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HETEROCLINIC SOLUTIONS TO AN ASYMPTOTICALLY
AUTONOMOUS SECOND-ORDER EQUATION

GREGORY S. SPRADLIN

Abstract. We study the differential equation ẍ(t) = a(t)V ′(x(t)), where V is

a double-well potential with minima at x = ±1 and a(t) → l > 0 as |t| → ∞.
It is proven that under certain additional assumptions on a, there exists a

heteroclinic solution x to the differential equation with x(t)→ −1 as t→ −∞
and x(t) → 1 as t → ∞. The assumptions allow l − a(t) to change sign for
arbitrarily large values of |t|, and do not restrict the decay rate of |l− a(t)| as
|t| → ∞.

1. Introduction

Consider the autonomous second-order differential equation

ẍ(t) = lV ′(x(t)), (1.1)

x(t) → −1 as t → −∞, x(t) → 1 as t →∞. (1.2)

where l > 0, V ∈ C2(R, [0,∞)), V (−1) = V (1) = 0, and V > 0 on (−1, 1). The
presence of l seems superfluous at this point; however, we will use it later. It is
easy to show that (1.1)-(1.2) has a solution: multiply both sides of (1.1) by ẋ(t)
and integrate, and conclude that 1

2 ẋ(t)2 − lV (x(t)) is constant. Assuming that
V (x) ≤ c(1± x)2 for some c > 0 in a neighborhood of −1 and 1 respectively, then
setting the constant equal to zero, we find that (1.1)-(1.2) has a solution, which
solves the first-order equation ẋ(t) =

√
2lV (x(t)). That solution is unique if we

impose the condition x(0) = 0. From now on, we will refer to the unique solution
of (1.1)-(1.2) with x(0) = 0 as ω.

The function ω can also be characterized as the unique (modulo translation)
minimizer of the functional

Fl(u) =
∫ ∞

−∞

1
2
u̇(t)2 − lV (u(t)) dt (1.3)

over the affine space

W = {u ∈ W 1,2
loc (R) : u + 1 ∈ W 1,2((−∞, 0]), u− 1 ∈ W 1,2([0,∞))}. (1.4)
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An interesting problem is to replace l by a nonconstant, positive coefficient function
a(t) and find conditions on a under which

ẍ(t) = a(t)V ′(x(t)) (1.5)

with (1.2) has solutions. We must assume something: note that if a is continuous
and increasing, then if x solves (1.1)-(1.2), then 1

2 ẋ(t)2 − a(t)V (x(t)) → 0 as |t| →
∞, but

d

dt
(
1
2
ẋ(t)2 − a(t)V (x(t))) = ẍ(t)ẋ(t)− a(t)V ′(x(t))ẋ(t)− ȧ(t)V (x(t))

= −ȧ(t)V (x(t)) < 0.
(1.6)

This is impossible.
There are many results concerning equations like (1.5) in which the analogue of

a(t) is periodic, and homoclinic, heteroclinic, and multitransition solutions of the
equations are found. See [6], [10]. There seems to be fewer results for the case

(A1) a(t) → l > 0 as |t| → ∞
In [2, Chapter 2, Thm. 2.2], a solution is found for when 0 < a(t) ≤ l for all t ∈ R. In
[5] (Section 5, Example 1) a solution is found when the coefficient a(t) is definitively
increasing with respect to |t|. In [8], a solution is found in the case l ≤ a(t) ≤ L
and L is suitably bounded from above. This result is a specific case of the result
proven in this paper and is described more precisely later. In [9], a solution is found
when a(t) is increasing on [t0,∞) and decreasing on (−∞, t0] for some t0 > 0 and
l− a(t) decays to zero slowly enough as |t| → ∞. In this paper, we find conditions
on a which allow l − a(t) to change sign for arbitrarily large |t| and do not require
any assumptions on the monotonicity of a or the decay rate of l− a(t) as |t| → ∞.
In more related work, in [7] heteroclinic orbits to a nonautonomous differential
equation are found that connect stationary points of different energy levels. In [4],
heteroclinic solutions connecting nonconsecutive equilibria of a triple-well potential
are found for a fourth-degree ordinary differential equation.

Let V satisfy
(V1) V ∈ C2(R, R);
(V2) V (x) ≥ 0 for all x ∈ R;
(V3) V (−1) = V (1) = 0;
(V4) V > 0 on (−1, 1);
(V5) V ′′(−1) > 0, V ′′(1) > 0.

Let

ξ− = min{x : x > −1, V ′(x) = 0}, ξ+ = max{x : x < 1, V ′(x) = 0}. (1.7)

Note that ξ− and ξ+ are well-defined by (V3)-(V5). Define

ν = min
( ∫ ξ−

−1

√
V (x) dx,

∫ 1

ξ+

√
V (x) dx

)
> 0. (1.8)

Let a : R → R be a measurable function satisfying (A1) and

(A2) 0 < l ≤ a(t) ≤ L ≡ l + 4ν
√

ll/
∫ 1

−1

√
V (x) dx for all t ∈ R

We will prove the following result.

Theorem 1.1. Let V and a satisfy (V1)-(V5), (A1)-(A2). Then (1.5), (1.2) has a
solution taking values in (−1, 1).
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Note: if V is even and V > 0 on (−1, 0), then L = l + 2
√

ll in (A2). If l = l,
we obtain the result of [8]. Due to a dearth of counterexamples, it is not known
whether the upper bound on a in (A2) is really necessary.

