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A BOUNDARY VALUE PROBLEM OF FRACTIONAL ORDER
AT RESONANCE

NICKOLAI KOSMATOV

Abstract. We establish solvability of a boundary value problem for a nonlin-
ear differential equation of fractional order by means of the coincidence degree

theory.

1. Introduction

This article is a study of the boundary value problem of fractional order with
non-local conditions

Dαu(t) = f(t, u(t), u′(t)), a. e. t ∈ (0, 1),

Dα−2
0+ u(0) = 0, ηu(ξ) = u(1),

where 1 < α < 2, 0 < ξ < 1 and ηξα−1 = 1. It will be shown that, with the present
choice of boundary conditions, the boundary value problem is at resonance. We
apply a well-known degree theory theorem for coincidences due to Mawhin [16].

The monographs [10, 20, 21, 22] are commonly cited for the theory of fractional
derivatives and integrals and applications to differential equations of fractional or-
der. Contributions to the theory of initial and boundary value problems for non-
linear differential equations of fractional order have been made by several authors
including a recent monograph [13] and the papers [1, 2, 9, 15, 24]. Although an ap-
plication of the coincidence degree theory to a fractional order problem is not known
to the author, we can account for several results that have been devoted to both the-
oretical developments [5, 17, 19] and applications [23] to various types of boundary
and initial value problems. A broad range of scenarios of resonant problems were
studied in the framework of ordinary differential and difference equations [17] (more
generally, dynamic equations on time scales [3, 11]) on bounded and unbounded [12]
domains with periodic [18], non-local boundary conditions [4, 6, 7, 8, 23] as well as
boundary value problems with impulses [14].

2. Technical preliminaries

We start out by introducing the reader to the fundamental tools of fractional
calculus and the coincidence degree theory.
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The Riemann-Liouville fractional integral of order α > 0 of a function u ∈
Lp[0, 1], 1 ≤ p < ∞, is the integral

Iαu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s) ds. (2.1)

The Riemann-Liouville fractional derivative of order α > 0, n = [α] + 1, is defined
by

Dαu(t) =
1

Γ(n− α)
dn

dtn

∫ t

0

(t− s)n−α−1u(s) ds. (2.2)

Let AC[0, 1] denote the space of absolutely continuous functions on the interval
[0, 1] and ACn[0, 1] = {u ∈ AC[0, 1] : u(n) ∈ AC[0, 1]}, n = 0, 1, 2, . . . . We make
use of several relationships between (2.1) and (2.2) that are stated in the next two
theorems (see [10, 20, 22]).

Theorem 2.1. (a) The equality DαIαg = g holds for every g ∈ L1[0, 1];
(b) For u ∈ L1[0, 1], n = [α] + 1, β > 0, if In−αu ∈ ACn−1[0, 1], then

IβDαu(t) = Dα−βu(t)−
n−1∑
k=0

tβ−k−1

Γ(β − k)

( dn−k−1

dtn−k−1
In−αu

)
(0).

For α < 0, we introduce the notation Iα = D−α.

Theorem 2.2. If β, α + β > 0 and g ∈ L1[0, 1], then the equality

IαIβg . = Iα+βg

Definition 2.3. Let X and Z be real normed spaces. A linear mapping L :
dom L ⊂ X → Z is called a Fredholm mapping if the following two conditions hold:

(i) kerL has a finite dimension, and
(ii) Im L is closed and has a finite codimension.

If L is a Fredholm mapping, its (Fredholm) index is the integer IndL = dim ker L−
codim Im L.

In this note we are concerned with a Fredholm mapping of index zero. From
Definition 2.3 it follows that there exist continuous projectors P : X → X and
Q : Z → Z such that

Im P = kerL, ker Q = Im L, X = kerL⊕ ker P, Z = Im L⊕ Im Q

and that the mapping

L|dom L∩ker P : dom L ∩ ker P → Im L

is one-to-one and onto. The inverse of L|dom L∩ker P we denote by KP : Im L →
dom L ∩ ker P . The generalized inverse of L denoted by KP,Q : Z → dom L ∩ ker P
is defined by KP,Q = KP (I −Q).

