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DYNAMIC EVOLUTION OF DAMAGE IN
ELASTIC-THERMO-VISCOPLASTIC MATERIALS

ABDELBAKI MEROUANI, FARID MESSELMI

Abstract. We consider a mathematical model that describes the dynamic

evolution of damage in elastic-thermo-viscoplastic materials with displacement-
traction, and Neumann and Fourier boundary conditions. We derive a weak

formulation of the system consisting of a motion equation, an energy equation,
and an evolution damage inclusion. This system has an integro-differential

variational equation for the displacement and the stress fields, and a varia-

tional inequality for the damage field. We prove existence and uniqueness of
the solution, and the positivity of the temperature.

1. Introduction

The constitutive laws with internal variables has been used in various publi-
cations in order to model the effect of internal variables in the behavior of real
bodies like metals, rocks polymers and so on, for which the rate of deformation
depends on the internal variables. Some of the internal state variables considered
by many authors are the spatial display of dislocation, the work-hardening of mate-
rials, the absolute temperature and the damage field, see for examples and details
[5, 8, 21, 22, 23, 29, 30] and references therein for the case of hardening, tempera-
ture and other internal state variables and the references [12, 13, 14, 22, 25, 27] for
the case of damage field.

The aim of this paper is to study the dynamic evolution of damage in elastic-
thermo-viscoplastic materials. For this, we consider a rate-type constitutive equa-
tion with two internal variables of the form

σ(t) = A(ε(u̇(t))) + E(ε(u(t)))

+
∫ t

0

G
(
σ(s)−A(ε(u̇(s))), ε(u(s)), θ(s), ς(s)

)
ds,

(1.1)

in which u, σ represent, respectively, the displacement field and the stress field
where the dot above denotes the derivative with respect to the time variable, θ
represents the absolute temperature, ς is the damage field, A and E are nonlinear
operators describing the purely viscous and the elastic properties of the material,
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respectively, and G is a nonlinear constitutive function which describes the visco-
plastic behavior of the material.

Examples and mechanical interpretation of elastic-viscoplastic can be found in
[9, 16]. Dynamic and quasistatic contact problems are the topic of numerous papers,
e.g. [1, 2, 4, 11, 26], and the comprehensive references [15, 28]. However, the
mathematical problem modelled the quasi-static evolution of damage in thermo-
viscoplastic materials has been studied in [22].

The paper is organized as follows. In Section 2 we present the mechanical prob-
lem of the dynamic evolution of damage in elastic-thermo-viscoplastic materials.
We introduce some notations and preliminaries and we derive the variational for-
mulation of the problem. We prove in Section 3 the existence and uniqueness of
the solution as well as the positivity of the temperature.

2. Statement of the Problem

Let Ω ⊂ Rn (n = 2, 3) be a bounded domain with a Lipschitz boundary Γ,
partitioned into two disjoint measurable parts Γ1 and Γ2 such that meas(Γ1) > 0.
We denote by Sn the space of symmetric tensors on Rn. We define the inner product
and the Euclidean norm on Rn and Sn, respectively, by

u · v = uivi ∀u,v ∈ Rn, σ · τ = σijτij ∀σ, τ ∈ Sn,

|u| = (u · u)1/2 ∀u ∈ Rn, |σ| = (σ · σ)1/2 ∀σ ∈ Sn.
Here and below, the indices i and j run from 1 to n and the summation convention

over repeated indices is used. We shall use the notation

H = L2(Ω)n = {u = {ui} : ui ∈ L2(Ω)},
H = {σ = {σij} : σij = σji ∈ L2(Ω)},

H1 = {u ∈ H : ε(u) ∈ H},
H1 = {σ ∈ H : Div(σ) ∈ H},

V = H1(Ω).

Here ε : H1 → H and Div : H1 → H are the deformation and divergence operators,
respectively, defined by

ε(u) = (εij(u)), εij(u) =
1
2
(ui,j + uj,i), Div(σ) = (σij,j).

The sets H, H, H1, H1 and V are real Hilbert spaces endowed with the canonical
inner products:

(u,v)H =
∫

Ω

uividx, (σ, τ)H =
∫

Ω

σijτijdx,

(u,v)H1 = (u,v)H + (ε(u), ε(v))H,

(σ, τ)H1 = (σ, τ)H + (Div(σ),Div(τ))H ,

(f, g)V = (f, g)L2(Ω) + (fxi
, gxi

)L2(Ω) .

The associated norms are denoted by ‖ · ‖H , ‖ · ‖H, ‖ · ‖H1 , ‖ · ‖H1 and ‖ · ‖V . Since
the boundary Γ is Lipschitz continuous, the unit outward normal vector field ν on
the boundary is defined a.e. For every vector field v ∈ H1 we denote by vν and vτ
the normal and tangential components of v on the boundary given by

vν = v · ν, vτ = v−vνν.
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Let HΓ = (H1/2(Γ))n and γ : H1 → HΓ be the trace map. We denote by V the
closed subspace of H1 defined by

V = {v ∈ H1 : γv = 0 on Γ1}.
We also denote by H ′

Γ the dual of HΓ. Moreover, since meas(Γ1) > 0, Korn’s
inequality holds and thus, there exists a positive constant C0 depending only on Ω,
Γ1 such that

‖ε(v)‖H ≥ C0‖v‖H1 ∀v ∈ V.
Furthermore, if σ ∈ H1 there exists an element σν ∈ H ′

Γ such that the following
Green formula holds

(σ, ε(v))H + (Div(σ),v)H = (σν, γv)H′
Γ×HΓ ∀v ∈ H1.

