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EXISTENCE OF PERIODIC SOLUTIONS FOR NEUTRAL
NONLINEAR DIFFERENTIAL EQUATIONS WITH VARIABLE

DELAY

DEHAM HAFSIA, DJOUDI AHCÉNE

Abstract. We use a variation of Krasnoselskii fixed point theorem introduced
by Burton to show that the nonlinear neutral differential equation

x′(t) = −a(t)x3(t) + c(t)x′(t− g(t)) + G(t, x3(t− g(t))

has a periodic solution. Since this equation is nonlinear, the variation of pa-

rameters can not be applied directly; we add and subtract a linear term to

transform the differential into an equivalent integral equation suitable for ap-
plying a fixed point theorem. Our result is illustrated with an example.

1. Introduction

We are interested in proving that the retarded scalar neutral non linear differ-
ential equation

x′(t) = −a(t)x3(t) + c(t)x′(t− g(t)) +G(t, x3(t− g(t))) (1.1)

possesses a periodic solution. The motivation for studying this problems comes
from the problems considered in [1, 3, 4, 5, 6]. Here a(t) is real valued function,
c(t) is continuously differentiable, g(t) is twice continuously differentiable, and G :
R×R → R is continuous with respect to its arguments. Clearly, the present problem
is nonlinear so that the variation of parameters can not be applied directly. Then,
we resort to the idea of adding and subtracting a linear term. As noted by Burton
in [1], the added term destroys a contraction already present in part of the equation
but it replaces it with the so called a large contraction mapping which is suitable for
fixed point theory. During the process we have to transform (1.1) into an integral
equation written as a sum of two mappings; one is a large contraction and the other
is compact. After that, we use a variant of Krasnoselskii fixed point theorem, due
to Burton [3], to show the existence of a periodic solution. Our result is illustrated
with an example at the end of this article.
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2. Inversion of (1.1)

Let T > 0 and define CT = {ϕ : R → R : ϕ ∈ C and ϕ(t + T ) = ϕ(t)} where
C is the space of continuous real valued functions. CT is a Banach space endowed
with the norm

‖ϕ‖ = max
0≤t≤T

|ϕ(t)| .

We assume that a, c,G, g are continuous functions with g(t) ≥ 0 and c continuously
differentiable such that

a(t+T ) = a(t), c(t+T ) = c(t), G(t+T, x) = G(t, x), g(t+T ) = g(t). (2.1)

We assume further that G(t, x) is globally Lipschitz continuous in x. That is, there
is some positive constant k such that

|G(t, x)−G(t, y)| ≤ k|x− y|. (2.2)

Also, we assume that ∫ T

0

a(s)ds > 0, (2.3)

and for all t, 0 ≤ t ≤ T ,and that g is twice continuously differentiable and

g′(t) 6= 1. (2.4)

Lemma 2.1. Suppose (2.1), (2.3) and (2.4) hold. If x(t) ∈ CT , then x(t) is a
solution of (1.1) if and only if

x(t) = (1− e−
R t

t−T
a(s)ds)−1

[ ∫ t

t−T

G(u, x3(u− g(u)))e−
R t

u
a(s)dsdu

+
∫ t

t−T

a(u)(x(u)− x3(u))e−
R t

u
a(s)dsdu

]
+
c(t)x(t− g(t))

(1− g′(t))

− (1− e−
R t

t−T
a(s)ds)−1

∫ t

t−T

h(u)(x(u− g(u)))e−
R t

u
a(s)dsdu,

(2.5)

where

h(u) =
(c′(u) + a(u)c(u))(1− g′(u)) + c(u)g′′(u)

(1− g′(u))2
.

Proof. Let x(t) be a solution of (1.1). Rewrite (1.1) as

x′(t) + a(t)x(t) = a(t)x(t)− a(t)x3(t) + c(t)x′(t− g(t)) +G(t, x3(t− g(t))).

Multiply both sides of the above equation by e
R t
0 a(s)ds and then integrate from t−T

to t to obtain∫ t

t−T

[x(u)e
R u
0 a(s)ds]′du

=
∫ t

t−T

a(u)[x(u)− x3(u)]e
R u
0 a(s)dsdu+

∫ t

t−T

G(u, x3(u− g(u)))e
R u
0 a(s)dsdu

+
∫ t

t−T

c(u)x′(u− g(u))e
R u
0 a(s)dsdu.

