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OSCILLATION OF SOLUTIONS FOR THIRD ORDER
FUNCTIONAL DYNAMIC EQUATIONS

ELMETWALLY M. ELABBASY, TAHER S. HASSAN

Abstract. In this article we study the oscillation of solutions to the third
order nonlinear functional dynamic equation

L3(x(t)) +

nX
i=0

pi(t)Ψkαki(x(hi(t))) = 0,

on an arbitrary time scale T. Here

L0(x(t)) = x(t), Lk(x(t)) =
“ [Lk−1x(t)]∆

ak(t)

”γkk
, k = 1, 2, 3

with a1, a2 positive rd-continuous functions on T and a3 ≡ 1; the functions pi

are nonnegative rd-continuous on T and not all pi(t) vanish in a neighborhood

of infinity; Ψkc(u) = |u|c−1u, c > 0. Our main results extend known results

and are illustrated by examples.

1. Introduction

The theory of time scales, which has recently received a lot of attention, was
introduced by Stefan Hilger in his PhD dissertation [30], written under the direction
of Bernd Aulbach. Since then a rapidly expanding body of literature has sought to
unify, extend, and generalize ideas from discrete calculus, quantum calculus, and
continuous calculus to arbitrary time scale calculus. Recall that a time scale T is a
nonempty, closed subset of the reals, and the cases when this time scale is the reals or
the integers represent the classical theories of differential and of difference equations.
Many other interesting time scales exist, and they give rise to many applications (see
[7]). Not only does the new theory of the so-called “dynamic equations” unify the
theories of differential equations and difference equations, but also extends these
classical cases to cases “in between”, e.g., to the so-called q-difference equations
when T =qN0 (which has important applications in quantum theory [31]) and can
be applied on different types of time scales like T =hZ, T = N2

0 and T = Hn the
space of harmonic numbers. In this work a knowledge and understanding of time
scales and time scale notation is assumed; for an excellent introduction to the
calculus on time scales, see Hilger [30], and Bohner and Peterson [7, 8].
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We are concerned with the oscillatory behavior of solutions to the third order
nonlinear functional dynamic equation

L3(x(t)) +
n∑

i=0

pi(t)Ψkαi(x(hi(t))) = 0, (1.1)

on an arbitrary time scale T, where L0(x(t)) = x(t),

Lk(x(t)) = (
[Lk−1x(t)]∆

ak(t)
)γkk, k = 1, 2, 3,

with a1, a2 are positive rd-continuous functions on T and a3 ≡ 1, and γkk, k = 1, 2
are quotients of odd positive integers, γk3 = 1 and αk0 = γ1γk2. We also assume
Ψkc(u) = |u|c−1u, c > 0 and pi, i = 0, 1, 2, . . . , n are nonnegative rd-continuous
functions on T such that not all pi(t) vanish in a neighborhood of infinity. The
functions hi : T → T satisfy limt→∞ hi(t) = ∞, i = 0, 1, 2, . . . , n. Since we are
interested in the oscillatory behavior of solutions near infinity, we assume that
sup T = ∞, and define the time scale interval [t0,∞)T by [t0,∞)T := [t0,∞) ∩ T.
By a solution of (1.1) we mean a nontrivial real-valued function L0x ∈ C1

rd[Tx,∞)T,
Tx ≥ t0 which has the property that L1x ∈ C1

rd[Tx,∞)T, L2x ∈ C1
rd[Tx,∞)T and

x(t) satisfies equation (1.1) on [Tx,∞)T, where Crd is the space of rd-continuous
functions. The solutions vanishing identically in some neighborhood of infinity will
be excluded from our consideration. A solution x of (1.1) is said to be oscillatory if it
is neither eventually positive nor eventually negative, otherwise it is nonoscillatory.
Throughout the paper, we define, for i = 0, 1, . . . , n and k = 1, 2,

A(s, u) := a1(s)A
1/γk1
2 (s, u), Ak(s, u) :=

∫ s

u

ak(u)∆u,

ϕki(t, u) := A1(hi(t), u)φ1/γk1
i,2 (t), φki, k(t) :=

∫ ∞
hi(t)

ak(s)∆s,

h(t) := min{t, hi(t); i = 0, 1, . . . , n}, (Φ∆(t))+ := max{0,Φ∆(t)}.
In the previous few years, there has been an increasing interest in obtaining