In addition, if σ is sufficiently regular (say C1), then

(σ, ε(v))H + (Div(σ),v)H =
∫

Γ

σν · γvdγ ∀v ∈ H1.

where dγ denotes the surface element. Similarly, for a regular tensor field σ : Ω →
Sn we define its normal and tangential components on the boundary by

σν = σν · ν, στ = σν − σνν.

Moreover, we denote by V ′ and V ′ the dual of the spaces V and V , respectively.
Identifying H, respectively L2(Ω), with its own dual, we have the inclusions

V ⊂ H ⊂ V ′, V ⊂ L2(Ω) ⊂ V ′.

We use the notation 〈·, ·〉V′×V , 〈·, ·〉V ′×V to represent the duality pairing between
V ′,V and V ′, V , respectively.

For the rest of this article, we will denote by c possibly different positive constants
depending only on the data of the problem.

The physical setting is the following. An elastic-thermo-viscoplastic body occu-
pies the domain Ω. We assume that the body is clamped on Γ1 × (0, T ), (T > 0)
and therefore the displacement field vanishes there. Surface tractions of density f0
acts on Γ2 × (0, T ) and a volume forces of density f is applied in Ω × (0, T ). In
addition, we admit a possible external heat source applied in Ω × (0, T ), given by
the function q.

The mechanical problem may be formulated as follows.

Problem (P). Find the displacement field u : Ω × (0, T ) → Rn, the stress field
σ : Ω × (0, T ) → Sn, the temperature θ : Ω × (0, T ) → R and the damage field
ς : Ω× (0, T ) → R such that

σ(t) = A(ε(u̇(t))) + E(ε(u(t))) +
∫ t

0

G
(
σ(s)

−A(ε(u̇(s))), ε(u(s)), θ(s), ς(s)
)
ds in Ω a.e. t ∈ (0, T ),

(2.1)

ρü = Div(σ) + f in Ω× (0, T ), (2.2)

ρθ̇ − k0∆θ = ψ(σ, ε(u̇), θ, ς) + q in Ω× (0, T ), (2.3)

ρς̇ − k1∆ς + ∂Kϕ(ς) 3 φ(σ, ε(u), θ, ς) in Ω× (0, T ), (2.4)

u = 0 on Γ1 × (0, T ), (2.5)

σν = f0 on Γ2 × (0, T ), (2.6)
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k0
∂θ

∂ν
+ βθ = 0 on Γ× (0, T ), (2.7)

∂ς

∂ν
= 0 on Γ× (0, T ), (2.8)

u(0) = u0, u̇(0) = w, θ(0) = θ0, ς(0) = ς0 in Ω. (2.9)

This problem represents the dynamic evolution of damage in elastic-thermo-
viscoplastic materials. Equation (2.1) is the elastic-thermo-viscoplastic constitutive
law where A and E are nonlinear operators describing the purely viscous and the
elastic properties of the material, respectively, and G is a nonlinear constitutive
function which describes the viscoplastic behavior of the material. (2.2) represents
the equation of motion in which the dot above denotes the derivative with respect
to the time variable and ρ is the density of mass. Equation (2.3) represents the
energy conservation where ψ is a nonlinear constitutive function which represents
the heat generated by the work of internal forces and q is a given volume heat
source. Inclusion (2.4) describes the evolution of damage field, governed by the
source damage function φ, where ∂Kϕ(ς) is the subdifferential of indicator function
of the set K of admissible damage functions given by

K = {ξ ∈ V : 0 ≤ ξ(x) ≤ 1 a.e. x ∈ Ω},

in such a way that the damage function ς varied between 0 and 1. If ς = 1 there
is no damage in the material, if ς = 0 the material is completely damaged and if
0 < ς < 1 the material is partially damaged.

Equalities (2.5) and (2.6) are the displacement-traction boundary conditions,
respectively. (2.7), (2.8) represent, respectively on Γ, a Fourier boundary condition
for the temperature and an homogeneous Neumann boundary condition for the
damage field on Γ. Finally the functions u0, w, θ0 and ς0 in (2.9) are the initial
data.

In the study of the mechanical problem (P), we consider the following hypotheses
A : Ω× Sn → Sn satisfies the following properties:

(a) There exists an LG > 0 such that |A(x, ε1) − A(x, ε2)| ≤
LA|ε1 − ε2| for all ε1, ε2 ∈ Sn a.e. x ∈ Ω;
(b) There exists an mA such that (A(x, ε1)−A(x, ε2)).(ε1−ε2) ≥
mA|ε1 − ε2|2 for all ε1, ε2 ∈ Sn a.e. x ∈ Ω;
(c) The mapping x 7→ A(x, ε) is Lebesgue measurable on Ω for
all ε ∈ Sn;
(d) The mapping x 7→ A(x, 0) ∈ H.