This paper is organized as follows: Section 2 lays out the variational methods
used in the proof and an outline of the proof. Section 3 contains the proofs of
some subordinate propositions and lemmas, with the most involved proposition
concerning the convergence of Palais-Smale sequences of the functional associated
with (1.5). Section 4 wraps up the proof of Theorem 1.1.

2. Variational Method and Outline of Proof

Define the functional F : W 1,2
loc (R) → [0,∞] by

F (x) =
∫ ∞

−∞

1
2
ẋ(t)2 + a(t)V (x(t)) dt. (2.1)

By (V1)-(V3), F (x) < ∞ for all x ∈ W . F : W → R+ is Fréchet differentiable with

F ′(x)u =
∫ ∞

−∞
ẋ(t)u̇(t) + V ′(x(t))u(t) dt (2.2)

for all x ∈ W , u ∈ W 1,2(R). Critical points of F : W → R+ are solutions of (1.5),
(1.2). We will show via a minimax argument that F has at least one critical point.

Define
B = Fl(ω) > 0, (2.3)

where Fl is as in (1.3). A Palais-Smale sequence for F is a sequence (xn) ⊂ W
with F (xn) convergent and ‖F ′(xn)‖ → 0 as n → ∞, where ‖F ′(x)‖ is defined by
the operator norm

‖F ′(x)‖ = sup{F ′(x)u : u ∈ W 1,2(R), ‖u‖W 1,2(R) = 1}. (2.4)

We will use the usual norm on W 1,2(R),

‖u‖W 1,2(R) =
( ∫ ∞

−∞
u̇(t)2 + u(t)2 dt

)1/2

. (2.5)

The W 1,2(R)-norm will be denoted simply by ‖ · ‖ for the rest of this article. We
will prove the following proposition.

Proposition 2.1. Let (xn) ⊂ W with F ′(xn) → 0 and

F (xn) → b ∈ [0,B) ∪ (B,B + 2ν
√

2l). (2.6)

Then, there exists x̄ ∈ W solving (1.5), (1.2) and a subsequence of (xn) (also called
(xn)) with ‖xn − x̄‖ → 0 as n →∞.

It is interesting that the conclusion of Proposition 2.1 fails precisely when b =
B. To verify this, define the translation operator τ by τau(t) = u(t − a) for any
u : R → R and a, t ∈ R. Then the Palais-Smale sequence (xn) = (τnω) satisfies
F (xn) → B and F ′(xn) → 0 as n →∞, but xn → −1 pointwise.

We use a minimax argument similar to that in [8]. Define

Γ = {γ ∈ C(R,W ) : ‖τtω − γ(t)‖ → 0 as |t| → ∞} (2.7)

and
c = inf

γ∈Γ
sup
t∈R

F (γ(t)). (2.8)
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Clearly c ≥ B. We will show in Section 4 that c < B+2ν
√

2l. There are two cases to
consider: c = B and c > B. If c > B, then a standard deformation argument shows
that there exists a Palais-Smale sequence (xn) with F (xn) → c and F ′(xn) → 0 as
n → ∞. Applying Proposition 2.1, there exists a solution x̄ of (1.5), (1.2) and a
subsequence of (xn) (also denoted (xn)) with ‖xn − x̄‖ → 0 as n → ∞. If c = B,
then for every n ∈ N, there exists γn ∈ Γ with supt∈R F (γn(t)) < B + 1/n. Choose
tn ∈ R with γn(tn)(0) = 0 and let xn = γn(tn). Since (F (xn)) is bounded, we will
show there exists a subsequence (also called (xn)) and x ∈ W 1,2

loc (R) such that (xn)
converges to x locally uniformly and weakly in W 1,2([−T, T ]) for all T > 0. We
will show in Section 4 that in fact x ∈ W and F (x) ≤ B. If x is a critical point of
F , then Theorem 1.1 is proven. Otherwise, let W(y) denote the gradient of F at y
for all y ∈ W ; that is, for all y ∈ W and ϕ ∈ W 1,2(R),

(W(y), ϕ)W 1,2(R) = F ′(y)ϕ, (2.9)

where (·, ·) is the standard inner product on W 1,2(R),

(f, g)W 1,2(R) =
∫ ∞

−∞
ḟ(t)ġ(t) + f(t)g(t) dt. (2.10)

Let η denote the solution of the gradient vector flow induced by the initial value
problem:

d

ds
η(s, u) = −W(η(s, u)); η(0, u) = u. (2.11)

We will show in Section 4 that η is well-defined on [0,∞)×W .
Recall that we have x ∈ W with F (x) ≤ B and F ′(x) 6= 0. Since F is nonneg-

ative, there exists a sequence (sn) ⊂ R+ with F ′(η(sn, x)) → 0 as n → ∞. By
Proposition 2.1, there exists x̄ satisfying (1.5), (1.2).