sufficient conditions for the oscillation/nonoscillation of solutions of different classes
of dynamic equations, we refer the reader to the papers [1, 2, 3, 4, 6, 9, 10, 11, 12, 13,
14, 28, 29, 15, 16, 17, 18, 23, 25, 27] and the references cited therein. Regarding third
order dynamic equations, [19, 20, 26, 21, 22] considered the third order dynamic
equation (1.1), in particular case and under quite restrictive conditions, for example,
Erbe et al [19] studied the dynamic equation (1.1), when n = 0, γ1 = γk2 = 1, αk0 =
1 and h0(t) ≡ t and established sufficient conditions which ensure the solution of
equation (1.1) is either oscillatory or tends to zero and Erbe et al [20] extended
the results which established in [19], when γk2 ≥ 1 is the quotient of odd positive
integers. Also, Hassan [26] generalized the results which were established in [20, 19],
for the equation (1.1), when n = 0, γk1 = 1, αk0 = γk2, γ2 > 0 is the quotient of
odd positive integers, and h0(t) ≤ t and h∆

0 (t) ≥ 0, for t ∈ T and h0 ◦ σ = σ ◦ h0.
A number of sufficient conditions for oscillation were obtained for the cases when,
for k = 1, 2, ∫ ∞

t0

ak(t)∆t = ∞.

Erbe, Hassan and Peterson [21] solved this problem for the third order functional
dynamic equation (1.1), when n = 0, γk1 = 1, αk0 = γk2, γk2 > 0 is the quotient
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of odd positive integers and for both cases, for k = 1, 2,∫ ∞
t0

ak(t)∆t = ∞, (1.2)

and ∫ ∞
t0

ak(t)∆t < ∞. (1.3)

Recently, Erbe, Hassan and Peterson [22] extended previous results for the third
order dynamic equation (1.1) under some restrictive conditions, n = 2 and h ◦ σ =
σ ◦ h.

The fact that the condition h ◦ σ = σ ◦ h is not satisfied for some time scales,
see [15]. The purpose of this paper is to extend the oscillation criteria which are
established by [22], for the more general third order functional dynamic equation
with mixed arguments (1.1), for several terms n and without restrictive condition
h◦σ = σ◦h and for both of the cases (1.2) and (1.3). We will still assume γ1, γk2 > 0
are the quotient of odd positive integers and, hence our results will improve and
extend results in the [19, 20, 26, 21, 22], and many known results on nonlinear
oscillation.

2. Main Results

Throughout this paper, we assume that αk1 > αk2 > · · · > αkm > αk0 >
αkm + 1 > · · · > αkn > 0. Before stating our main results, we begin with the
following lemmas which will play an important role in the proof of our main results.

Lemma 2.1. For each n-tuple (αk1, αk2, . . . , αkn), there exists (ηk1, ηk2, . . . , ηn)
with 0 < ηki < 1 satisfying

n∑
i=1

αkiηki = αk0,
n∑

i=1

ηi = 1. (2.1)

The proof of the above lemma is the same as [29, Lemma 2.1].

Lemma 2.2. Let a1 be nondecreasing and delta differentiable on [t0,∞)T and x be
a positive solution of (1.1) such that

x∆(t) > 0 and (L1(x(t)))∆ > 0, for t ≥ t0. (2.2)

Then, if
n∑

i=0

∫ ∞
t0

pi(t)hαki
i (t)∆t = ∞, (2.3)

we have

x∆∆(t) > 0,
(x(t)

t

)∆
< 0 on [t0,∞)T.

Proof. Let x be as in the statement of this lemma. Since

(L1(x(t)))∆ =
((x∆(t))γk1)∆

aγ1σ
1 (t)

− (x∆(t))γ1(aγk1
1 (t))∆

aγk1
1 (t)aγk1σ

1 (t)
> 0, for t ≥ t0. (2.4)
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Using the Pötzsche chain rule [7, Theorem 1.90], we have

((x∆(t))γk1)∆ = γk1
∫ 1

0

[x∆(t) + hµ(t)x∆∆(t)]γk1−1 dh x∆∆(t)

= γk1x∆∆(t)
∫ 1

0

[hx∆σ(t) + (1− h)x∆(t)]γk1−1dh.

(2.5)

and

(aγk1
1 (t))∆ = γk1

∫ 1

0

[a1(t) + hµ(t)a∆
1 (t)]γ1−1 dh a∆

1 (t)

= γk1a∆
1 (t)

∫ 1

0

[haσ
1 (t) + (1− h)a1(t)]γk1−1dh.