If L is a Fredholm mapping of index zero, then, for every isomorphism J :
Im Q → ker L, the mapping JQ + KP,Q : Z → dom L is an isomorphism and, for
every u ∈ dom L,

(JQ + KP,Q)−1u = (L + J−1P )u.
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Definition 2.4. Let L : dom L ⊂ X → Z be a Fredholm mapping, E be a metric
space, and N : E → Z be a mapping. We say that N is L-compact on E if
QN : E → Z and KP,QN : E → X are continuous and compact on E. In addition,
we say, that N is L-completely continuous if it is L-compact on every bounded
E ⊂ X.

The existence of a solution of the equation Lu = Nu will be shown using [16,
Theorem IV.13].

Theorem 2.5. Let Ω ⊂ X be open and bounded, L be a Fredholm mapping of index
zero and N be L-compact on Ω. Assume that the following conditions are satisfied:

(i) Lu 6= λNu for every (u, λ) ∈ ((dom L\ ker L) ∩ ∂Ω)× (0, 1);
(ii) Nu /∈ Im L for every u ∈ ker L ∩ ∂Ω;
(iii) deg(JQN |ker L∩∂Ω,Ω∩ker L, 0) 6= 0, with Q : Z → Z a continuous projector

such that ker Q = Im L and J : Im Q → ker L is an isomorphism.
Then the equation Lu = Nu has at least one solution in dom L ∩ Ω.

Suppose now that the function f satisfies the Carathéodory conditions with
respect to Lp[0, 1], p ≥ 1; that is, the following conditions hold:

(C1) for each z ∈ Rn, the mapping t 7→ f(t, z) is Lebesgue measurable;
(C2) for a. e. t ∈ [0, 1], the mapping z 7→ f(t, z) is continuous on Rn;
(C3) for each r > 0, there exists a nonnegative φr ∈ Lp[0, 1] such that, for a. e.

t ∈ [0, 1] and every z such that |z| ≤ r, we have |f(t, z)| ≤ φr(t).

3. Main results

Consider the differential equation

Dαu(t) = f(t, u(t), u′(t)), a. e. t ∈ (0, 1), (3.1)

of fractional order 1 < α < 2, subject to the boundary conditions

Dα−2u(0) = 0, (3.2)

ηu(ξ) = u(1), (3.3)

where 0 < ξ < 1 and
ηξα−1 = 1. (3.4)

We let the following assumption stand throughout this article:
(P) p > 1

α−1 and q = p
p−1 .

Let ACloc(0, 1] be the space consisting of functions that are absolutely continuous
on every interval [a, 1] ⊂ (0, 1]. We introduce the space

X0 = {u : u ∈ AC[0, 1], u′ ∈ ACloc(0, 1], Dαu ∈ Lp[0, 1]}.
Let

X = {u ∈ C[0, 1] ∩ C1(0, 1] : lim
t→0+

t2−αu′(t) exists}

with the weighted norm ‖u‖ = max{‖u‖0, ‖t2−αu′‖0}, where ‖ · ‖0 is the max-norm
and ‖t2−αv‖0 = supt∈(0,1] |t2−αv(t)|. Let Z = Lp[0, 1] with the usual norm ‖ · ‖p,
where p satisfies (P ). Define the mapping L : dom L ⊂ X → Z with

dom L = {u ∈ X0 : u satisfies (3.2) and (3.3)}
and Lu(t) = Dαu(t).
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Define the mapping N : X → Z by

Nu(t) = f(t, u(t), u′(t)).

Lemma 3.1. The mapping L : dom L ⊂ X → Z is a Fredholm mapping of index
zero.

Proof. It is easy to see that ker L = {ctα−1 : c ∈ R}. We claim that

Im L = {g ∈ Z : ηIαg(ξ) = Iαg(1)}.

Let g ∈ Z and
u(t) = Iαg(t) + ctα−1, c ∈ R.

Then Dαu(t) = g(t), a. e. in (0, 1). By Theorem 2.2,

Dα−2u(t) = I2−αu(t)

= I2−αIαg(t) + cI2−α(tα−1)

= I2g(t) + cΓ(α)t,

so that Dα−2u(0) = 0. One can readily verify that, in view of (3.4), u satisfies (3.3)
provided ηIαg(ξ) = Iαg(1). It is obvious that u ∈ AC[0, 1]. Then u′ exists, for a.
e. t ∈ (0, 1], and, by Theorem 2.2,

u′(t) = Iα−1g(t) + c(α− 1)tα−2.

