τ))dτ
)
ds

< l/((a + q∗)β)
∫ 1

0

Gu(t, s)φ−1
( ∫ 1

0

w(τ)dτ
)
ds ≤ l,

which contradicts ‖u‖ = l. Therefore, BVP (1.1), (1.2) has no positive solutions.
(b) Assume BVP (1.1), (1.2) has a positive solution u with ‖u‖ = l for some

l > 0. Then αl ≤ u(t) ≤ l on [0, 1]. From the assumption, for any t ∈ [0, 1],
f(t, u(t)) > up(t)(aαβ)−p ≥ lp(aβ)−p. Hence

u(t) = (Γu)(t) =
∫ 1

0

Gu(t, s)φ−1
( ∫ 1

0

w(τ)f(τ, u(τ))dτ
)
ds

> l/(aβ)
∫ 1

0

Gu(t1, s)φ−1
( ∫ 1

0

w(τ)dτ
)
ds ≥ l,

which contradicts ‖u‖ = l. Therefore, BVP (1.1), (1.2) has no positive solutions.
�

4. Partial BVPs with p-Laplacian

In this section, we extend our results in Section 2 to BVPs for partial differential
equations with p-Laplacian defined on annular domains. Let 0 < r1 < r2, n ∈ N,
and denote Ω = B(0, r2) \ B(0, r1), where B(0, r) is the ball in Rn centered at 0
with radius r. Consider the scalar BVP

−div(|∇v|p−1∇v) = h(|x|)f(v) in Ω, (4.1)
∂v

∂ν
= 0 on ∂B(0, r1), v + b

∂v

∂ν
= 0 on ∂B(0, r2), (4.2)

where x = (x1, . . . , xn) ∈ Rn, div(y) is the divergence of y : Rn → R, b ∈ R, ∇v is
the gradient of v, and ∂v/∂ν is the outward normal derivative of v along ∂B(0, ri),
i = 1, 2. We assume that h ∈ L[r1, r2], h ≥ 0 a.e. on (r1, r2), and

∫ r2

r1
h(s)ds > 0.

The next lemma shows the relation between the partial BVP (4.1), (4.2) and the
ordinary BVP (1.1), (1.2).

Lemma 4.1. Let r = |x|, t = t(r) :=
∫ r

r1
s(1−n)/pds/

∫ r2

r1
s(1−n)/pds, and r = r(t)

be its inverse function. Then BVP (4.1), (4.2) has a positive radial solution v(|x|)
if and only if BVP (1.1), (1.2) with q ≡ 1,

a =
br

1−n
p

2∫ r2

r1
s

1−n
p ds

, and w(t) = h(r(t))r
(p+1)(n−1)

p (t)
( ∫ r2

r1

s
1−n

p ds
)p+1

(4.3)

has a positive solution u(t).
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Proof. We first claim that the existence of a positive radial solution of BVP (4.1),
(4.2) is equivalent to the existence of positive solution of BVP consisting of the
equation

− d

dr
(rn−1φ(

dṽ

dr
)) = rn−1h(r)f(ṽ), r1 < r < r2, (4.4)

and the BC
dṽ

dr
(r1) = 0, ṽ(r2) + b

dṽ

dr
(r2) = 0, (4.5)

where ṽ(r) = v(|x|). In fact, the proof for the case when p = 1 is given in many
books such as [9] which can be easily extended to the general case.

Let ṽ(r) be a positive solution of BVP (4.4), (4.5) and u(t) = ṽ(r(t)). Then
dṽ
dr = du

dt
dt
dr . We note from the definition of t(r) that

dt

dr
=

r
1−n

p∫ r2

r1
s

1−n
p ds

.