(2.6)

Using that a1 is a nondecreasing and x is increasing, we obtain, from (2.4), (2.5)
and (2.6) that x∆∆(t) > 0 on [t0,∞)T. Next, we show that

(x(t)
t

)∆
< 0. To see

this, let U(t) := x(t) − tx∆(t), then U∆(t) = −σ(t)x∆∆(t) < 0 for t ∈ [t0,∞)T.
This implies that U(t) is strictly decreasing on [t0,∞)T. We claim U(t) > 0 on
[t0,∞)T. Assume not, then there exists t1 ≥ t0 such that U(t) < 0 on [t1,∞)T.
Therefore, (x(t)

t

)∆ =
tx∆(t)− x(t)

tσ(t)
= − U(t)

tσ(t)
> 0, for t ∈ [t1,∞)T. (2.7)

Pick t2 ∈ [t1,∞)T so that hi(t) ≥ t1, for t ≥ t2 and i = 0, 1, . . . , n. Then, for t ≥ t2
and i = 0, 1, . . . , n, we have from (2.7) that

x(hi(t))
hi(t)

≥ x(t1)
t1

=: c > 0, for t ≥ t2 and i = 0, 1, . . . , n,

so x(hi(t)) ≥ chi(t) for t ≥ t2 and i = 0, 1, . . . , n. Now by integrating both sides of
the dynamic equation (1.1) from t2 to t, we have

L2(x(t2))− L2(x(t)) =
n∑

i=0

∫ t

t2

pi(s)Ψkαi(x(hi(s)))∆s.

This implies, from (2.2) that

L2(x(t2)) ≥
n∑

i=0

∫ t

t2

pi(s)Ψkαki(x(hi(s)))∆s ≥
n∑

i=0

cαki

∫ t

t2

pi(s)hαi
i (s)∆s. (2.8)

Letting t → ∞ we obtain a contradiction to assumption (2.3). Hence U(t) =
x(t)− tx∆(t) > 0 on [t0,∞)T. Consequently,(x(t)

t

)∆ = − U(t)
tσ(t)

< 0, t ∈ [t0,∞)T. (2.9)

This completes the proof of Lemma 2.2. �

First, we establish oscillation criteria for (1.1) when (1.2) holds.

Theorem 2.3. Let αk0 = γk1γk2 and hi(t), i = 0, 1, 2, . . . , n be nondecreasing
functions on [t0,∞)T. Assume that (1.2) and∫ ∞

t0

a1(t)
( ∫ ∞

t

a2(s)
( n∑

i=0

Pi(s)
)1/γk2

∆s
)1/γk1

∆t = ∞, (2.10)
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where Pi(s) :=
∫∞

s
pi(u)∆u, i = 0, 1, . . . , n. Furthermore, suppose that, for all

sufficiently large T1, there is T > T1 such that h(T ) > T1 and

lim sup
t→∞

Q1(t)
( ∫ h(t)

T1

A(s, T1)∆s
)αk0

> 1, (2.11)

where

Q1(t) := P0(t) +
n∏

i=1

(ηki−1Pi(t))ηki.

Then every solution of (1.1) is either oscillatory or tends to zero.

Proof. Assume (1.1) has a non-oscillatory solution x on [t0,∞)T. Then, without
loss of generality, there is a t1 ∈ [t0,∞)T, sufficiently large, such that x(t) > 0 and
x(hi(t)) > 0 on [t1,∞)T, for i = 0, 1, 2, . . . , n and not all of the pi(t)’s are identically
zero on [t1,∞)T. From (1.1), we have

L3(x(t)) = −
n∑

i=0

pi(t)Ψkαi(x(hi(t))) < 0, (2.12)

on [t1,∞)T. Then L2(x(t)) is strictly decreasing on [t1,∞)T. Therefore, x∆(t) and
(L1(x(t)))∆ are eventually of one sign. Then, there exists a sufficiently large t2 ≥ t1
so that x∆(t) and L∆

1 (x(t)) are of fixed sign for t ≥ t2. Therefore, we consider the
following four cases:

(i) x∆(t) < 0 and (L1(x(t)))∆ < 0;
(ii) x∆(t) > 0 and (L1(x(t)))∆ < 0;
(iii) x∆(t) < 0 and (L1(x(t)))∆ > 0;
(iv) x∆(t) > 0 and (L1(x(t)))∆ > 0, on [t2,∞)T.

For case (i), we have

x(t) = x(t2) +
∫ t

t2

a1(s)L
1/γ1
1 (x(s))∆s ≤ x(t2) + L

1/γ1
1 (x(t2))

∫ t

t2

a1(s)∆s.