Moreover,
lim

t→0+
t2−αu′(t) = c(α− 1)

since

lim
t→0+

t2−α|Iα−1g(t)| ≤ lim
t→0+

t1/q‖g‖p

Γ(α− 1)((α− 2)q + 1)1/q
= 0.

Let t1, t2 ∈ (0, 1) and t1 < t2. Then

|Iα−1g(t2)− Iα−1g(t1)|

=
1

Γ(α)

∣∣ ∫ t2

0

(t2 − s)α−2g(s) ds−
∫ t1

0

(t1 − s)α−2g(s) ds
∣∣

=
1

Γ(α)

∣∣ ∫ t2

t1

(t2 − s)α−2g(s) ds +
∫ t1

0

(
(t2 − s)α−2 − (t1 − s)α−2

)
g(s) ds

∣∣
≤ 1

Γ(α)

∫ t2

t1

(t2 − s)α−2|g(s)| ds +
1

Γ(α)

∫ t1

0

(
(t1 − s)α−2 − (t2 − s)α−2

)
|g(s)| ds

≤ C1 (t2 − t1)
α−2+ 1

q ‖g‖p + C1

[ ∫ t1

0

(
(t1 − s)α−2 − (t2 − s)α−2

)q
ds

]1/q

‖g‖p

≤ C1 (t2 − t1)
α−2+ 1

q ‖g‖p + C1

[ ∫ t1

0

(
(t1 − s)(α−2)q − (t2 − s)(α−2)q

)
ds

]1/q

‖g‖p

≤ C1 (t2 − t1)
α−2+ 1

q ‖g‖p

+ C1

(
t
(α−2)q+1
1 − t

(α−2)q+1
2 + (t2 − t1)(α−2)q+1

)1/q

‖g‖p,

where C1 is a generic constant that depends only on α and p. Thus, u′ ∈ ACloc(0, 1].
Combining the preceding observations, we obtain that u ∈ dom L. So, {g ∈ Z :
ηIαg(ξ) = Iαg(1)} ⊆ Im L.
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Let u ∈ dom L. Then, for Dαu ∈ Im L, we have, by Theorem 2.1(b) and (3.2),

IαDαu(t) = u(t)− Dα−1u(0)
Γ(α)

tα−1 − Dα−2u(0)
Γ(α− 1)

tα−2 = u(t)− Dα−1u(0)
Γ(α)

tα−1,

which, due to the boundary conditions (3.2), (3.3) together with (3.4), implies
that Dαu satisfies ηIαDαu(ξ) = IαDαu(1). Hence, Im L ⊆ {g ∈ Z : ηIαg(ξ) =
Iαg(1)}. Therefore, Im L = {g ∈ Z : ηIαg(ξ) = Iαg(1)}.

Define Q : Z → Z by

Qg(t) = κ (ηIαg(ξ)− Iαg(1)) tα−1,

where

κ =
Γ(2α)

Γ(α)(ξα − 1)
.

Then

Q2g(t) = κ (ηIαQg(ξ)− IαQg(1)) tα−1

= κ
( η

Γ(α)

∫ ξ

0

(ξ − s)α−1Qg(s) ds− 1
Γ(α)

∫ 1

0

(1− s)α−1Qg(s) ds
)
tα−1

= κ
( η

Γ(α)

∫ ξ

0

(ξ − s)α−1sα−1 ds− 1
Γ(α)

∫ 1

0

(1− s)α−1sα−1 ds
)
Qg(t)

= κ
Γ(α)
Γ(2α)

(ηξ2α−1 − 1)Qg(t)

= Qg(t)

in view of (3.4). Therefore, Q : Z → Z is a continuous linear projector with
KerQ = Im L.