(2.10)

E : Ω× Sn → Sn satisfies the following properties:

(a) There exists an LE > 0 such that |E(x, ε1)−E(x, ε2)| ≤ LE |ε1−
ε2| for all ε1, ε2 ∈ Sn a.e. x ∈ Ω;
(b) The mapping x 7→ E(x, ε) is Lebesgue measurable on Ω for all
ε ∈ Sn;
(c) The mapping x 7→ E(x, 0) ∈ H.

(2.11)
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G : Ω× Sn × Sn × R× R → Sn satisifes the following properties:

(a) There exists an LG > 0 such that |G(x, σ1, ε1, θ1, ς1) −
G(x, σ2, ε2, θ2, ς2)| ≤ LG(|σ1−σ2|+ |ε1− ε2|+ |θ1− θ2|+ |ς1− ς2|)
for all σ1, σ2 ∈ Sn, for all ε1, ε2 ∈ Sn, for all θ1, θ2 ∈ R, for all
ς1, ς2 ∈ R a.e. x ∈ Ω;
(b) The mapping x→ G(x, σ, ε, θ, ς) is Lebesgue measurable on Ω
for all σ, ε ∈ Sn, for all θ, ς ∈ R;
(c) The mapping x→ G(x, 0, 0, 0, 0) ∈ H.

(2.12)

ψ : Ω× Sn × Sn × R× R → R satisfies the following properties:

(a) There exists an Lψ > 0 such that |ψ(x, σ1, ε1, θ1, ς1) −
ψ(x, σ2, ε2, θ2, ς2)| ≤ Lψ(|σ1−σ2|+ |ε1− ε2|+ |θ1− θ2|+ |ς1− ς2|)
for all σ1, σ2 ∈ Sn, for all ε1, ε2 ∈ Sn, for all θ1, θ2 ∈ R, for all
ς1, ς2 ∈ R a.e. x ∈ Ω;
(b) The mapping x→ ψ(x, σ, ε, θ, ς) is Lebesgue measurable on Ω
for all σ, ε ∈ Sn, for all θ, ς ∈ R;
(c) The mapping x→ ψ(x, 0, 0, 0, 0) ∈ L2(Ω).

(2.13)

φ : Ω× Sn × Sn × R× R → R satisfies the following properties:

(a) There exists an Lφ > 0 such that |φ(x, σ1, ε1, θ1, ς1) −
φ(x, σ2, ε2, θ2, ς2)| ≤ Lφ(|σ1− σ2|+ |ε1− ε2|+ |θ1− θ2|+ |ς1− ς2|)
for all σ1, σ2 ∈ Sn, for all ε1, ε2 ∈ Sn, for all θ1, θ2 ∈ R, for all
ς1, ς2 ∈ R a.e. x ∈ Ω;
(b) The mapping x 7→ φ(x, σ, ε, θ, ς) is Lebesgue measurable on Ω
for all σ, ε ∈ Sn, for all θ, ς ∈ R;
(c) The mapping x 7→ φ(x, 0, 0, 0, 0) ∈ L2(Ω).

(2.14)

ρ ∈ L∞(Ω), ρ ≥ ρ∗ > 0.

f ∈ L2(0, T ;H), f0 ∈ L2(0, T ;L2(Γ2)n).

q ∈ L2(0, T ;L2(Ω)).

(2.15)

u0 ∈ V, w0 ∈ H, θ0 ∈ V, ς0 ∈ K. (2.16)

ki > 0, i = 0, 1. (2.17)

We denote by F(t) ∈ V ′ the following element

〈F(t),v〉V′×V = (f(t),v)H + (f0(t), γv)L2(Γ2)n ∀v ∈ V, t ∈ (0, T ). (2.18)

The use of (2.15) permits to verify that

F ∈ L2(0, T ;V ′). (2.19)

We introduce the following continuous functionals

a0 : V × V → R, a0(ζ, ξ) = k0

∫
Ω

∇ζ · ∇ξdx+ β

∫
Γ

ζξdγ, (2.20)

a1 : V × V → R, a1(ζ, ξ) = k1

∫
Ω

∇ζ · ∇ξdx. (2.21)

Using the above notation and Green’s formula, we derive the following variational
formulation of mechanical problem (P).
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Problem PV. Find the displacement field u : Ω × (0, T ) → Rn, the stress field
σ : Ω × (0, T ) → Sn, the temperature θ : Ω × (0, T ) → R and the damage field
ς : Ω× (0, T ) → R such that

σ(t) = A(ε(u̇(t))) + E(ε(u(t)))

+
∫ t

0

G(σ(s)−A(ε(u̇(s))), ε(u(s)), θ(s), ς(s))ds a.e. t ∈ (0, T ),
(2.22)

〈ρü(t),v〉V′×V + (σ(t), ε(v))H = 〈F(t),v〉V′×V ∀v ∈ V, a.e. t ∈ (0, T ), (2.23)

〈ρθ̇(t), ω〉V ′×V + a0(θ(t), ω)

= 〈ψ(σ(t), ε(u̇(t)), θ(t), ς(t)), ω〉V ′×V + (q(t), ω)L2(Ω)

∀ω ∈ V, a.e. t ∈ (0, T ),

(2.24)

〈ρς̇(t), ξ − ς(t)〉V ′×V + a1(ς(t), ξ − ς(t))

≥ 〈φ(σ(t), ε(u(t)), θ(t), ς(t)), ξ − ς(t)〉V ′×V
∀ξ ∈ K, a.e. t ∈ (0, T ), ς(t) ∈ K,

(2.25)

u(0) = u0, u̇(0) = w, θ(0) = θ0, ς(0) = ς0 in Ω. (2.26)

3. Main Results

The main results are stated by the following theorems.