3. Palais-Smale Sequences

In this section, we prove Proposition 2.1 and some subsidiary lemmas and propo-
sitions leading up to it. Although the full strength of Proposition 2.1 is not neces-
sary to prove Theorem 1.1, the strong convergence of Palais-Smale sequences that
it implies is interesting and may be useful for other problems. From now on we
assume that

V (x) > 0 for all |x| > 1, and lim|x|→∞V (x) = ∞. (3.1)

We may make this assumption because the solution we will find to (1.5) takes values
in (−1, 1).

Lemma 3.1. If x ∈ W 1,2
loc (R) with F (x) < ∞, then x(t) → −1 or x(t) → 1 as

t → −∞, and x(t) → 1 or x(t) → −1 as t →∞. In fact, x + 1 ∈ W 1,2((−∞, 0]) or
x− 1 ∈ W 1,2((−∞, 0]), and x + 1 ∈ W 1,2([0,∞)) or x− 1 ∈ W 1,2([0,∞)).

Proof. Suppose the lemma is false. Then there exist x ∈ W 1,2
loc (R) with F (x) < ∞,

δ > 0 and a sequence (tn) with |tn| → ∞ as n →∞
xn(t) ∈ (−∞,−1− δ) ∪ (−1 + δ, 1− δ) ∪ (1 + δ,∞). (3.2)

Let

d = inf{V (x) : x ∈ (−∞,−1− δ/2)∪ (−1+ δ/2, 1− δ/2)∪ (1+ δ/2,∞)} > 0. (3.3)

Assume without loss of generality that tn → ∞, and taking a subsequence if nec-
essary, that tn+1 ≥ tn + 1 for all n. If x(t) ∈ (−∞,−1 − δ/2) ∪ (−1 + δ/2, 1 −
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δ/2) ∪ (1 + δ/2,∞) for all t ∈ [tn, tn + 1], then
∫ tn+1

tn
V (x(t)) dt ≥ δ. Otherwise,

there exists t∗ ∈ [tn, tn+1] with |x(tn) − x(t∗)| ≥ δ/2, and by the Cauchy-Schwarz
inequality,

δ/2 ≤ |x(tn)− x(t∗)| ≤
∫ t∗

tn

|ẋ(t)| dt

≤
√

t∗ − tn

( ∫ t∗

tn

ẋ(t)2 dt
)1/2

≤
( ∫ t∗

tn

ẋ(t)2 dt
)1/2

,

(3.4)

∫ tn+1

tn

ẋ(t)2 dt ≥
∫ t∗

tn

ẋ(t)2 dt ≥ δ2/4. (3.5)

Either way, ∫ tn+1

tn

1
2
ẋ(t)2 + a(t)V (x(t)) dt ≥ min(δ2/8, dl), (3.6)

and

F (x) ≥
∞∑

n=1

∫ tn+1

tn

1
2
ẋ(t)2 + a(t)V (x(t)) dt ≥

∞∑
n=1

min(δ2/8, dl) = ∞, (3.7)

which is a contradiction. So x(t) → −1 or x(t) → 1 as t →∞. Similarly, x(t) → −1
or x(t) → 1 as t → −∞.

By (V5), there exists ε > 0 with V (x) ≥ ε(x + 1)2 for all x ∈ (−1 − ε,−1 + ε)
and V (x) ≥ ε(x− 1)2 for all x ∈ (1− ε, 1+ ε). So if x(t) → 1 as t →∞, there exists
T > 0 such that∫ ∞

T

(x(t)− 1)2 dt ≤
∫ ∞

T

V (x(t))/ε dt ≤ 1
εl

∫ ∞

T

a(t)V (x(t)) dt ≤ F (x)
εl

< ∞ (3.8)

and x − 1 ∈ W 1,2([0,∞)). Similar arguments apply to the cases x(t) → −1 as
t →∞, x(t) → 1 as t → −∞, and x(t) → −1 as t → −∞. �

Next we show that Palais-Smale sequences are bounded in W 1,2
loc (R).

Lemma 3.2. Let A, T > 0. There exists B > 0 such that if x ∈ W 1,2
loc (R) with

F (x) ≤ A, then ‖x‖W 1,2([−T,T ]) ≤ B.

Proof. Clearly
∫ T

−T
ẋ(t)2 dt ≤ 2A, so it suffices to find an upper bound on |x| over

[−T, T ]. Let C > 0 such that V (x) > C for all |x| ≥ A/2T . Since
∫ T

−T
V (x(t)) dx ≤

A, there exists t∗ ∈ [T, T ] with V (t∗) ≤ A/2T and |x(t∗)| ≤ C. For any s ∈ [−T, T ],

|x(s)| ≤ |x(t∗)|+ |
∫ s

t∗
ẋ(t) dt|

≤ |x(t∗)|+
√
|s− t∗|

∣∣∣ ∫ s

t∗
ẋ(t)2 dt

∣∣∣1/2

≤ C +
√

2T ·
√

2A.