Let g ∈ Z be written as g = (g − Qg) + Qg with g − Qg ∈ KerQ = Im L and
Qg ∈ Im Q. Hence, Z = Im L + Im Q. Let g ∈ Im L ∩ Im Q and set g(t) = ctα−1 to
obtain that

0 = γIαg(ξ)− Iαg(1) =
cΓ(α)
Γ(2α)

(ηξ2α−1 − 1) =
c

κ
,

which implies that c = 0. Hence {0} = Im L ∩ Im Q and so Z = Im L ⊕ Im Q.
Note that IndL = dim kerL − codim Im L = 0; that is, L is a Fredholm mapping
of index zero. �

Define P : X → X by

Pu(t) =
1

Γ(α)
Dα−1u(0)tα−1.

Since 0 < α− 1 < 1,

Dα−1u(t) =
1

Γ(2− α)
d

dt

∫ t

0

(t− s)1−αu(s) ds.

Then

P 2u(t) =
1

Γ(α)
Dα−1(Pu)(0)tα−1

=
1

Γ(2− α)
1

Γ(α)

( d

dt

∫ t

0

(t− s)1−αsα−1 ds
)∣∣∣

t=0
Pu(t)

= Pu(t).
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We have that P : X → X is a continuous linear projector. Note that kerP = {u ∈
X : Dα−1u(0) = 0}. For u ∈ X,

‖Pu‖0 =
1

Γ(α)
|Dα−1u(0)|

and
‖t2−α(Pu)′‖0 =

1
Γ(α− 1)

|Dα−1u(0)|.

Hence,

‖Pu‖ =
1

Γ(α)
|Dα−1u(0)|. (3.5)

Define KP : Im L → dom L ∩ ker P by

KP g(t) = Iαg(t), t ∈ (0, 1).

For g ∈ Im L,
LKP g(t) = DαIαg(t) = g(t)

by Theorem 2.1(a). For u ∈ dom L ∩ ker P , we have Dα−2u(0) = 0 and Dα−1u(0) =
0. Hence, by Theorem 2.1(b),

KP Lu(t) = IαDαu(t)

= u(t)− Dα−1u(0)
Γ(α)

tα−1 − Dα−2u(0)
Γ(α− 1)

tα−2

= u(t).

Thus,

KP =
(
L|dom L∩ker P

)−1

.

Furthermore, using (P), we have

‖t2−α(KP g)′‖0 = max
t∈(0,1]

∣∣t2−α(KP g)′(t)
∣∣

≤ max
t∈(0,1]

t2−α

Γ(α− 1)

∫ t

0

(t− s)α−2|g(s)| ds

≤ max
t∈(0,1]

t2−α

Γ(α− 1)

( ∫ t

0

(t− s)(α−2)q ds
)1/q

‖g‖p

=
α− 1
Γ(α)

1
((α− 2)q + 1)1/q

‖g‖p.

Similarly,

‖KP g‖0 = max
t∈[0,1]

|KP g(t)|

≤ max
t∈[0,1]

1
Γ(α)

∫ t

0

(t− s)α−1|g(s)| ds

≤ max
t∈[0,1]

1
Γ(α)

( ∫ t

0

(t− s)(α−1)q ds
)1/q

‖g‖p

=
1

Γ(α)
1

((α− 1)q + 1)1/q
‖g‖p.

Hence
‖KP g‖ ≤ Λ‖g‖p, (3.6)
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where
Λ =

1
Γ(α)

max
{ 1

((α− 1)q + 1)1/q
,

α− 1
((α− 2)q + 1)1/q

}
. (3.7)

We introduce

QNu(t) = κ(ηIαNu(ξ)− IαNu(1))tα−1

=
κ

Γ(α)

(
η

∫ ξ

0

(ξ − s)α−1f(s, u(s), u′(s)) ds

−
∫ 1

0

(1− s)α−1f(s, u(s), u′(s)) ds
)
tα−1

and

KP,QNu(t) = KP (I −Q)Nu(t) =
κ

Γ(α)

∫ t

0

(t− s)α−1(Nu(s)−QNu(s)) ds.