Theorem 3.1 (Existence and uniqueness). Under assumptions (2.10)-(2.17), there
exists a unique solution {u, σ, θ, ς} to problem (PV). Moreover, the solution has the
regularity

u ∈ C0(0, T ;V) ∩ C1(0, T ;H), (3.1)

u̇ ∈ L2(0, T ;V), (3.2)

ü ∈ L2(0, T ;V ′), (3.3)

σ ∈ L2(0, T ;H), (3.4)

θ ∈ L2(0, T ;V ) ∩ C0(0, T ;L2(Ω)), (3.5)

θ̇ ∈ L2(0, T ;V ′), (3.6)

ς ∈ L2(0, T ;V ) ∩ C0(0, T ;L2(Ω)), (3.7)

ς̇ ∈ L2(0, T ;V ′). (3.8)

The proof will be done in several steps. Based on classical arguments of func-
tional analysis concerning variational problems, and Banach fixed point theorem.

First step. Take an arbitrary element

(η, λ, µ) ∈ L2(0, T ;V ′ × V ′ × V ′), (3.9)

and consider the auxiliary problem.

Problem PV1(η,λ,µ). Find the displacement field uη : Ω × (0, T ) → Rn, the
temperature θλ : Ω × (0, T ) → R and the damage field ςµ : Ω × (0, T ) → R which
are solutions of the variational system

〈ρüη(t),v〉V′×V + (A(ε(u̇η(t))), ε(v))H + 〈η(t),v〉V′×V = 〈F(t),v〉V′×V
∀v ∈ V, a.e. t ∈ (0, T ),

(3.10)
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〈ρθ̇λ(t), ω〉V ′×V + a0(θλ(t), ω) = 〈λ(t) + q(t), ω〉V ′×V
∀ω ∈ V, a.e. t ∈ (0, T ),

(3.11)

〈ρς̇µ(t), ξ − ςµ(t)〉V ′×V + a1(ςµ(t), ξ − ςµ(t))

≥ 〈µ, ξ − ςµ(t)〉V ′×V ∀ξ ∈ K, a.e. t ∈ (0, T ), ςµ(t) ∈ K,
(3.12)

uη(0) = u0, u̇η(0) = w, θλ(0) = θ0, ςµ(0) = ς0 in Ω. (3.13)

Lemma 3.2. For all (η, λ, µ) ∈ L2(0, T ;V ′×V ′×V ′), there exists a unique solution
{uη, θλ, ςµ} to the auxiliary problem PV1(η,λ,µ) satisfying (3.1)-(3.3) and (3.5)-
(3.8).

Proof. Let us introduce the operator A : V → V ′,

〈Au,v〉V′×V = (A(ε(u)), ε(v))H. (3.14)

It follows from hypothesis (2.10) that

‖Au−Av‖V′ ≤ LA‖u− v‖V ∀u,v ∈ V.

Which proves that A is bounded and hemi-continuous on V.
On the other hand, by (2.10) and Korn’s inequality, we find for every v ∈ V,

〈Av,v〉V′×V
‖v‖V

≥ C2
0mA‖v‖V .

The passage to the limit in this inequality when ‖v‖V → +∞ implies that A is
coercive in V.

Next, by definition of A, the use of (2.10) and Korn’s inequality permits also to
obtain

〈Au−Av,u− v〉V′×V > C2
0mA‖u− v‖V if u 6= v.

Then A is strict monotone. Therefore, (3.10) can be rewritten, making use the
operator A, as follows

ρüη(t) +A(u̇η(t)) = Fη(t) on V ′ a.e. t ∈ (0, T ), (3.15)

where
Fη(t) = F(t)− η(t) ∈ V ′.

We recall that by (2.19) we have Fη ∈ L2(0, T ;V ′). Kipping in mind that
the operator A is strict monotone, hemi-continuous, bounded and coercive, then
by using classical arguments of functional analysis concerning parabolic equations
[7, 19] we can easily prove the existence and uniqueness of wη satisfying

wη ∈ L2(0, T ;V) ∩ C0(0, T ;H), (3.16)

ẇη ∈ L2(0, T ;V ′), (3.17)

ρẇη(t) +A(wη(t)) = Fη(t) on V ′ a.e. t ∈ (0, T ), (3.18)

wη(0) = w0. (3.19)

Consider now the function uη : (0, T ) → V defined by

uη(t) =
∫ t

0

wη(s)ds+ u0 ∀t ∈ (0, T ). (3.20)

It follows from (3.18) and (3.19) that uη is a solution of the equation (3.15) and it
satisfies (3.1)-(3.3).
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Furthermore, by an application of the Poincaré-Friedrichs inequality, we can find
a constant β′ > 0 such that∫

Ω

|∇ζ|2dx+
β

k0

∫
Γ

|ζ|2dγ ≥ β′
∫

Ω

|ζ|2dx ∀ζ ∈ V.