(3.9)

�

For Ω ⊂ R, define

FΩ(x) =
∫

Ω

1
2
ẋ(t)2 + a(t)V (x(t)) dt. (3.10)

Then we have the following lemma.
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Lemma 3.3. If x0, x1 ∈ (−1, 1), t0 < t1, and x ∈ W 1,2([t0, t1]) with x(t0) = x0

and x(t1) = x1, then

F[t0,t1](x) ≥
√

2l
∣∣ ∫ x1

x0

√
V (x) dx

∣∣. (3.11)

Proof. Let ωl denote the unique solution in W of the differential equation

ẍ(t) = lV ′(x(t)) (3.12)

satisfying ωl(0) = 0. Then ωl minimizes the functional

Fl(u) =
∫ ∞

−∞

1
2
u̇(t)2 + lV (u(t)) dt (3.13)

over W . By the argument following (1.2),

ω̇l(t) =
√

2lV (ωl(t)). (3.14)

Let x0, x1 ∈ (−1, 1), t0 < t1, and x ∈ W 1,2([t0, t1]) with x(t0) = x0 and x(t1) =
x1. Assume x0 < x1. Now∫ t1

t0

1
2
ẋ(t)2 + lV (x(t)) dt ≥

∫ t1

t0

1
2
ω̇l(t)2 + lV (ωl(t)) dt; (3.15)

otherwise, we could replace ωl|[ω−1
l (x0),ω

−1
l (x1)]

by x|[t0,t1] to obtain ω̃ ∈ W with

Fl(ω̃) < Fl(ωl), contradicting the optimality of ωl. ω̃ is defined by

ω̃(t)

=


ωl(t), t ≤ ω−1

l (x0);
x(t− ω−1

l (x0) + t0), ω−1
l (x0) ≤ t ≤ ω−1

l (x0) + t1 − t0;
ωl(t + (ω−1

l (x1)− ω−1
l (x0))− (t1 − t0)), t ≥ ω−1

l (x0) + t1 − t0.

(3.16)
Now by (3.14)-(3.15),

F[t0,t1](x) ≥
∫ t1

t0

ω̇l(t)2 =
∫ t1

t0

ω̇l(t)
√

2lV (ωl(t)) dt =
∫ x1

x0

√
2lV (x(t)) dt. (3.17)

For the case x0 > x1, define xR, the reversal of x on [t0, t1], by xR(t) = x(t0 +
t1 − t). Then xR(t0) = x1 and xR(t1) = x0 so by the first case,

F[t0,t1](x) ≥
∫ t1

t0

1
2
ẋ(t)2 + lV (x(t)) dt =

∫ t1

t0

1
2
ẋR(t)2 + lV (xR(t)) dt

≥
∫ x0

x1

√
2lV (xR(t)) dt =

∣∣ ∫ x1

x0

√
2lV (x(t)) dt

∣∣. (3.18)

�

Recall that ξ− and ξ+ from (1.7), and assume from now on that

V (x) = V (−1 + (−1− x)) for all x ∈ [−1− (ξ− + 1),−1],

V (x) = V (1− (x− 1)) for all x ∈ [1, 1 + (1− ξ+)].
(3.19)

Again, we may assume this because our solution of (1.5), (1.2) will take values in
(−1, 1). To prove Proposition 2.1, we will use the following result.
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Proposition 3.4. If (xn) ⊂ W with F ′(xn) → 0,

F (xn) → b < 2B +
√

2l

∫ 1

−1

√
V (x) dx, (3.20)

and xn → x̄ ∈ W locally uniformly and weakly in W 1,2([−T, T ]) for all T > 0 as
n →∞, then x̄ solves (1.5) and ‖xn − x̄‖ → 0 as n →∞.

Proof. Let (xn) and x̄ be as in the Proposition statement. To prove x̄ solves (1.5),
let ϕ ∈ C∞

0 . Then

0 = lim
n→∞

F ′(xn)ϕ = lim
n→∞

∫ ∞

−∞
ẋn(t)ϕ̇(t) + V ′(xn(t))ϕ(t) dt

=
∫ ∞

−∞
˙̄x(t)ϕ̇(t) + V ′(x̄(t))ϕ(t) dt = F ′(x̄)ϕ,

(3.21)

and x̄ is a weak solution of (1.5). Next we show that for any T > 0, ‖xn −
x̄‖W 1,2([−T,T ]) → 0 as n → ∞. Let T > 0. Since xn → x̄ uniformly on [−T, T ],∫ T

−T
(xn(t) − x̄(t))2 dt → 0 as n → ∞. We must therefore show that

∫ T

−T
(ẋn(t) −

˙̄x(t))2 dt → 0 as n →∞. Since ẋn → ˙̄x weakly in L2([−T, T ]),

lim sup
n→∞

∫ T

−T

(ẋn(t)− x̄(t))2 dt

= lim sup
n→∞

∫ T

−T

ẋn(t)2 − 2
∫ T

−T

ẋn(t) ˙̄x(t) dt +
∫ T

−T

˙̄x(t)2 dt

= lim sup
n→∞

∫ T

−T

ẋn(t)2 − ˙̄x(t)2 dt,

(3.22)

and it suffices to prove limn→∞
∫ T

−T
ẋn(t)2 − ˙̄x(t)2 dt = 0. Define (un) ⊂ W 1,2(R)

by

un(t) =



0 t ≤ −T − 1
(xn(−T )− x̄(−T ))(t + T + 1) −T − 1 ≤ t ≤ −T

xn(t)− x̄(t) −T ≤ t ≤ T

(xn(T )− x̄(T ))(−t + T + 1) T ≤ t ≤ T + 1
0 t ≥ T + 1

(3.23)

Clearly, (un) is bounded in W 1,2(R). Since un → 0 uniformly on [−T − 1, T + 1],

0 = lim
n→∞

F ′(xn)un + F ′(x̄)un

= lim
n→∞

(xn, un)W 1,2([−T−1,T+1]) + (x̄, un)W 1,2([−T−1,T+1])

−
∫ T+1

−T−1

a(t)V ′(xn(t))un(t) dt−
∫ T+1

−T−1

a(t)V ′(x̄(t))un(t) dt

= lim
n→∞

(xn, un)W 1,2([−T−1,T+1]) + (x̄, un)W 1,2([−T−1,T+1]).