Rewrite the last term as∫ t

t−T

c(u)x′(u− g(u))e
R u
0 a(s)dsdu =

∫ t

t−T

c(u)x′(u− g(u))(1− g′(u))
(1− g′(u))

e
R u
0 a(s)dsdu.
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Using integration by parts, and that c, g, x are periodic we obtain∫ t

t−T

e
R u
0 a(s)dsc(u)x′(u− g(u))du

=
c(t)

(1− g′(t))
x(t− g(t))e

R t
0 a(s)ds(1− e−

R t
t−T

a(s)ds)

−
∫ t

t−T

h(u)(x(u− g(u)))e
R u
0 a(s)dsdu.

(2.6)

We arrive at

x(t)e
R t
0 a(s)ds − x(t− T )e

R t−T
0 a(s)ds

=
∫ t

t−T

a(u)[x(u)− x3(u)]e
R u
0 a(s)dsdu+

∫ t

t−T

G(u, x3(u− g(u)))e
R u
0 a(s)dsdu

+
c(t)

(1− g′(t))
x(t− g(t))e

R t
0 a(s)ds(1− e−

R t
t−T

a(s)ds)

−
∫ t

t−T

h(u)(x(u− g(u)))e
R u
0 a(s)dsdu.

Now, the lemma follows by dividing both sides of the above equation by e
R t
0 a(s)ds

and using the fact that x(t) = x(t− T ). �

Krasnoselskii [2, 7] combined the contraction mapping theorem and Shauder’s
theorem and formulated the following hybrid result.

Theorem 2.2. Let M be a closed convex non-empty subset of a Banach space
(S, ‖ · ‖). Suppose that A and B map M into S such that the following conditions
hold

(i) Ax+By ∈M , for all x, y ∈M ;
(ii) A is continuous and AM is contained in a compact set;
(iii) B is a contraction with α < 1.

Then there is a z ∈M , with z = Az +Bz.

This is a captivating result and has a number of interesting applications. In
recent year much attention has been paid to this theorem. Burton [2] observed that
Krasnoselskii result can be more interesting in applications with certain changes
and formulated in Theorem 2.4 below (see [3] for the proof).

Let (M,d) be a metric space and B : M →M . B is said to be a large contraction
if ϕ,ψ ∈M , with ϕ 6= ψ then d(Bϕ,Bψ) < d(ϕ,ψ) and if for all ε > 0 there exists
δ < 1 such that

[ϕ,ψ ∈M, d(ϕ,ψ) ≥ ε] ⇒ d(Bϕ,Bψ) ≤ δd(ϕ,ψ).

Theorem 2.3. Let (M,d) be a complete metric space and B be a large contraction.
Suppose there is an x ∈ M and an L > 0, such that d(x,Bnx) ≤ L for all n ≥ 1.
Then B has a unique fixed point in M .

Theorem 2.4. Let M be a bounded convex non-empty subset of a Banach space
(S, ‖ · ‖). Suppose that A, B map M into M and that

(i) for all x, y ∈M ⇒ Ax+By ∈M ,
(ii) A is continuous and AM is contained in a compact subset of M ,
(iii) B is a large contraction.
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Then there is a z ∈M with z = Az +Bz.

We will use this theorem to prove the existence of periodic solutions for (1.1).

3. Existence of periodic solutions

To apply Theorem 2.4, we need to define a Banach space S, a bounded convex
subset M of S and construct two mappings, one is a large contraction and the other
is completely continuous. So, we let (S, ‖ · ‖) = (CT , ‖ · ‖) and M = {ϕ ∈ S : ‖ϕ‖ ≤
L,ϕ′ is bounded}, where L =

√
3/3. We express (1.1) as

ϕ(t) = (Bϕ)(t) + (Aϕ)(t) := (Hϕ)(t),

where A,B : S → S are defined by

(Bϕ)(t) := (1− e−
R t

t−T
a(s)ds)−1

∫ t

t−T

a(u)(ϕ(u)− ϕ3(u))e−
R t

u
a(s)dsdu, (3.1)

and

(Aϕ)(t) := (1− e−
R t

t−T
a(s)ds)−1

∫ t

t−T

G(u, ϕ3(u− g(u)))e−
R t

u
a(s)dsdu

+
c(t)ϕ(t− g(t))

(1− g′(t))

− (1− e−
R t

t−T
a(s)ds)−1

∫ t

t−T

h(u)(ϕ(u− g(u)))e−
R t

u
a(s)dsdu.