Hence by (1.2), we have limt→∞ x(t) = −∞, which contradicts the fact that x is a
positive solution of (1.1). For the case (ii), from (2.12) we have

L1(x(t)) = L1(x(t2)) +
∫ t

t2

a2(s)L
1/γk2
2 (x(s))∆s

≤ L1(x(t2)) + L
1/γk2
2 (x(t2))

∫ t

t2

a2(s)∆s.

Then, by (1.2), we have limt→∞ L1(x(t)) = −∞, which contradicts x∆(t) > 0, for
t ≥ t2. For the case (iii), we have limt→∞ x(t) = c0 ≥ 0 and limt→∞ L1(x(t)) =
c1 ≤ 0. If we assume c0 > 0, then Ψkαki(x(hi(t))) ≥ K, for i = 0, 1, 2, . . . , n and
t ≥ t3 ≥ t2, where K := min{cαi

0 : i = 0, 1, 2, . . . , n}. Integrating equation (1.1)
from t to ∞, we obtain

−L2(x(t)) < −
n∑

i=0

∫ ∞
t

pi(s)Ψkαki(x(hi(s)))∆s

≤ −c0

n∑
i=0

∫ ∞
t

pi(s)∆s = −c0

n∑
i=0

Pi(t),
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which implies

−(L1(x(t)))∆ < −C0a2(t)
( n∑

i=0

Pi(t)
)1/γk2

,

where C0 := K1/γk2 ≥ 0. Integrating this inequality from t to ∞, we obtain

L1(x(t)) < −C0

∫ ∞
t

a2(s)
( n∑

i=0

Pi(s)
)1/γ2

∆s + c1

≤ −C0

∫ ∞
t

a2(s)
( n∑

i=0

Pi(s)
)1/γk2

∆s.

Finally, integrating the last inequality from t3 to t, we obtain

x(t) < −c0

∫ t

t3

a1(s)
( ∫ ∞

s

a2(u)(
n∑

i=0

Pi(u))1/γ2∆u
)1/γk1

∆s + x(t3).

Hence by (2.10), we have limt→∞ x(t) = −∞, which contradicts the fact that x
is a positive solution of (1.1). Thus, we conclude that limt→∞ x(t) = 0. For the
case (iv), integrating both sides of the dynamic equation (1.1) from t to ∞ and
then using the facts that x(t) is strictly increasing and hi(t), i = 0, 1, 2, . . . , n are
nondecreasing, we obtain

n∑
i=0

Ψkαki(x(hi(t)))Pi(t) ≤ L2(x(t)). (2.13)

Since L2(x(t)) is strictly decreasing on [t2,∞)T, we obtain

L1(x(t)) > L1(x(t))− L1(x(t2)) =
∫ t

t2

a2(s)L
1/γk2
2 (x(s))∆s

≥ L
1/γk2
2 (x(t))

∫ t

t2

a2(s)∆s = L
1/γk2
2 (x(t))A2(t, t2).

Hence
x∆(t) ≥ a1(t)A

1/γk1
2 (t, t2)L

1/α0
2 (x(t)).

Similarly, we see that

x(t) ≥ L
1/αk0
2 (x(t))

∫ t

t2

a1(s)A
1/γk1
2 (s, t2)∆s,

and so

xαk0(t) ≥ L2(x(t))
( ∫ t

t2

A(s, t2)∆s
)αk0

. (2.14)

Pick t3 > t2, sufficiently large, so that h(t) > t2, for t ≥ t3. Then from (2.14), for
t ≥ t3, we obtain

Ψkαk0(x(h(t))) ≥ L2(x(h(t)))
( ∫ h(t)

t2

A(s, t2)∆s
)αk0

≥ L2(x(t))
( ∫ h(t)

t2

A(s, t2)∆s
)αk0

.

(2.15)
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Using (2.15) in (2.13), for t ≥ t3, we find that
n∑

i=0

Ψkαki(x(hi(t)))Pi(t) ≤ Ψαk0(x(h(t)))
( ∫ h(t)

t2

A(s, t2)∆s
)−αk0

,

which yields from the fact x∆(t) > 0 on [t2,∞)T that

P0(t) +
n∑

i=1

Ψkαki− α0(x(h(t)))Pi(t) <
( ∫ h(t)

t2

A(s, t2)∆s
)−αk0

. (2.16)

Using the arithmetic-geometric mean inequality see [5, Page 17]
n∑

i=1

ηkiui ≥
n∏

i=1

uηi

i , where ui ≥ 0.