(3.24)
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Since ‖un‖W 1,2([−T−1,−T ]) → 0 and ‖un‖W 1,2([T,T+1]) → 0 as n →∞,

0 = lim
n→∞

(xn, un)W 1,2([−T,T ]) + (x̄, un)W 1,2([−T,T ])

= lim
n→∞

∫ T

−T

ẋn(t)(ẋn(t)− ˙̄x(t)) + xn(t)(xn(t)− x̄(t))

+ ˙̄x(t)(ẋn(t)− ˙̄x(t)) + x̄(t)(xn(t)− x̄(t)) dt

= lim
n→∞

∫ T

−T

ẋ2
n(t)− ˙̄x(t)2 + xn(t)2 − x̄(t)2 dt

= lim
n→∞

∫ T

−T

ẋ2
n(t)− ˙̄x(t)2 dt.

(3.25)

Therefore, ‖xn − x̄‖W 1,2([−T,T ]) → 0 as n →∞.
Suppose ‖xn − x̄‖ 6→ 0 as n → ∞. Then there exist δ > 0 and a sequence (Tn)

with Tn →∞ and

‖xn − x̄‖2R\[−Tn,Tn] ≥ 4δ2 (3.26)

for all n. Along a subsequence, either

‖xn − x̄‖2W 1,2((−∞,−Tn]) ≥ 2δ2 or ‖xn − x̄‖2W 1,2([Tn,∞)) ≥ 2δ2. (3.27)

Let us assume the former; the latter case is similar. Since 1 + x̄ ∈ W 1,2((−∞, 0]),

‖xn + 1‖W 1,2((−∞,−Tn]) ≥ δ (3.28)

for large n. There are two cases to consider:

Case I: For all ε > 0, there exists M > 0 such that |1 + xn(t)| < ε for all n and
t ≤ −M .

Case II: There exists d ∈ (0, 1) and a sequence (tn) ⊂ R with tn → −∞ and
|1 + xn(tn)| > d for all n.

Case I: let ξ∗ ∈ (−1, ξ−) and c ∈ (0, 1) such that

V ′(x)x ≥ c(1 + x)2 (3.29)

for all x ∈ [−1−(ξ∗+1), ξ∗]. This is possible by (V3)-(V5), (3.19), and the definition
of ξ−. Let M > 0 be large enough so that

|1 + xn(t)| < min
(
1 + ξ∗,

cδ2

8(1 +
√

b)

)
(3.30)

for all n ∈ N, t ≤ −M . Define (un) ⊂ W 1,2(R) by

un(t) =


1 + xn(t) t ≤ −M

(1 + xn(−M))(1−M − t) −M ≤ t ≤ −M + 1
0 t ≥ −M + 1

(3.31)

We will show (un) is uniformly bounded in W 1,2(R). Let K > 0 so

|V ′(x)| ≤ K and (x + 1)2 ≤ KV (x) (3.32)
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for all x ∈ [−1−(ξ∗+1), ξ∗]. This is possible by (V1)-(V5),(3.19), and the definition
of ξ−. For large n,

‖un‖2 =
∫ −M

−∞
ẋn(t)2 + (1 + xn(t))2 dt + (1 + xn(−M))2 +

1
2
(1 + xn(−M))

≤ (2 +
K

l
)
∫ −M

−∞

1
2
ẋn(t)2 + a(t)V (xn(t)) dt

+ (1 + x̄(−M))2 +
1
2
(1 + x̄(−M)) + 1

≤ (2 +
K

l
)F (xn) + (1 + x̄(−M))2 +

1
2
(1 + x̄(−M)) + 1

≤ (2 +
K

l
)(2b) + (1 + x̄(−M))2 +

1
2
(1 + x̄(−M)) + 1.

(3.33)
Since F ′(xn) → 0, F ′(xn)un → 0 as n →∞. But for large n,

F ′(xn)un

=
∫ −M

−∞
ẋn(t)2 + V ′(xn(t))(1 + xn(t)) dt +

∫ −M+1

−M

(1 + xn(−M))ẋn(t) dt

+
∫ −M+1

−M

(1 + xn(−M))(1−M − t) dt

≥
∫ −M

−∞
ẋn(t)2 + c(1 + xn(t))2 dt

− |1 + xn(−M)|
( ∫ −M+1

−M

ẋn(t)2 dt
)1/2

− 1
2
|1 + xn(−M)|

≥ c‖1 + xn‖2W 1,2(−∞,−M ]) − |1 + xn(−M)|(
√

2F (xn) + 1)