By (4.4),

rn−1h(r)f(ṽ) = − d

dr

(
rn−1φ(

dṽ

dr
)
)

= − d

dt

(
rn−1φ(

du

dt

dt

dr
)
) dt

dr

= − d

dt

(( ∫ r2

r1

s
1−n

p ds
)−p

φ(
du

dt
)
) dt

dr

= −
( ∫ r2

r1

s
1−n

p ds
)−p d

dt

(
φ(

du

dt
)
) dt

dr

= −r
1−n

p

( ∫ r2

r1

s
1−n

p ds
)−p−1 d

dt

(
φ(

du

dt
)
)

.

Therefore,

− d

dt

(
φ(

du

dt
)
)

= h(r(t))r
(p+1)(n−1)

p (t)
( ∫ r2

r1

s
1−n

p ds
)p+1

f(u) = w(t)f(u),

which means that u(t) is a positive solution of (1.1) under (4.3). It is also easy to
see that u(t) satisfies BC (1.2).

The opposite direction can be verified by reversing the argument. We omit the
details. �

Clearly, all the assumptions of BVP (1.1), (1.2) are guaranteed by (4.3). In this
case, since q ≡ 1, from (2.3) we have

α =
br

1−n
p

2

br
1−n

p

2 +
∫ r2

r1
s

1−n
p ds

, (4.6)

β = φ−1
( ∫ 1

0

h(r(τ))r
(p+1)(n−1)

p (τ)
( ∫ r2

r1

s
1−n

p ds
)p+1

dτ
)

= φ−1
( ∫ r2

r1

h(r)rn−1
( ∫ r2

r1

s
1−n

p ds
)p

dr
)
.

(4.7)

Let f0, f
0, f∞, f∞ be defined by (2.1), λ0 the first eigenvalue of SLP (2.2), (1.2)

associated with BVP (1.1), (1.2) with q ≡ 1, and a and w defined by (4.3). Denote
‖v‖ = maxx∈Ω |v(x)| for v ∈ C(Ω, R).
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Now we apply the results in Section 2 to derive criteria for the existence, mul-
tiplicity, and nonexistence of positive radial solutions of BVP (4.1), (4.2). In the
theorems below, a, α, and β are defined by (4.3), (4.6), and (4.7), respectively.

Theorem 4.2. BVP (4.1), (4.2) has at least one positive radial solution if either
f0 < λ0 < f∞ or f∞ < λ0 < f0.

Corollary 4.3. BVP (4.1), (4.2) has at least one positive radial solution if either
(a) f0 < ((a + 1)β)−p and f∞ > (aαβ)−p; or
(b) f0 > (aαβ)−p and f∞ < ((a + 1)β)−p.

Theorem 4.4. Assume there exist 0 < l1 < l2 (respectively, 0 < l2 < l1) such that

f(v) ≤ lp1((a + 1)β)−p for all v ∈ [αl1, l1], (4.8)

f(v) ≥ lp2(aβ)−p for all v ∈ [αl2, l2]. (4.9)

Then BVP (4.1), (4.2) has at least one positive radial solution v with l1 ≤ ‖v‖ ≤ l2
(respectively, l2 ≤ ‖v‖ ≤ l1).

Theorem 4.5. Assume there exists l1 > 0 such that (4.8) holds. Then
(a) BVP (4.1), (4.2) has at least one positive radial solution v with ‖v‖ ≤ l1 if

f0 > λ0;
(b) BVP (4.1), (4.2) has at least one positive radial solution v with ‖v‖ ≥ l1 if

f∞ > λ0.

Theorem 4.6. Assume there exists l2 > 0 such that (4.9) holds. Then
(a) BVP (4.1), (4.2) has at least one positive radial solution v with ‖v‖ ≤ l2 if

f0 < λ0;
(b) BVP (4.1), (4.2) has at least one positive radial solution v with ‖v‖ ≥ l2 if

f∞ < λ0.

Theorem 4.7. Assume either
(a) f0 > λ0, f∞ > λ0, and there exists l > 0 such that

f(v) < lp((a + 1)β)−p for all v ∈ [αl, l]; or (4.10)

(b) f0 < λ0, f∞ < λ0, and there exists l > 0 such that

f(v) ≥ lp(aβ)−p for all v ∈ [αl, l]. (4.11)

Then BVP (4.1), (4.2) has at least two positive radial solutions v1 and v2 with
‖v1‖ < l < ‖v2‖.