Thus, we obtain
a0(ζ, ζ) ≥ c1‖ζ‖2

V ∀ζ ∈ V, (3.21)
where c1 = k0 min(1, β′)/2, which implies that a0 is V−elliptic. Consequently,
based on classical arguments of functional analysis concerning parabolic equations,
the variational equation (3.11) has a unique solution θλ satisfies (3.5)-(3.6).

On the other hand, we know that the form a1 is not V -elliptic. To solve this
problem we introduce the functions

ς̃µ(t) = e−k1tςµ(t), ξ̃(t) = e−k1tξ(t).

We remark that if ςµ, ξ ∈ K then ς̃µ, ξ̃ ∈ K. Consequently, (3.12) is equivalent to
the inequality

〈ρ
·
ς̃µ(t), ξ̃ − ς̃µ(t)〉V ′×V + a1(ς̃µ(t), ξ̃ − ς̃µ(t)) + k1(ρς̃µ, ξ̃ − ς̃µ(t))L2(Ω)

≥ 〈e−k1tµ, ξ̃ − ς̃µ(t)〉V ′×V ∀ξ̃ ∈ K, a.e. t ∈ (0, T ), ς̃µ ∈ K.
(3.22)

The fact that

a1(ξ̃, ξ̃) + k1(ρξ̃, ξ̃)L2(Ω) ≥ k1 min(ρ∗, 1)‖ξ̃‖2
V ∀ξ̃ ∈ V, (3.23)

and using classical arguments of functional analysis concerning parabolic inequal-
ities [7, 10], implies that (3.22) has a unique solution ς̃µ having the regularity
(3.7)-(3.8). This completes the proof . �

Let us consider now the auxiliary problem.

Problem PV2(η,λ,µ). Find the stress field ση,λ,µ : Ω × (0, T ) → Sn which is a
solution of the problem

ση,λ,µ(t) = E(ε(uη(t))) +
∫ t

0

G
(
ση,λ,µ(s)

−A(ε(u̇η(s))), ε(uη(s)), θλ(s), ςµ(s)
)
ds a.e. t ∈ (0, T ),

(3.24)

Lemma 3.3. There exists a unique solution of Problem PV2(η,λ,µ) and it satisfies
(3.4). Moreover, if {uη, θλi

, ςµi
} and ση,λ,µ represent the solutions of problems

PV1(ηi,λi,µi) and PV2(ηi,λi,µi), respectively, for i = 1, 2, then there exists c > 0
such that

‖ση1,λ1,µ1(t)− ση2,λ2,µ2(t)‖2
H

≤ c

∫ t

0

(
‖u̇η1(s)− u̇η2(s)‖2

V + ‖uη1(s)− uη2(s)‖2
V

+ ‖θλ1(s)− θλ2(s)‖2
V + ‖ςµ1(s)− ςµ2(s)‖2

V

)
ds.

(3.25)

Proof. Let Ση,λ,µ : L2(0, T ;H) → L2(0, T ;H) be the mapping given by

Ση,λ,µσ(t)

= E(ε(uη(t))) +
∫ t

0

G(σ(s)−A(ε(u̇η(s))), ε(uη(s)), θλ(s), ςµ(s))ds.
(3.26)
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Let σi ∈ L2(0, T ;H), i = 1, 2 and t1 ∈ (0, T ). We find be using hypothesis (2.12)
and Hölder’s inequality

‖Ση,λ,µσ1(t1)− Ση,λ,µσ2(t1)‖2
H ≤ L2

GT

∫ t1

0

‖σ1(s)− σ2(s)‖2
Hds. (3.27)

Integration on the time interval (0, t2) ⊂ (0, T ), it follows that∫ t2

0

‖Ση,λ,µσ1(t1)− Ση,λ,µσ2(t1)‖2
Hdt1 ≤ L2

GT

∫ t2

0

∫ t1

0

‖σ1(s)− σ2(s)‖2
Hdsdt1.

Using again (3.27), it follows that

‖Ση,λ,µσ1(t2)− Ση,λ,µσ2(t2)‖2
H ≤ L4

GT
2

∫ t2

0

∫ t1

0

‖σ1(s)− σ2(s)‖2
Hdsdt1.

For t1, t2, . . . , tn ∈ (0, T ), we generalize the procedure above by recurrence on n.
We obtain the inequality

‖Ση,λ,µσ1(tn)− Ση,λ,µσ2(tn)‖2
H

≤ L2n
G T

n

∫ tn

0

. . .

∫ t2

0

∫ t1

0

‖σ1(s)− σ2(s)‖2
H ds dt1 . . . dtn−1.