≥ cδ2 − (1 + 2
√

b)|1 + xn(−M)| ≥ 1
2
cδ2

(3.34)

by (3.30). This is impossible.
Case II: by the arguments of Lemma 3.3,

F (x) ≥
√

2l

∫ 1

−1

√
V (x) dx (3.35)

for all x ∈ W , including x̄. Let d and (tn) be as in Case I. Let M > 0 be large
enough so that |1 + x̄(t)| < d/2 for all t ≤ −M , and

F[−M,M ](x̄) >
√

2l

∫ 1

−1

√
V (x) dx− 1

10
(2B +

√
2l

∫ 1

−1

√
V (x) dx− b). (3.36)

Define αn ≤ βn < −M by

βn = max{t < −M : |1 + xn(t)| = d}, αn = min{t : |1 + xn(t)| = d} (3.37)

Since xn → x̄ locally uniformly and |1+ x̄(t)| < d/2 < 1 for all t ≤ −M , βn → −∞
as n →∞. Define vn = τ−βnxn. By Fatou’s Lemma, the weak lower semicontinuity
of

∫∞
−∞ ẋ(t)2 dt, and Lemma 3.2, there exists v̄ ∈ W 1,2(R) with F (v̄) < ∞ and

vn → v̄ locally uniformly and weakly in W 1,2([−T, T ]) for all T > 0. By the
arguments of (3.21), F ′

l (v̄) = 0. By the definition of βn, v̄(t) ≤ −1 + d < 0 for
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all t > 0. Therefore, by the arguments of Lemma 3.1 applied to Fl instead of F ,
v̄(t) → −1 as t →∞. By the arguments following (1.2), ˙̄v(t) = −

√
2lV (v̄(t)) for all

t ∈ R. Let ωR denote the reversal of ω: ωR(t) = ω(−t) for all t. Clearly v̄ = τλωR

for some λ ∈ R. By the arguments of (3.22)-(3.25),

‖xn − τλ+βnωR‖W 1,2([βn−T,βn+T ]) → 0 (3.38)

as n → ∞ for all T > 0. This implies βn − αn → ∞ as n → ∞. For all n and all
t < αn, xn(t) < −1 + d/2 < 0. Therefore, arguments similar to those above show
that there exists λ2 ∈ R with

‖xn − τλ2+αnω‖W 1,2([αn−T,αn+T ]) → 0 (3.39)

for all T > 0 as n →∞. For Ω ⊂ R, define

FlΩ(x) =
∫

Ω

1
2
ẋ(t)2 + lV (x(t)) dt (3.40)

Still assuming that M is large enough so that (3.36) holds, assume also that M is
large enough that

Fl[−M,M ](τλωR) > B − 1
10

(2B +
√

2l

∫ 1

−1

√
V (x) dx− b),

Fl[−M,M ](τλ2ω) > B − 1
10

(2B +
√

2l

∫ 1

−1

√
V (x) dx− b),

(3.41)

Then for large n, (3.36), (3.38)-(3.41), αn → −∞, βn → −∞, and a(t) → l as
|t| → ∞ imply

F (xn) ≥ F[αn−M,αn+M ](xn) + F[βn−M,βn+M ](xn) + F[−M,M ](xn)

≥ (B − 1
5
(2B +

√
2l

∫ 1

−1

√
V (x) dx− b)

+ (B − 1
5
(2B +

√
2l

∫ 1

−1

√
V (x) dx− b)

+ (
√

2l

∫ 1

−1

√
V (x) dx− 1

5
(2B +

√
2l

∫ 1

−1

√
V (x) dx− b))

− 1
5
(2B +

√
2l

∫ 1

−1

√
V (x) dx− b)

= 2B +
√

2l

∫ 1

−1

√
V (x) dx− 4

5
(2B +

√
2l

∫ 1

−1

√
V (x) dx− b)

≡ b+ > b.

(3.42)

This is impossible. Proposition 3.4 is proven. �

Proof of Proposition 2.1. There are two cases: b < B and b > B. The case b < B
is easier. Let (xn) ⊂ W with F (xn) → b < B and F ′(xn) → 0 as n → ∞. By
Lemma 3.2, (xn) converges locally uniformly and weakly in W 1,2([−T, T ]) for all
T > 0 to some function x̄ ∈ W 1,2

loc (R). By Fatou’s Lemma and the weak lower
semicontinuity of

∫∞
−∞ ẋ(t)2 dt, F (x̄) < ∞. By Proposition 3.4, it suffices to show

x̄ ∈ W . Suppose x̄ 6∈ W . Then by Lemma 3.1, x̄(t) → 1 as t → −∞ or x̄(t) → −1
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as t → ∞. Suppose x̄(t) → −1 as t → ∞ (the proof for x̄(t) → 1 as t → −∞ is
similar). Define

Bε =
∫ ω−1(1−ε)

ω−1(−1+ε)

1
2
ω̇2(t) + lV (ω(t)) dt (3.43)

for ε > 0. Let ε > 0 be small enough that( l − ε

l

)
Bε > b. (3.44)

Let T > 0 be large enough so that a ≥ l − ε on [T,∞) and x̄(T ) < −1 + ε. Let
n be large enough that xn(T ) < −1 + ε. Let T < α < β with xn(α) = −1 + ε,
xn(β) = 1− ε. By arguments similar to those of Lemma 3.3,

F (xn) ≥ F[α,β](xn) =
∫ β

α

1
2
ẋn(t)2 + a(t)V (xn(t)) dt

≥
∫ β

α

1
2
ẋn(t)2 + (l − ε)V (xn(t)) dt

≥ l − ε

l

∫ β

α

1
2
ẋn(t)2 + lV (xn(t)) dt

≥ l − ε

l
Bε ≡ b+ > b.