Theorem 4.8. Let {li}N
i=1 ⊂ R such that 0 < l1 < l2 < · · · < lN . Assume either

(a) f satisfies (4.10) with r = li when i is odd, and satisfies (4.11) with r = li
when i is even; or

(b) f satisfies (4.10) with r = li when i is even, and satisfies (4.11) with r = li
when i is odd.

Then BVP (4.1), (4.2) has at least N − 1 positive radial solutions vi with li <
‖vi‖ < li+1, i = 1, 2, . . . , N − 1.

Theorem 4.9. Let {li}∞i=1 ⊂ R such that 0 < l1 < l2 < . . . and limi→∞ li = ∞.
Assume either

(a) f satisfies (4.8) with l1 = li when i is odd, and satisfies (4.9) with l2 = li
when i is even; or
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(b) f satisfies (4.8) with l1 = li when i is even, and satisfies (4.9) with l2 = li
when i is odd.

Then BVP (4.1), (4.2) has an infinite number of positive radial solutions.

Corollary 4.10. Let {li}∞i=1 ⊂ R such that 0 < l1 < l2 < . . . and limi→∞ li = ∞.
Let E1 = ∪∞i=1[αl2i−1, l2i−1] and E2 = ∪∞i=1[αl2i, l2i]. Assume

lim sup
E13v→∞

f(v)
vp

< ((a + 1)β)−p and lim inf
E23v→∞

f(v)
vp

> (aαβ)−p.

Then BVP (4.1), (4.2) has an infinite number of positive radial solutions.

Theorem 4.11. BVP (4.1), (4.2) has no positive radial solutions if
(a) f(v)/vp < ((a + 1)β)−p for all v ∈ (0,∞), or
(b) f(v)/vp > (aαβ)−p for all v ∈ (0,∞).

Remark 4.12. Note that when r1 → 0+, the annulus Ω for the domain of (4.1)
approaches a disk centered at the origin with radius r2, and the first BC in (4.2)
reduces to ∂v

∂ν |x=0 = 0 which is automatically satisfied by radial solutions. Hence,
the p-Laplacian partial BVP defined on the disk

−div(φ(∇v)) = h(|x|)f(v) in B(0, r2), (4.12)

v + b
∂v

∂ν
= 0 on ∂B(0, r2). (4.13)

can be treated as the limiting problem of BVP (4.1), (4.2) as r → 0+. There-
fore, the results for BVP (4.1), (4.2) can be extended to BVP (4.12), (4.13) with
the modification r1 = 0. The only problem in this extension is that the integral∫ r2

r1
s(1−n)/pds may become divergent as r1 → 0+. However, this does not occur

under the additional assumption that p + 1− n > 0.

5. Examples

In this section, we give several examples as applications of our results.

Example 5.1. Let S(θ) denote the general sine function and let θ∗ ∈ (πp/2, πp)
be a solution of S(θ) + S′(θ) = 0. Consider the BVP

−(φ(u′))′ = f(u), 0 < t < 1,
u′(0) = 0, u(1) + (θ∗ − πp/2)−1u′(1) = 0,

(5.1)

where f(u) = [p(θ∗ − πp/2)p+1 + c(tan−1(u) − π/4)]up with 0 < |c| < p(θ∗ −
πp/2)p+14/π. Then BVP (5.1) has at least one positive solution.

In fact, S(θ) is the unique solution of the initial value problem

−(φ(u′))′ = pφ(u),

u(0) = 0, u′(0) = 1.