Which implies

‖Ση,λ,µσ1(tn)− Ση,λ,µσ2(tn)‖2
H ≤

L2n
G T

n+1

n!

∫ T

0

‖σ1(s)− σ2(s)‖2
Hds.

Thus, we can infer, by integrating over the interval time (0, T ), that

‖Ση,λ,µσ1 − Ση,λ,µσ2‖2
L2(0,T ;H) ≤

L2n
G T

n+2

n!
‖σ1 − σ2‖2

L2(0,T ;H).

It follows from this inequality that for n large enough, a power n of the map-
ping Ση,λ,µ is a contraction on the space L2(0, T ;H) and, therefore, from the Ba-
nach fixed point theorem, there exists a unique element ση,λ,µ ∈ L2(0, T ;H) such
that Ση,λ,µση,λ,µ = ση,λ,µ, which represents the unique solution of the problem
PV2(η,λ,µ). Moreover, if {uη, θλi

, ςµi
} and ση,λ,µ represent the solutions of problem

PV1(ηi,λi,µi) and PV2(ηi,λi,µi), respectively, for i = 1, 2, then we use (2.10), (2.11),
(2.12) and Young’s inequality to obtain

‖ση1,λ1,µ1(t)− ση2,λ2,µ2(t)‖2
H

≤ c‖ση1,λ1,µ1(t)− ση2,λ2,µ2(t)‖2
H + c

∫ t

0

(
‖u̇η1(s)− u̇η2(s)‖2

V

+ ‖uη1(s)− uη2(s)‖2
V + ‖θλ1(s)− θλ2(s)‖2

V + ‖ςµ1(s)− ςµ2(s)‖2
V

)
ds.

Which permits us to obtain, using Gronwall’s lemma, the inequality (3.25).
Second step. Let us consider the mapping

Λ : L2(0, T ;V ′ × V ′ × V ′) → L2(0, T ;V ′ × V ′ × V ′),

defined by
Λ(η(t), λ(t), µ(t))

=
(
Λ0(η(t), λ(t), µ(t)), ψ

(
ση,λ,µ(t), ε(u̇η(t)), θλ(t), ςµ(t)

)
,

φ
(
ση,λ,µ(t), ε(uη(t)), θλ(t), ςµ(t)

))
,

(3.28)
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where the mapping Λ0 is given by

〈Λ0(η(t), λ(t), µ(t)),v〉V′×V

=
(
E(ε(uη(t))) +

∫ t

0

G
(
ση,λ,µ(s)

−A(ε(u̇η(s))), ε(uη(s)), θλ(s), ςµ(s)
)
ds, ε(v)

)
H
.

(3.29)

�

Lemma 3.4. The mapping Λ has a fixed point

(η∗, λ∗, µ∗) ∈ L2(0, T ;V ′ × V ′ × V ′).

Proof. Let t ∈ (0, T ) and

(η1, λ1, µ1), (η2, λ2, µ2) ∈ L2(0, T ;V ′ × V ′ × V ′).

Let us start by using hypotheses (2.10), (2.11) and (2.12) to obtain

‖Λ0(η1(t), λ1(t), µ1(t))− Λ0(η2(t), λ2(t), µ2(t))‖V′

≤ LE‖uη1(t)− uη2(t)‖V + LG

∫ t

0

(
‖ση1,λ1,µ1(s)− ση2,λ2,µ2(s)‖H

+ LA‖u̇η1(s)− u̇η2(s)‖V + ‖uη1(s)− uη2(s)‖V

+ ‖θλ1(s)− θλ2(s)‖L2(Ω) + ‖ςµ1(s)− ςµ2(s)‖L2(Ω)

)
ds a.e. t ∈ (0, T ).

(3.30)

On the other hand, we know that for a.e. t ∈ (0, T ),

‖uη1(t)− uη2(t)‖V ≤
∫ t

0

‖u̇η1(s)− u̇η2(s)‖Vds. (3.31)

Applying Young’s and Hölder’s inequalities, (3.30) becomes, via (3.31),

‖Λ0(η1(t), λ1(t), µ1(t))− Λ0(η2(t), λ2(t), µ2(t))‖2
V′

≤ c

∫ t

0

(
‖ση1,λ1,µ1(s)− ση2,λ2,µ2(s)‖2

H + ‖u̇η1(s)− u̇η2(s)‖2
V

+ ‖uη1(s)− uη2(s)‖2
V + ‖θλ1(s)− θλ2(s)‖2

V + ‖ςµ1(s)− ςµ2(s)‖2
V

)
ds

(3.32)

a.e. t ∈ (0, T ). Furthermore, we find by taking the substitution η = η1, η = η2 in
(3.10) and choosing v = u̇η1 − u̇η2 as test function

〈ρ(üη1(t)− üη2(t)) +Au̇η1(t)−Au̇η2(t), u̇η1(t)− u̇η2(t)〉V′×V
= 〈η2(t)− η1(t), u̇η1(t)− u̇η2(t)〉V′×V a.e. t ∈ (0, T ).