From Lemma 2.1, for t ≥ T , we obtain
n∑

i=1

Ψkαki− αk0(x(h(t)))Pi(t) =
n∑

i=1

ηki(ηki−1Ψkαki− α0(x(h(t)))Pi(t))

≥
n∏

i=1

(ηki−1Pi(t))ηkiΨkηki(αi − αk0)(x(h(t)))

(2.1)
=

n∏
i=1

(ηki−1Pi(t))ηki,

(2.17)
Using (2.17) in (2.16), we have

Q1(t)
( ∫ h(t)

t2

A(s, t2)∆s
)αk0

< 1, for t ≥ t3.

Then

lim sup
t→∞

Q1(t)
( ∫ h(t)

t2

A(s, t2)∆s
)αk0

≤ 1,

which leads to a contradiction to (2.11). �

Theorem 2.4. Assume that (1.2) and (2.10) hold. Furthermore, suppose that, for
all sufficiently large T ∈ [t0,∞)T, such that hi(T ) > t0, i = 0, 1, . . . , n,

n∑
i=0

∫ ∞
t0

pi(t)Aαki
1 (hi(t), t0)∆t = ∞. (2.18)

Then every solution of equation (1.1) is either oscillatory or tends to zero.

Proof. Assume (1.1) has a non-oscillatory solution x on [t0,∞)T. Then, without
loss of generality, there is a t1 ∈ [t0,∞)T, sufficiently large, such that x(t) > 0 and
x(hi(t)) > 0 on [t1,∞)T, for i = 0, 1, 2, . . . , n and not all pi(t) are identically zero on
[t1,∞)T. Therefore, as in the proof of Theorem 2.3, we obtain there exists t2 ≥ t1
so that

(L2(x(t)))∆ < 0, (L1(x(t)))∆ > 0, on [t2,∞)T,

and either L1(x(t)) > 0 on [t2,∞)T or limt→∞ x(t) = 0. Assume L1(x(t)) > 0 on
[t2,∞)T. Since (L1(x(t)))∆ > 0 on [t2,∞)T, then

L1(x(t)) ≥ L1(x(t2)) =: c > 0.
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Thus

x(t) ≥ x(t)− x(t2) ≥ C

∫ t

t2

a1(s)∆s,

where C := c1/γk1. Pick t3 ≥ t2 such that hi(t) > t2, for t ≥ t3 and i = 0, 1, . . . , n,
then, for i = 0, 1, . . . , n,

x(hi(t)) > CA1(hi(t), t2) on [t3,∞)T. (2.19)

It follows from (1.1) and (2.19) that

−L3(x(t)) =
n∑

i=0

pi(t)Ψkαi(x(hi(t))) ≥
n∑

i=0

pi(t)[CA1(hi(t), t2)]αki.

Integrating both sides of the last inequality from t3 to t, we have

L2(x(t3)) >
n∑

i=0

∫ t

t3

pi(s)[CA1(hi(s), t2)]αki∆s + L2(x(t))

>

n∑
i=0

∫ t

t3

pi(s)[CA1(hi(s), t2)]αki∆s,

which contradicts (2.18). This completes the proof. �

Example 2.5. Consider the third order dynamic equation (1.1), for t0 ≥ 1, where
0 < γk1 ≤ 1 and γk2 = 1

γk1 are the quotient of odd positive integers and αki,
i = 0, 1, . . . , n are positive constants and we assume hi(t) ≤ tγk2, i = 0, 1, . . . , n.
Let

a1(t) = 1, a2(t) =
1

tγk1
, pi(t) =

1
thi(t)

, i = 0, 1, . . . , n.

It is clear that conditions (1.2) hold, since∫ ∞
t0

∆t = ∞,

∫ ∞
t0

∆t

tγk1
= ∞, for 0 < γk1 ≤ 1,

by [8, Example 5.60]. Note that∫ ∞
s

pi(u)∆u =
∫ ∞

s

∆u

uhi(u)
≥

∫ ∞
s

∆u

uγk2+1
≥ 1

γk2

∫ ∞
s

(−1
uγ2

)∆∆u =
1

γk2
1

sγ2
,∫ ∞

t

a2(s)(
n∑

i=0

Pi(s))1/γk2∆s ≥ γk0
∫ ∞

t

∆s

sγk1+1
≥ γk0

γk1

∫ ∞
t

(
−1
sγk1

)∆∆s =
γk0

γ1tγk1
,

where γk0 := (n+1
γk2 )1/γk2 and∫ ∞

t0

a1(t)
( ∫ ∞

t

a2(s)(
n∑

i=0

Pi(s))1/γk2∆s
)1/γk1

∆t ≥ γ

∫ ∞
t0

∆t

t
= ∞,

where γ := (γk0/γk1
)1/γ1 , so that condition (2.10) holds. To apply Theorem 2.4,