Note that S′(πp/2) = 0. Hence p is the first eigenvalue of the SLP

−(φ(u′))′ = λφ(u),

u′(πp/2) = 0, u(θ∗) + u′(θ∗) = 0,

with the associated eigenfunction S(θ).
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Make the transformation t = (θ−πp/2)/(θ∗−πp/2) in the above problem. Then
similar to the proof of Lemma 4.1, we find that p(θ∗−πp/2)p+1 is the first eigenvalue
of the SLP

− d

dt
(φ(

du

dt
)) = λφ(u),

du

dt
(0) = 0, u(1) + (θ∗ − πp/2)−1 du

dt
(1) = 0.

Note that

f0 = f0 = p(θ∗ − πp/2)p+1 − cπ/4, f∞ = f∞ = p(θ∗ − πp/2)p+1 + cπ/4.

Then the conclusion follows from Theorem 2.2. Note that in this example, c can
be arbitrarily close to 0.

Example 5.2. Consider the ordinary BVP

−(φ(u′))′ = k(up/2 + u2p), 0 < t < 1,

u′(0) = 0, u(1) + au′(1) = 0.
(5.2)

Let l = 4−1/(3p), γ1 = (al)p/2((a+1)3p/2+(al)3p/2)−1, and γ2 = lp/2(a+1)pa−2p(1+
l3p/2)−1. Then

(a) BVP (5.2) has at least one positive solution when k = γ1;
(b) BVP (5.2) has at least two positive solutions u1 and u2 with ‖u1‖ < l <

‖u2‖ when 0 < k < γ1;
(c) BVP (5.2) has no positive solutions when k > γ2.

In fact, the equation in (5.2) is of the form of (1.1) with w(t) ≡ 1 and f(u) =
k(up/2 + u2p). Clearly, f0 = f∞ = ∞, f(u)/up is decreasing on (0, l], increasing on
[l,∞), and hence reaches minimum value at l. By (2.3), α = a/(a+1), β = 1. When
k = γ1, f(αl)/(αl)p = (a + 1)−p. Hence for u ∈ [αl, l], f(u)/up ≤ f(αl)/(αl)p =
(a + 1)−p, which follows that f(u) ≤ up(a + 1)−p ≤ lp(a + 1)−p. Therefore, by
Theorem 2.5 (a), BVP (5.2) has a positive solution u1 with ‖u1‖ ≤ l. Similarly, by
Theorem 2.5 (b) we can also show that BVP (5.2) has a positive solution u2 with
‖u2‖ ≥ l. However, u1 and u2 may be the same when ‖u1‖ = ‖u2‖ = l.

When 0 < k < γ1, by the similar argument as above and applying Theorem 2.5
(a), we obtain the conclusion.

When k > γ2, f(u)/up > (aαβ)−p = (a + 1)p(a2)−p on (0,∞). Then the
conclusion follows from Theorem 2.11 (b).

Example 5.3. Consider the BVP

−div(|∇v|p−1∇v) = k(v−p/2 + v−2p)−1 in Ω,

∂v

∂ν
= 0 on ∂B(0, r1), v + b

∂v

∂ν
= 0 on ∂B(0, r2),

(5.3)

where 0 < r1 < r2. Let l = 41/(3p) and a, α, β be defined by (4.3), (4.6), (4.7) with
h ≡ 1. Denote

γ3 = (a + 1)p/2((al)3p/2 + (a + 1)3p/2)a−3pl−pβ−p,

γ4 = (l3p/2 + 1)l−p(a + 1)−pβ−p.

Then
(a) BVP (5.3) has at least one positive solution when k = γ3;
(b) BVP (5.3) has at least two positive solutions when k > γ3;
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(c) BVP (5.3) has no positive solutions when 0 < k < γ4.

In fact, the equation in (5.3) is of the form of (4.1) with w(t) ≡ 1 and f(v) =
k(v−p/2 + v−2p)−1. It is clear that f0 = f∞ = 0 and f(v)/vp reaches maximum
at l. By a similar argument to Example 5.2 and applying Theorems 4.6, 4.7, and
4.11, we can prove the results. We omit the details.
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