By virtue of (2.10), this equation becomes

(ρ∗)2

2
d

dt
‖u̇η1(t)− u̇η2(t)‖2

H +mA‖u̇η1(t)− u̇η2(t)‖2
V

≤ ‖η2(t)− η1(t)‖V′‖u̇η1(t)− u̇η2(t)‖V .

Integrating this inequality over the interval time variable (0, t), Young inequality
leads to

(ρ∗)2‖u̇η1(t)− u̇η2(t)‖2
H +mA

∫ t

0

‖u̇η1(s)− u̇η2(s)‖2
Vds
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≤ 2
mA

∫ t

0

‖η1(s)− η2(s)‖2
V′ds.

Consequently,∫ t

0

‖u̇η1(s)− u̇η2(s)‖2
Vds ≤ c

∫ t

0

‖η1(s)− η2(s)‖2
V′ds a.e. t ∈ (0, T ). (3.33)

which also implies, using a variant of (3.31), that

‖uη1(s)− uη2(s)‖2
V ≤ c

∫ t

0

‖η1(s)− η2(s)‖2
V′ds a.e.t ∈ (0, T ), (3.34)

Moreover, if we take the substitution λ = λ1, λ = λ2 in (3.11) and subtracting the
two obtained equations, we deduce by choosing ω = θλ1 − θλ2 as test function

(ρ∗)2

2
‖θλ1(t)− θλ2(t)‖2

L2(Ω) + c1

∫ t

0

‖θλ1(s)− θλ2(s)‖2
V ds

≤
∫ t

0

‖λ1(s)− λ2(s)‖V ′‖θλ1(s)− θλ2(s)‖V ds a.e. t ∈ (0, T ).

Employing Hölder’s and Young’s inequalities, we deduce that

‖θλ1(t)− θλ2(t)‖2
L2(Ω) +

∫ t

0

‖θλ1(s)− θλ2(s)‖2
V ds

≤ c

∫ t

0

‖λ1(s)− λ2(s)‖2
V ′ds a.e. t ∈ (0, T ).

(3.35)

Substituting now {µ = µ1, ξ = ς̃µ1}, {µ = µ2, ξ = ς̃µ2} in (3.22) and subtracting
the two inequalities, we obtain

‖ς̃µ1(t)− ς̃µ2(t)‖2
L2(Ω) +

∫ t

0

‖ς̃µ1(t)− ς̃µ2(t)‖2
V ds

≤ c

∫ t

0

‖e−k1t(µ1(s)− µ2(s))‖2
V ′ds a.e. t ∈ (0, T ),

from which also follows that

‖ςµ1(t)− ςµ2(t)‖2
L2(Ω) +

∫ t

0

‖ςµ1(s)− ςµ2(s)‖2
V ds

≤ c

∫ t

0

‖µ1(s)− µ2(s)‖2
V ′ds a.e. t ∈ (0, T ),

(3.36)

We can infer, using (3.25), (3.32), (3.33), (3.35) and (3.36), that∫ t

0

‖Λ0(η1(s), λ1(s), µ1(s))− Λ0(η2(s), λ2(s), µ2(s))‖2
V′ds

≤ c

∫ t

0

∫ s

0

(
‖u̇η1(r)− u̇η2(r)‖2

V + ‖θλ1(r)− θλ2(r)‖2
V

+ ‖uη1(r)− uη2(r)‖2
V + ‖ςµ1(r)− ςµ2(r)‖2

V

)
dr ds a.e. t ∈ (0, T )

≤ c

∫ T

0

∫ T

0

(
‖u̇η1(r)− u̇η2(r)‖2

V + ‖θλ1(r)− θλ2(r)‖2
V

+ ‖uη1(r)− uη2(r)‖2
V + ‖ςµ1(r)− ςµ2(r)‖2

V

)
dr ds
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≤ c

∫ T

0

(
‖u̇η1(s)− u̇η2(s)‖2

V

+ ‖uη1(s)− uη2(s)‖2
V + ‖θλ1(s)− θλ2(s)‖2

V + ‖ςµ1(s)− ςµ2(s)‖2
V

)
ds

≤ c

∫ T

0

(
‖η1(s)− η2(s)‖2

V′ + ‖λ1(s)− λ2(s)‖2
V ′ + ‖µ1(s)− µ2(s)‖2

V ′

+ ‖uη1(s)− uη2(s)‖2
V

)
ds

Thus, by (3.34), we find∫ T

0

‖Λ0(η1(s), λ1(s), µ1(s))− Λ0(η2(s), λ2(s), µ2(s))‖2
V′ds

≤ c

∫ T

0

(
‖η1(s)− η2(s)‖2

V′ + ‖λ1(s)− λ2(s)‖2
V ′ + ‖µ1(s)− µ2(s)‖2

V ′

)
ds .

(3.37)

Furthermore, hypothesis (2.13) implies∫ t

0

‖ψ
(
ση1,λ1,µ1(s), ε(u̇η1(s)), θλ1(s), ςµ1(s)

)
− ψ

(
ση2,λ2,µ2(s), ε(u̇η2(s)), θλ2(s), ςµ2(s)

)
‖2
V ′ds

≤ 3L2
ψ

∫ t

0

(
‖ση1,λ1,µ1(s)− ση2,λ2,µ2(s)‖2

H + ‖u̇η1(s)− u̇η2(s)‖2
V

+ ‖θλ1(s)− θλ2(s)‖2
V + ‖ςµ1(t)− ςµ2(t)‖2

V

)
ds a.e. t ∈ (0, T ).