it remains to prove that condition (2.18) holds. To see this, note that
n∑

i=0

∫ ∞
t0

pi(t)
[ ∫ hi(t)

t0

a1(s)∆s
]αi

∆t ≥
∫ ∞

t0

(1
t
− t0

th0(t)
)
∆t = ∞,

for those time scales, where
∫∞

t0
∆t

th0(t)
< ∞. Then, by Theorem 2.4, every solution

of equation (1.1) is either oscillatory or tends to zero.
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By using Lemma 2.2, we obtain the following oscillation criterion for (1.1).

Theorem 2.6. Let αk0 = γk1γk2 and a1 be nondecreasing and delta differentiable
on [t0,∞)T. Assume that (1.2), (2.3) and (2.10) hold. Furthermore, suppose that
there exists a positive ∆−differentiable function φ(t) and, for all sufficiently large
T1, there is T > T1 such that

lim sup
t→∞

∫ t

T

[
φ(s)Q2(s)−

((φ∆(s))+)αk0+1

(αk0 + 1)αk0+1(φ(s)A(s, T1))αk0

]
∆s = ∞, (2.20)

where

Q2(t) := p0(t)H0(t) +
n∏

i=1

(ηki−1pi(t)Hi(t))ηki,

and, for i = 0, 1, . . . , n,

Hi(t) :=

{
1, hi(t) ≥ t

(hi(t)
t )αki, hi(t) ≤ t.

Then every solution of (1.1) is either oscillatory or tends to zero.

Proof. Assume (1.1) has a non-oscillatory solution x on [t0,∞)T. Then, without
loss of generality, there is a t1 ∈ [t0,∞)T, sufficiently large, such that x(t) > 0 and
x(hi(t)) > 0 on [t1,∞)T, for i = 0, 1, 2, . . . , n and not all of the pi(t)’s are identically
zero on [t1,∞)T. Therefore, as in the proof of Theorem 2.3, we obtain there exists
t2 ≥ t1 so that

(L2(x(t)))∆ < 0, (L1(x(t)))∆ > 0, on [t2,∞)T,

and either L1(x(t)) > 0 on [t2,∞)T or limt→∞ x(t) = 0. Assume L1(x(t)) > 0 on
[t2,∞)T. Consider the Riccati substitution

w(t) = φ(t)
L2(x(t))
xα0(t)

.

By the product rule and then the quotient rule

w∆(t) =
φ(t)

xαk0(t)
(L2(x(t)))∆ +

( φ(t)
xαk0(t)

)∆
Lσ

2 (x(t))

= φ(t)
L3(x(t))
xαk0(t)

+
( φ∆(t)

xαk0σ(t)
− φ(t)(xαk0(t))∆

xαk0(t)xαk0σ(t)

)
Lσ

2 (x(t)).
(2.21)

From (2.21) and the definition of w(t), we have, for t ≥ t2

w∆(t) = −φ(t)
n∑

i=0

pi(t)
xαki(hi(t))

xαk0(t)
+

φ∆(t)
φσ(t)

wσ(t)− φ(t)(xαk0(t))∆

φσ(t)xαk0(t)
wσ(t).

Now, for a fixed i and let t be a fixed point in [t2,∞)T. Then either hi(t) ≤ t or
hi(t) ≥ t. First, consider the case when hi(t) ≥ t. Then, by using the fact that
x is strictly increasing, we obtain x(hi(t)) ≥ x(t). Next, consider the case when
hi(t) ≤ t. Then, in view of Lemma 2.2, we obtain x(hi(t)) ≥ hi(t)

t x(t). It follows
from the definition of Hi(t) that, for t ≥ t2,

w∆(t) ≤ −φ(t)
n∑

i=0

pi(t)Hi(t)xαki−αk0(t) +
φ∆(t)
φσ(t)

wσ(t)− φ(t)(xαk0(t))∆

φσ(t)xαk0(t)
wσ(t).
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As in the proof of Theorem 2.3, we obtain, for t ≥ t2,

w∆(t) ≤ −φ(t)Q2(t) +
φ∆(t)
φσ(t)

wσ(t)− φ(t)(xαk0(t))∆

φσ(t)xαk0(t)
wσ(t).