(3.2)

We need the following assumptions

(kL3 + |G(t, 0)|) ≤ βLa(t), (3.3)

|h(t)| ≤ δa(t), (3.4)

max
t∈[0,T ]

| c(t)
(1− g′(t))

| = α, (3.5)

J(β + α+ δ) ≤ 1, (3.6)

where α, β, δ and J are constants with J ≥ 3.
We begin with the following proposition (see [1, 2]).

Proposition 3.1. Let ‖ · ‖ be the supremum norm,

M = {ϕ : R → R : ϕ ∈ C, ‖ϕ‖ ≤
√

3/3, ‖ϕ′‖ ≤ L′},
and define (Bϕ)(t) := ϕ(t)− ϕ3(t). Then B is a large contraction of the set M .

Proof. For each t ∈ R we have, for ϕ,ψ real functions,

|(Bϕ)(t)− (Bψ)(t)| = |ϕ(t)− ϕ3(t)− ψ(t) + ψ3(t)|
= |ϕ(t)− ψ(t)||1− (ϕ2(t) + ϕ(t)ψ(t) + ψ2(t))|.

Then for

|ϕ(t)− ψ(t)|2 = ϕ2(t)− 2ϕ(t)ψ(t) + ψ2(t) ≤ 2(ϕ2(t) + ψ2(t))

and for ϕ2(t) + ψ2(t) < 1, we have

|(Bϕ)(t)− (Bψ)(t)| = |ϕ(t)− ψ(t)|[1− (ϕ2(t) + ψ2(t)) + |ϕ(t)ψ(t)|]

≤ |ϕ(t)− ψ(t)|[1− (ϕ2(t) + ψ2(t)) +
ϕ2(t) + ψ2(t)

2
]
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≤ |ϕ(t)− ψ(t)|[1− ϕ2(t) + ψ2(t)
2

].

Thus, B is pointwise a large contraction. But application B is still a large contrac-
tion for the supremum norm. For, let ε ∈ (0, 1) be given and let ϕ,ψ ∈ M with
‖ϕ− ψ‖ ≥ ε.

(a) Suppose that for some t we have ε/2 ≤ |ϕ(t)− ψ(t)|. Then

(ε/2)2 ≤ |ϕ(t)− ψ(t)|2 ≤ 2(ϕ2(t) + ψ2(t));

that is, ϕ2(t) + ψ2(t) ≥ ε2/8. For such t we have

|(Bϕ)(t)− (Bψ)(t)| ≤ |ϕ(t)− ψ(t)|[1− ε2

8
] ≤ ‖ϕ− ψ‖[1− ε2

8
].

(b) Suppose that for some t, |ϕ(t)− ψ(t)| ≤ ε/2. Then

|(Bϕ)(t)− (Bψ)(t)| ≤ |ϕ(t)− ψ(t)| ≤ (1/2)‖ϕ− ψ‖.
Consequently,

‖Bϕ−Bψ‖ ≤ min[1/2, 1− ε2

8
]‖ϕ− ψ‖.

�

We shall prove that the mappingH has a fixed point which solves (1.1), whenever
its derivative exists.

Lemma 3.2. For A defined in (3.2), suppose that (2.1)-(2.3) and (3.3)-(3.6) hold.
Then A : M →M is continuous in the supremum norm and maps M into a compact
subset of M .