This permits us to deduce, via (3.25), (3.33), (3.35) and (3.36), that∫ T

0

‖ψ
(
ση1,λ1,µ1(s), ε(u̇η1(s)), θλ1(s), ςµ1(s)

)
− ψ

(
ση2,λ2,µ2(s), ε(u̇η2(s)), θλ2(s), ςµ2(s)

)
‖2
V ′ds

≤ c

∫ T

0

(
‖η1(s)− η2(s)‖2

V′ + ‖λ1(s)− λ2(s)‖2
V ′ + ‖µ1(s)− µ2(s)‖2

V ′

)
ds

(3.38)

Similarly, using (3.25), (3.34), (3.35) and (3.36), we obtain the following estimate
for φ,∫ T

0

‖φ
(
ση1,λ1,µ1(s), ε(uη1(s)), θλ1(s), ςµ1(s)

)
− φ

(
ση2,λ2,µ2(s), ε(uη2(s)), θλ2(s), ςµ2(s)

)
‖2
V ′ds

≤ c

∫ T

0

(
‖η1(s)− η2(s)‖2

V′ + ‖λ1(s)− λ2(s)‖2
V ′ + ‖µ1(s)− µ2(s)‖2

V ′

)
ds.

(3.39)

From (3.37), (3.38) and (3.39), we conclude that there exists a positive constant
C > 0 verifying

‖Λ(η1, λ1, µ1)− Λ(η2, λ2, µ2)‖L2(0,T ;V′×V ′×V ′)

≤ C‖(η1 − η2, λ1 − λ2, µ1 − µ2)‖L2(0,T ;V′×V ′×V ′),
(3.40)

and so, by reapplication of mapping Λ, yields

‖Λ2(η1, λ1, µ1)− Λ2(η2, λ2, µ2)‖L2(0,T ;V′×V ′×V ′)
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≤ C2

2!
‖(η1 − η2, λ1 − λ2, µ1 − µ2)‖L2(0,T ;V′×V ′×V ′).

We generalize this procedure by recurrence on n. Then we obtain the formula

‖Λn(η1, λ1, µ1)− Λn(η2, λ2, µ2)‖L2(0,T ;V′×V ′×V ′)

≤ Cn

n!
‖(η1 − η2, λ1 − λ2, µ1 − µ2)‖L2(0,T ;V′×V ′×V ′).

(3.41)

We know that the sequence (Cn/n!)n converges to 0. So, for n sufficiently large
Cn

n! < 1. It means that a large power n of the operator Λ is a contraction on
L2(0, T ;V ′ × V ′ × V ′). Hence, Banach fixed point theorem shows that Λ admits a
unique fixed point (η∗, λ∗, µ∗) ∈ L2(0, T ;V ′ × V ′ × V ′).

We can now prove the existence of a solution to problem (PV). To this aim, it
is sufficient to remark that for a.e. t ∈ (0, T ),

E(ε(uη∗(t))) +
∫ t

0

G
(
ση∗,λ∗,µ∗(s)−A(ε(u̇η∗(s))), ε(uη∗(s)), θλ∗(s), ςµ∗(s)

)
ds

= η∗(t),

ψ(ε(uη∗(t)), θλ∗(t), ςµ∗(t)) = λ∗(t),

φ(ε(uη∗(t)), θλ∗(t), ςµ∗(t)) = µ∗(t),

which completes the proof. �

Theorem 3.5 (Positivity of the temperature). Let the hypotheses of Theorem 3.1
hold and suppose in addition that

ψ(σ, ε(u), θ, ς) ≥ 0 a.e. in Ω× (0, T ), (3.42)

q ≥ 0 a.e. in Ω× (0, T ), (3.43)

θ0 ≥ 0 a.e. in Ω× (0, T ). (3.44)

Then, the solution {u, σ, θ, ς} to problem (PV) is such that

θ(x, t) ≥ 0 for a.e. (x, t) ∈ Ω× (0, T ). (3.45)

Proof. We use a maximum principle argument [5]. Thus, we test the equation
(2.24) by the function −θ−, where f− denoting the so-called negative part of a
function f ; i.e., f− = max{0,−f}, and integrate over (0, T ). We can infer, using
the hypothesis (3.42), (3.43) and (3.44), that

1
2
(ρ∗)2‖θ−‖2

L∞(0,T ;L2(Ω)) + c1‖θ−‖2
L2(0,T ;V )

≤ −
∫ t

0

∫
Ω

ψ(ε(u(x, s)), θ(x, s), ς(x, s))θ−(x, s) dx ds

−
∫ t

0

∫
Ω

q(x, s)θ−(x, s) dx ds ≤ 0 a.e. t ∈ (0, T ).

Consequently

‖θ−‖L2(0,T ;V )∩L∞(0,T ;L2(Ω)) ≤ 0,

which eventually gives (3.45). �
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