Then, by the Pötzsche chain rule [7, Theorem 1.90], we obtain

(xαk0(t))∆ = αk0
∫ 1

0

[x(t) + hµ(t)x∆(t)]αk0−1dh x∆(t)

= αk0
∫ 1

0

[(1− h)x(t) + hxσ(t)]αk0−1dh x∆(t)

≥

{
αk0x(αk0−1)σ(t) x∆(t), 0 < αk0 ≤ 1
αk0xαk0−1(t) x∆(t), αk0 ≥ 1.

If 0 < αk0 ≤ 1, we have

w∆(t) ≤ −φ(t)Q2(t) +
φ∆(t)
φσ(t)

wσ(t)− αk0φ(t)wσ(t)
φσ(t)

x∆(t)
xσ(t)

(xσ(t)
x(t)

)αk0
,

whereas if αk0 ≥ 1, we have

w∆(t) ≤ −φ(t)Q2(t) +
φ∆(t)
φσ(t)

wσ(t)− αk0φ(t)wσ(t)
φσ(t)

x∆(t)
xσ(t)

xσ(t)
x(t)

.

Using that x(t) is strictly increasing on [t2,∞)T, we obtain that, for αk0 > 0,

w∆(t) ≤ −φ(t)Q2(t) +
φ∆(t)
φσ(t)

wσ(t)− αk0φ(t)wσ(t)
φσ(t)

x∆(t)
xσ(t)

. (2.22)

Then using that L2(x(t)) is strictly decreasing on [t2,∞)T, we obtain that, for
t ≥ t2,

L1(x(t)) > L1(x(t))− L1(x(t2)) =
∫ t

t2

a2(s)L
1/γk2
2 (x(s))∆s

≥ L
1/γk2
2 (x(t))

∫ t

t2

a2(s)∆s ≥ L
σ/γk2
2 (x(t))A2(t, t2).

(2.23)

From (2.22) and (2.23), we obtain

w∆(t) ≤ −φ(t)Q2(t) +
(φ∆(t))+

φσ(t)
wσ(t)− αk0φ(t)A(t, t2)

φασ(t)
wασ(t), (2.24)

where α := αk0+1
αk0 . Define X ≥ 0 and Y ≥ 0 by

Xα :=
αk0φ(t)A(t, t2)

φασ(t)
wασ(t), Y α−1 :=

(φ∆(t))+
α(α0φ(t)A(t, t2))1/α

.

Then, using the inequality, see [24],

αXY α−1 −Xα ≤ (α− 1)Y α, (2.25)

we obtain
(φ∆(t))+

φσ(t)
wσ(t)− αk0φ(t)A(t, t2)

φασ(t)
wασ(t) ≤ ((φ∆(t))+)αk0+1

(αk0 + 1)αk0+1(φ(t)A(t, t2))αk0
.

From the above inequality and (2.25), we obtain

w∆(t) ≤ −φ(t)Q2(t) +
((φ∆(t))+)αk0+1

(αk0 + 1)α0+1(φ(t)A(t, t2))αk0
.
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Integrating both sides from t2 to t,∫ t

t2

[
φ(s)Q2(s)−

((φ∆(s))+)αk0+1

(αk0 + 1)α0+1(φ(s)A(s, t2))αk0

]
∆s ≤ w(t2)− w(t) ≤ w(t2),

which leads to a contradiction to (2.20). �

Example 2.7. Consider the third order nonlinear dynamic equation (1.1), for
t0 ≥ 1, where γk1 and γk2 are the quotient of odd positive integers and αki,
i = 0, 1, . . . , n are positive constants with αk1 > αk2 > · · · > αkm > αk0 >
αm+1 > · · · > αkn > 0 and also, we assume hi(t) ≥ t, i = 0, 1, . . . , n such that
(2.3) holds. Note that since hi(t) ≥ t, i = 0, 1, . . . , n it follows that Hi(t) ≡ 1,
i = 0, 1, . . . , n. Let

a1(t) = t1/αk0, a2(t) =
1

t1−1/γk2
,

p0(t) =
βk0

tαk0+2
, pi(t) =

βki

tηki+2
, i = 1, 2, . . . , n.

where ηki, i = 1, 2, . . . , n and βki, i = 0, 1, . . . , n are positive constants such that
αk0 ≥ ηki, i = 1, 2, . . . , n. It is clear that conditions (1.2) hold, since∫ ∞

t0

a1(t)∆t =
∫ ∞

t0

t1/αk0∆t = ∞,

and ∫ ∞
t0

a2(t)∆t =
∫ ∞

t0

∆t

t1−1/γk2
= ∞,

by [7, Example 5.60]. Therefore, we can find T > T1 such that A2(s, T1) ≥ 1, for
s ≥ T . Also, using the Pötzsche chain rule,