Proof. Clearly, if ϕ is continuous then Aϕ is. A change of variable in (3.2) shows
that (Aϕ)(t+ T ) = ϕ(t). Observe that

|G(t, x)| ≤ |G(t, x)−G(t, 0)|+ |G(t, 0)| ≤ k|x|+ |G(t, 0)|.
So, for any ϕ ∈M , we have

|(Aϕ)(t)| ≤ (1− e−
R t

t−T
a(s)ds)−1

∫ t

t−T

|G(u, ϕ3(u− g(u)))|e−
R t

u
a(s)dsdu

+ |c(t)ϕ(t− g(t))
(1− g′(t))

|

+ (1− e−
R t

t−T
a(s)ds)−1

∫ t

t−T

|h(u)(ϕ(u− g(u)))|e−
R t

u
a(s)dsdu

≤ (1− e−
R t

t−T
a(s)ds)−1

∫ t

t−T

(kL3 + |G(u, 0)|)e−
R t

u
a(s)dsdu+ αL

+ (1− e−
R t

t−T
a(s)ds)−1

∫ t

t−T

δa(u)Le−
R t

u
a(s)dsdu

≤ βL(1− e−
R t

t−T
a(s)ds)−1

∫ t

t−T

a(u)e−
R t

u
a(s)dsdu+ αL

+ δL(1− e−
R t

t−T
a(s)ds)−1

∫ t

t−T

a(u)e−
R t

u
a(s)dsdu

≤ (β + α+ δ)L ≤ L

J
< L.
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That is Aϕ ∈M .
We show that A is continuous in the supremum norm. Let ϕ,ψ ∈M , and let

α′ = max
t∈[0,T ]

(1− e−
R t

t−T
a(s)ds)−1, β′ = max

u∈[t−T,t]
e−

R t
u

a(s)ds,

σ = max
t∈[0,T ]

{a(t)}, ρ = max
t∈[0,T ]

|G(t, 0)|,

µ = max
t∈[0,T ]

| c′(t)
(1− g′(t))

|, υ = max
t∈[0,T ]

| g
′′(t)c(t)

(1− g′(t))2
|.

(3.7)

Then

|(Aϕ)(t)− (Aψ)(t)|

≤ (1− e−
R t

t−T
a(s)ds)−1

∫ t

t−T

|G(u, ϕ3(u− g(u)))−G(u, ψ3(u− g(u)))|

× e−
R t

u
a(s)dsdu+ |c(t)ϕ(t− g(t))

(1− g′(t))
− c(t)ψ(t− g(t))

(1− g′(t))
|

+ (1− e−
R t

t−T
a(s)ds)−1

∫ t

0

|h(u)||(ϕ(u− g(u))− ψ(u− g(u))|

× e−
R t

u
a(s)dsdu

≤ k(1− e−
R t

t−T
a(s)ds)−1‖ϕ3 − ψ3‖

∫ t

t−T

e−
R t

u
a(s)ds + α‖ϕ− ψ‖+ δ‖ϕ− ψ‖

≤ (3kTα′β′L2 + α+ δ)‖ϕ− ψ‖.

Let ε > 0 be arbitrary. Define η = ε
K , with K = 3kTα′β′L2 + α + δ, where k is

given by (2.2). Then, for ‖ϕ− ψ‖ < η, we obtain

‖Aϕ−Aψ‖ ≤ K‖ϕ− ψ‖ < ε.

It is left to show that A is compact. Let ϕn ∈ M , where n is a positive integer.
Then, as above, we see that

‖Aϕn‖ ≤ L. (3.8)
Moreover, a direct calculation shows that

(Aϕn)′(t)

= (G(t, ϕ3
n(t− g(t)))− h(t)ϕn(t− g(t))− a(t)(1− e−

R t
t−T

a(s)ds)−1

×
∫ t

t−T

[G(u, ϕ3
n(u− g(u)))− h(u)ϕn(u− g(u))]e−

R t
u

a(s)dsdu

+
c′(t)ϕn(t− g(t)) + c(t)ϕn

′(t− g(t))
1− g′(t)

+
g′′(t)c(t)ϕn(t− g(t))

(1− g′(t))2
.