(3.45)

This is a contradiction.
Now suppose b ∈ (B,B+2ν

√
ll). As before, along a subsequence, (xn) converges

locally uniformly and weakly in W 1,2([−T, T ]) for all T > 0 to a function x̄ ∈
W 1,2

loc (R) with F (x̄) ≤ b. We must show x̄ ∈ W ; then applying Proposition 3.4
proves Theorem 1.1. Suppose x̄(t) 6→ 1 as t →∞ (the proof for x̄(t) 6→ −1 as t →
−∞ is similar). By Lemma 3.1, x̄(t) → −1 as t →∞. Let tn = max{t : xn(t) = 0}.
Then tn →∞ as n →∞. By the arguments following (3.37) and the arguments of
(3.22)-(3.25),

‖xn − τtn
ω‖W 1,2([tn−M,tn+M ]) → 0 (3.46)

as n →∞ for all M > 0. Let −1 < e1 < ξi < ξ− with√
2l

∫ ξ1

e1

√
V (x) dx > ν

√
2l − 1

5
(B + 2ν

√
2l − b). (3.47)

Let c ∈ (0, 1) with
V ′(x)(1 + x) ≥ cV (x) (3.48)

for all x ∈ [−1, ξ1]. Let K > 0 be large enough that

|V ′(x)| < K (3.49)

for all x ∈ [−1, 1]. Let M > 0 be large enough that

Fl[−M,M ](ω) > B − 1
6
(B + 2ν

√
2l − b), (3.50)

1 + ω(−M) < min(
c(b− B)

16(K + 2
√

b)
, 1 + e1). (3.51)

By (3.46) and the fact that a(t) → l as t →∞,

F[tn−M,tn+M ](xn) < B +
1
2
(b− B) (3.52)
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for large n, so

F(−∞,tn−M ](xn) + F[tn+M,∞)(xn) >
1
3
(b− B). (3.53)

Assume F(−∞,tn−M ] > (b−B)/6 (the case F[tn+M,∞) > (b−B)/6 is similar). There
are two possible cases: along a subsequence,

Case I: |1 + xn(αn)| ≥ 1 + ξ1 for αn < tn −M ,
Case II: |1 + xn(t)| < 1 + ξ1 for all t < tn −M .

For Case I, assume 1 + xn(αn) ≥ 1 + ξ1 (the case 1 + xn(αn) ≤ −(1 + ξ1) is
similar due to (3.19)). For large n, by Lemma 3.3, (3.47), (3.51), (3.46), (3.50),
(A1), and tn →∞,

F (xn) ≥ F(−∞,αn](xn) + F[αn,tn−M ](xn) + F[tn−M,tn+M ](xn)

≥ 2(ν
√

2l − 1
5
(B + 2ν

√
2l − b)) + (B − 1

5
(B + 2ν

√
2l − b))

= B + 2ν
√

2l − 3
5
(B + 2ν

√
2l − b) ≡ b+ > b.

(3.54)

This is impossible.
For Case II, define (un) ⊂ W 1,2(R) by

un(t) =


1 + xn(t) t ≤ tn −M

(1 + xn(tn −M))(tn −M + 1− t) tn −M ≤ t ≤ tn −M + 1
0 t ≥ tn −M + 1.

(3.55)

The sequence (un) is uniformly bounded in W 1,2(R), as in (3.33). So F ′(xn)un → 0.
But for large n,

F ′(xn)un

=
∫ tn−M

−∞
ẋn(t)2 + a(t)V ′(xn(t))(1 + xn(t)) dt

− (1 + xn(tn −M))
∫ tn−M+1

tn−M

ẋn(t) dt

+ (1 + xn(tn −M))
∫ tn−M+1

tn−M

V ′(xn(t))(tn −M + 1− t) dt

≥
∫ tn−M

−∞
ẋn(t)2 + ca(t)V (xn(t)) dt

− |1 + xn(tn −M)|
( ∫ tn−M+1

tn−M

ẋn(t)2 dt
)1/2

−K|1 + xn(t−M)|

≥ c

∫ tn−M

−∞

1
2
ẋn(t)2 + a(t)V (xn(t)) dt− (K + 2

√
b)|1 + xn(tn −M)|

= cF(−∞,tn−M ](xn)− (K + 2
√

b)|1 + xn(tn −M)|

≥ 1
6
c(b− B)− 1

12
c(b− B) =

1
12

c(b− B) > 0

(3.56)

by (3.51). This is impossible. Case II is proven. Proposition 2.1 is proven. �
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4. Completion of Proof

In this section we tie up some loose ends from Section 2. It was asserted that
c < B+2ν

√
2l, where c is from (2.8). Define γ0 ∈ Γ by γ0(t) = τt(ω). We will show

supt∈R F (ω0(t)) < B. Since F (γ0(t)) → B as |t| → ∞, and F (γ0(t)) is continuous
in t, it suffices to prove that F (γ0(t)) < B+ 2ν