Now we are in position to prove the existence results. We impose the condiitions
(H1) there exists a positive constant K such that u ∈ dom L \ KerL with

mint∈[0,1] |Dα−1(t)| > K implies QNu(t) 6= 0 on (0, 1];
(H2) there exist δ, β, tα−2γ, ρ ∈ Lp[0, 1] and a continuous nondecreasing function

φ : [0,∞) → [0,∞) and x0 > 0 with the properties:
(a)

‖β‖p + ‖tα−2γ‖p <
Γ(α)

1 + Γ(α)Λ
;

(b) for all x ≥ x0

x ≥ K + (1 + Γ(α)Λ)‖δ‖p

Γ(α)− (1 + Γ(α)Λ)(‖β‖p + ‖tα−2γ‖p)

+
(1 + Γ(α)Λ)‖ρ‖p

Γ(α)− (1 + Γ(α)Λ)(‖β‖p + ‖tα−2γ‖p)
φ(x);

(3.8)

(c) f : [0, 1]× R2 → R satisfies

|f(t, x, y)| ≤ δ(t) + β(t)|x|+ γ(t)|y|+ ρ(t)φ(|x|);
(H3) there exists a constant B > 0 such that, for every c ∈ R satisfying |c| > B

we have
sgn [c(ηIuc(ξ)− Iuc(1))] 6= 0,

where uc(t) = ctα−1.

Theorem 3.2. If the hypotheses (P), (H1)-(H3) are satisfied, then the boundary
value problem (3.1)-(3.4) has a solution.

Proof. Let Ω1 = {u ∈ dom L \ KerL : Lu = λNufor some λ ∈ (0, 1)}. Applying
(H1), QNu(t) = 0 for all t ∈ [0, 1]. Hence there exists t0 ∈ (0, 1] such that
|Dα−1(t0)| ≤ K. By Theorem 2.1 with β = 1,

IDαu(t0) = Dα−1u(t0)−Dα−1u(0)−Dα−2u(0)t−1
0

= Dα−1u(t0)−Dα−1u(0)

since u ∈ dom L. That is,

Dα−1u(0) = Dα−1u(t0)−
∫ t0

0

Dαu(s) ds,
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which implies

|Dα−1u(0)| ≤ |Dα−1u(t0)|+
∫ t0

0

|Dαu(s)| ds

≤ K + ‖Lu‖
< K + ‖Nu‖p.

By (3.5),

‖Pu‖ =
1

Γ(α)
|Dα−1u(0)| < 1

Γ(α)
(K + ‖Nu‖p).

Since (I − P )u ∈ dom L ∩ KerP = Im KP , for u ∈ Ω1, ‖(I − P )u‖ < Λ‖Nu‖p by
(3.6) and (3.7). Also Pu ∈ Im P = KerL ⊂ dom L and, therefore,

‖u‖ ≤ ‖Pu‖+ ‖(I − P )u‖ <
K

Γ(α)
+

( 1
Γ(α)

+ Λ
)
‖Nu‖p.

From (H2) and the previous inequality, it follows that

‖t2−αu′‖0 <
K

Γ(α)
+

( 1
Γ(α)

+ Λ
)(
‖δ‖p + ‖β‖p‖‖u‖0

+ ‖tα−2γ‖p‖t2−αu′‖0 + ‖ρ‖pφ(‖u‖0)
)

or

‖t2−αu′‖0 <
K + (1 + Γ(α)Λ)‖δ‖p

Γ(α)− (1 + Γ(α)Λ)‖tα−2γ‖p
+

(1 + Γ(α)Λ)‖β‖p

Γ(α)− (1 + Γ(α)Λ)‖tα−2γ‖p
‖u‖0

+
(1 + Γ(α)Λ)‖ρ‖p

Γ(α)− (1 + Γ(α)Λ)‖tα−2γ‖p
φ(‖u‖0).

(3.9)
Combining the above inequality with

‖u‖0 <
K

Γ(α)
+

( 1
Γ(α)

+ Λ
)(
‖δ‖p + ‖β‖p‖‖u‖0

+ ‖tα−2γ‖p‖t2−αu′‖0 + ‖ρ‖pφ(‖u‖0)
)

we obtain

‖u‖0 <
K + (1 + Γ(α)Λ)‖δ‖p

Γ(α)− (1 + Γ(α)Λ)(‖β‖p + ‖tα−2γ‖p)

+
(1 + Γ(α)Λ)‖ρ‖p

Γ(α)− (1 + Γ(α)Λ)(‖β‖p + ‖tα−2γ‖p)
φ(‖u‖0),

for all u ∈ Ω1. Suppose that Ω1 is unbounded. If {‖t2−αu′‖0 : u ∈ Ω1} is un-
bounded, then, by (3.9), so is {‖u‖0 : u ∈ Ω1}. So, it suffices to consider the
case that {‖u‖0 : u ∈ Ω1} is unbounded. Then, in view of (3.8), we arrive at a
contradiction. Therefore, Ω1 is bounded.