By invoking the conditions (2.2), (3.3)-(3.5), (3.7) and (3.8) we obtain

|(Aϕn)′(t)| ≤ kL3 + ρ+ δa(t)L+ a(t)L+ αL+ µL+ αL′ + υL

≤ kL3 + ρ+ (δ + 1)σL+ (α+ µ+ υ)L+ αL′ ≤ D,

for some positive constant D. Hence the sequence (Aϕn) is uniformly bounded and
equicontinuous. The Ascoli-Arzela theorem implies that the subsequence (Aϕnk

)
of (Aϕn) converges uniformly to a continuous T−periodic function. Thus, A is
continuous and AM is a compact set. �
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Lemma 3.3. Suppose (2.1)-(2.3) and (3.3) hold. For A,B defined in (3.2) and
(3.1), if ϕ,ψ ∈M are arbitrary, then

Aϕ+Bψ : M →M.

Moreover, B is a large contraction on M with a unique fixed point in M .

Proof. Let ϕ,ψ ∈M be arbitrary. Note first that |ψ(t)| ≤
√

3/3 implies

|ψ(t)− ψ3(t)| ≤ (2
√

3)/9.

Using the definition of B, and the result of Lemma 3.2, we obtain

|(Aϕ)(t) + (Bψ)(t)|

≤ |(1− e−
R t

t−T
a(s)ds)−1

∫ t

t−T

G(u, ϕ3(u− r(u)))e−
R t

u
a(s)dsdu

+
c(t)ϕ(t− g(t))

(1− g′(t))
− (1− e−

R t
t−T

a(s)ds)−1

∫ t

t−T

h(u)(ϕ(u− g(u)))e−
R t

u
a(s)dsdu|

+ |(1− e−
R t

t−T
a(s)ds)−1

∫ t

t−T

a(u)|ψ(u)− ψ3(u)|e−
R t

u
a(s)dsdu|

≤
√

3
3J

+
2
√

3
9

≤ L.

Thus, Aϕ + Bψ ∈ M . Left to show that B is a large contraction with a unique
fixed point in M . Proposition 3.1 shows that ψ − ψ3 is a large contraction in the
supremum norm. For any ε, from the proof of that proposition, we have found a
δ < 1, such that

|(Bψ)(t)− (Bϕ)(t)| ≤ (1− e−
R t

t−T
a(s)ds)−1

∫ t

t−T

a(u)δ‖ψ − ϕ‖e−
R t

u
a(s)dsdu

≤ δ‖ψ − ϕ‖.
Further, since 0 ∈ M the above inequality shows, when ϕ = 0, we see that B :
M →M . This completes the proof. �

Theorem 3.4. Let (S, ‖ · ‖) be the Banach space of continuous T -periodic real
functions and M = {ϕ ∈ S : ‖ϕ‖ ≤ L,ϕ′ is bounded}, where L =

√
3/3. Suppose

(2.1)- (2.3) and (3.3)-(3.6) hold. Then equation (1.1) possesses a periodic solution
ϕ in the subset M .

Proof. By Lemma 2.1, ϕ is a solution of (1.1) if

ϕ = Aϕ+Bϕ,

where A and B are given by (3.2), (3.1) respectively. By Lemma 3.2, A : M →M
is continuous and AM is contained in compact subset of M . By Lemma 3.3,
Aϕ+Bψ ∈M whenever ϕ,ψ ∈M . Moreover, B : M →M is a large contraction.
Clearly, all the hypotheses of Theorem 2.4 of Krasnoselskii are satisfied. Thus, there
exists a fixed point ϕ ∈ M such that ϕ = Aϕ+ Bϕ. Hence (1.1) has a T-periodic
solution. �

Example 3.5. Let S and M as in Theorem 3.4 with T = 2π and consider the
neutral nonlinear equation

x′(t) = −4.10−1x3(t) + 10−3 sin t.x′(t− 1) + 10−3(cos t+ x3(t− 1)).
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Then

T = 2π, a(t) = 4.10−1, c(t) = 10−3 sin t, G(t, x) = 10−3(cos t+x), g(t) = 1.

Doing straightforward computations, we obtain

k = ρ = α = µ = 10−3, υ = 0, α′ = (1− e−0.8π)−1, β′ = 1.

By replacing, in (3.3) and (3.4), β = δ = 10−2, then any J ∈ [3, 47] satisfies (3.6).
All hypotheses of Theorem 3.4 are fulfilled and so the equation have at least a
2π-periodic solution belonging to M .

Acknowledgments. The authors would like to thank the anonymous referee for
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