√
2l for all t ∈ R. We will prove this

for t = 0; the proof is similar for other t. After (1.2), it is proven that

V (ω(t)) =
ω̇(t)√

2l

√
V (ω(t)) (4.1)

for all t. Since a(t) → l as |t| → ∞, and ω(t) ∈ (−1, 1) for all t, (A2) gives us

F (γ0(0)) = F (ω) =
∫ ∞

−∞

1
2
ω̇(t)2 + a(t)V (ω(t)) dt

<

∫ ∞

−∞

1
2
ω̇(t)2 + LV (ω(t)) dt

=
∫ ∞

−∞

1
2
ω̇(t)2 + lV (ω(t)) dt + (L− l)

∫ ∞

−∞
V (ω(t)) dt

= B +
4ν
√

ll∫ 1

−1

√
V (x) dx

∫ ∞

−∞

1√
2l

ω̇(t)
√

V (ω(t)) dt = B + 2ν
√

2l.

(4.2)

We must prove that the gradient vector flow from (2.11) is well-defined on R+×W .
Since F is C2, it suffices to show that for all A > 0, there exists B > 0 such that
if x ∈ W with F (x) ≤ A, ‖F ′(x)‖ ≤ B: By (V5), it is possible to extend V from
[−1 − (ξ− + 1), 1 + (1 − ξ+)] (see (3.19)) to R such that there exists K > 0 with
V ′(x)2 ≤ KV (x) for all real x. Let x ∈ W with F (x) ≤ A and u ∈ W 1,2(R) with
‖u‖W 1,2(R) = 1. Then

F ′(x)u =
∫ ∞

−∞
ẋ(t)u̇(t) + a(t)V ′(x(t))u(t) dt

≤
( ∫ ∞

−∞
ẋ(t)2 dt

)1/2( ∫ ∞

−∞
u(t)2 dt

)1/2

+ L
( ∫ ∞

−∞
V ′(x(t))2 dt

)1/2( ∫ ∞

−∞
u(t)2 dt

)1/2

≤
√

2A + L
( ∫ ∞

−∞
KV (x(t)) dt

)1/2

≤
√

2A + L
√

K/l
( ∫ ∞

−∞
a(t)V (x(t)) dt

)
1/2

≤
√

2A + L
√

KA/l.

(4.3)

Here is the “standard deformation argument” alluded to after (2.8): suppose c > B,
and suppose there does not exist a Palais-Smale sequence (xn) ⊂ W with F (xn) → c
and F ′(xn) → 0. Then there exist ε, δ > 0 such that ‖F ′(xn)‖ > δ for all x ∈ W
with F (x) ∈ [c − ε, c + ε]. Let γ ∈ Γ with supt∈R F (γ(t)) < c + ε. Let T > 0
be large enough so that F (γ(t)) < c (> B) for |t| ≥ T . Let ϕ ∈ C(R, [0, 1])
with ϕ = 0 on (−∞,−T − 1] ∪ [T + 1,∞) and ϕ = 1 on [−T, T ]. Define γ2 ∈ Γ
by γ2(t) = η( 2ϕ(t)ε

δ2 , γ(t)), where η is the gradient vector flow from (2.11). Since
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d
dsF (η(s, u)) = −‖F ′(η(s, u)‖2 for all u ∈ W , s ∈ R+, F (γ2(t)) < c for all t ∈ R.
F (γ2(t)) → B as |t| → ∞, so supt∈R F (γ2(t)) < c, contradicting the definition of c.

In the c = B case after (2.8), we have (xn) ⊂ W with F (xn) → b ≤ B as n →∞
and xn(0) = 0 for all n. Since F (xn) is bounded, there exists x̄ ∈ W 1,2

loc (R) and a
subsequence of (xn) (also denoted (xn)) such that xn → x̄ locally uniformly and
weakly in W 1,2([−T, T ]) for all T > 0. As before, F (x̄) ≤ b ≤ B. We must prove
x̄ ∈ W . Suppose otherwise. By Lemma 3.1, x̄(t) → 1 or −1 as t →∞ and x̄(t) → 1
or −1 as t → −∞. Suppose x̄(t) → −1 as t → ∞ (the proof for x̄(t) → 1 as
t → −∞ is similar). Let Bε be as in (3.43) and let ε > 0 be small enough that

l − ε

l
Bε > B − F[−1,1](x̄)/2. (4.4)

Let T > 1 be large enough so a ≥ l − ε on [t,∞) and x̄(T ) < −1 + ε. Then, as in
(3.45), for large n,

F (xn) ≥ F[−1,1](xn) + F[T,∞)(xn) ≥ F[−1,1](x̄)/2 +
l − ε

l
Bε > B. (4.5)

This is impossible.
The final step in the proof is to show that a solution of (1.1) in W takes values

in (−1, 1). Suppose x ∈ W and solves (1.1). If x(t) > 1 for some real t, then let
tmax ∈ R with x(tmax) = maxt∈R x(t). ẍ(tmax) ≤ 0, but V (x(tmax)) > 0. This
is impossible. Similarly, x(t) ≤ 1 for all real t. Now suppose x(t∗) = 1. Then x
satisfies the Cauchy problem (1.1), x(t∗) = 1, ẋ(t∗) = 0, so by (V1), x ≡ 1. This is
a contradiction. Similarly, x(t) > −1 for all real t.
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