Set Ω2 = {u ∈ ker L : Nu ∈ Im L}. Hence uc ∈ ker L is given by uc(t) = ctα−1,
c ∈ R. Then (QN)(ctα−1) = 0, since Nu ∈ Im L = ker Q. It follows from (H3)
that ‖uc‖ = max{‖uc‖0, ‖t2−αu′c‖0} = max{|c|, (α− 1)|c|} = |c| ≤ B; that is, Ω2 is
bounded.

Define the isomorphism J : Im Q → ker L by Juc = uc, uc(t) = ctα−1 for c ∈ R.
Let Ω3 = {u ∈ ker L : −λJ−1u + (1 − λ)QNu = 0, λ ∈ [0, 1]}, if sgn[c(ηIuc(ξ) −
Iuc(1))] = −1. Then u ∈ Ω3 implies λc = (1−λ) (ηIuc(ξ)− Iuc(1)). If λ = 1, then



EJDE-2010/135 A BOUNDARY VALUE PROBLEM 9

c = 0 and, if λ ∈ [0, 1) and |c| > B, then 0 < λc2 = (1−λ)c (ηIuc(ξ)− Iuc(1)) < 0,
which is a contradiction. Let Ω3 = {u ∈ ker L : λJ−1u+(1−λ)QNu = 0, λ ∈ [0, 1]}
if sgn [c (ηIuc(ξ)− Iuc(1))] = 1, and we arrive at a contradiction, again. Thus,
‖uc‖ ≤ B, for all uc ∈ Ω3.

Let Ω be open and bounded such that ∪3
i=1Ωi ⊂ Ω. Then the assumptions (i)

and (ii) of Theorem 2.5 are fulfilled. It is a straightforward exercise to show that
the mapping N is L-compact on Ω. Lemma 3.1 establishes that L is a Fredholm
mapping of index zero.

Define
H(u, λ) = ±λ Idu + (1− λ)JQNu.

By the degree property of invariance under a homotopy, if u ∈ ker L ∩ ∂Ω, then

deg(JQN |ker L∩∂Ω,Ω ∩ ker L, 0) = deg(H(·, 0),Ω ∩ ker L, 0)

= deg(H(·, 1),Ω ∩ ker L, 0)

= deg(± Id,Ω ∩ ker L, 0) 6= 0.

Therefore, the assumption (iii) of Theorem 2.5 is fulfilled and the proof is completed.
�

Suppose that the hypothesis (H2) is replaced by
(H2’) there exist δ, β, tα−2γ, tα−2ρ ∈ Lp[0, 1] and a continuous nondecreasing

function φ : [0,∞) → [0,∞) and y0 > 0 with the properties:
(a)

‖β‖p + ‖tα−2γ‖p <
Γ(α)

1 + Γ(α)Λ
;

(b) for all y ∈ [0,∞) and t ∈ [0, 1],

t2−αφ(y) ≤ φ(t2−αy);

(c) for all y ≥ y0,

y ≥ K + (1 + Γ(α)Λ)‖δ‖p

Γ(α)− (1 + Γ(α)Λ)(‖β‖p + ‖tα−2γ‖p)

+
(1 + Γ(α)Λ)‖tα−2ρ‖p

Γ(α)− (1 + Γ(α)Λ)(‖β‖p + ‖tα−2γ‖p)
φ(y);

(d) f : [0, 1]× R2 → R satisfies

|f(t, x, y)| ≤ δ(t) + β(t)|x|+ γ(t)|y|+ ρ(t)φ(|y|).
Then we have the following existence criterion whose proof is analogous to that

of Theorem 3.2.

Theorem 3.3. If the hypotheses (P), (H1), (H2’), (H3) are satisfied, then the
boundary value problem (3.1)-(3.4) has a solution.
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