P0(s) =
∫ ∞

s

p0(u)∆u = β0

∫ ∞
s

∆u

uαk0+2

≥ βk0
αk0 + 1

∫ ∞
s

(
−1

uαk0+1
)∆∆u =

βk0
αk0 + 1

1
sαk0+1

,

and

Pi(s) =
∫ ∞

s

pi(u)∆u = βi

∫ ∞
s

∆u

uηki+2

≥ βki

ηki + 1

∫ ∞
s

(
−1

uηki+1
)∆∆u

=
βki

ηki + 1
1

sηki+1

≥ βki

αk0 + 1
1

sαk0+1
, i = 1, 2, . . . , n.

Hence( ∫ ∞
t

a2(s)
( n∑

i=0

Pi(s)
)1/γk2

∆s
)1/γk1

≥ β
( ∫ ∞

t

∆s

sγk1+1

)1/γk1

≥ β

γk11/γk1

( ∫ ∞
t

(
−1
sγk1

)∆∆s
)1/γk1

=
β

γk11/γk1

1
t
,
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where β := ( 1
αk0+1

∑n
i=0 βki)1/αk0. Then∫ ∞

t0

a1(t)
( ∫ ∞

t

a2(s)(
n∑

i=0

Pi(s))1/γk2∆s
)1/γk1

∆t

=
β

γk11/γk1

∫ ∞
t0

1
t1−1/αk0

∆t = ∞,

so that condition (2.10) holds. Let us take φ(t) = tαk0+1, then, by the Pötzsche
chain rule

φ∆(t) = (αk0 + 1)
∫ 1

0

(t + hµ(t))α0dh ≤ (αk0 + 1)(σ(t))αk0.

Now, we assume T is a time scale satisfying σ(t) ≤ kt, for some k > 0, t ≥ Tk > T .
Note that

lim sup
t→∞

∫ t

T

[φ(s)Q2(s)−
((φ∆(s))+)αk0+1

(αk0 + 1)αk0+1(φ(s)A(s, T1))αk0
]∆s

≥ lim sup
t→∞

∫ t

Tk

[
βk0
s

− kαk0(αk0+1)

s
]∆s

≥ (βk0− kαk0(αk0+1)) lim sup
t→∞

∫ t

Tk

∆s

s
= ∞,

if βk0 > kαk0(αk0+1) and hence (2.20) holds. We conclude that if [T,∞)T is a time
scale where σ(t) ≤ kt, for some k > 0, t ≥ Tk, then, by Theorem 2.6, every solution
of (1.1) is either oscillatory or tends to zero if βk0 > kαk0(αk0+1).

In the following, we assume that (1.3) holds and establish sufficient conditions
which ensure that every solution x(t) of (1.1) is either oscillatory or tends to zero.
By Theorems 2.3 and 2.6 and [22, Theorem 2.1], we obtain the following oscillation
criteria for equation (1.1).

Corollary 2.8. Let αk0 = γk1γk2 and hi(t), i = 0, 1, 2, . . . , n be nondecreasing
functions on [t0,∞)T. Assume that (1.3) and (2.10) hold. Furthermore, suppose
that, for all sufficiently large T1 ∈ [t0,∞)T, there is T > T1 such that hi(T ) > T1,
i = 1, 2, . . . , n,∫ ∞

T

a1(t)
[ ∫ t

T

a2(s)[
n∑

i=1

∫ s

T

pi(u)φki, 1αki(u)∆u]1/γk2∆s
]1/γk1

∆t = ∞, (2.26)

and ∫ ∞
T

a2(t)
[ n∑

i=1

∫ t

T

pi(u)ϕαki
i (u, T1)∆u

]1/γ2

∆t = ∞. (2.27)

If condition (2.11) holds, then every solution of (1.1) is either oscillatory or tends
to zero.

Corollary 2.9. Assume that (1.3), (2.10), (2.26) and (2.27) hold. If (2.18) holds,
then every solution of (1.1) is either oscillatory or tends to zero.

Corollary 2.10. Let αk0 = γk1γk2 and a1 be nondecreasing and delta differentiable
on [t0,∞)T. Assume that (1.3), (2.3), (2.10), (2.26) and (2.27) hold. If (2.20)
holds, then every solution of (1.1) is either oscillatory or tends to zero.
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Remark 2.11. If (2.10) is not satisfied, we have sufficient conditions which ensure
that every solution x(t) of (1.1) oscillates or limt→∞ x(t) exists as a finite number.
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