
Electronic Journal of Differential Equations, Vol. 2010(2010), No. 14, pp. 1–10.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

MULTIPLE SIGN-CHANGING SOLUTIONS FOR SUB-LINEAR
IMPULSIVE THREE-POINT BOUNDARY-VALUE PROBLEMS

GUI BAO, XIAN XU

Abstract. In this article, we study the existence of sign-changing solutions

for some second-order impulsive boundary-value problem with a sub-linear

condition at infinity. To obtain the results we use the Leray-Schauder degree
and the upper and lower solution method.

1. Introduction

This article concerns the impulsive differential equation

y′′(t) + f(t, y(t), y′(t)) = 0, t ∈ J, t 6= tk,

∆y′|t=tk
= Īk(y(tk)), k = 1, 2, . . . ,m,

y(0) = 0, y(1) = αy(η),

(1.1)

where J = [0, 1], f ∈ C[J × R2, R1], Īk ∈ C[R1, R1], k = 1, 2, . . . ,m, 0 ≤ α < 1,
0 = t0 < t1 < t2 < · · · < tm < η < tm+1 = 1.

The theory of impulsive differential equations describes processes which expe-
rience a sudden change of their state at certain moments. Processes with such a
character arise naturally and often, for example, phenomena studied in physics,
chemical technology, population dynamics, biotechnology and economics. For an
introduction of the basic theory of impulsive differential equation, we refer the
reader to [5].

In recent years, there have been many papers studying the existence of sign-
changing solutions to some boundary-value problems, see [2, 6, 8, 9, 10, 15] and
the references therein. However, to the authors best knowledge, there are few pa-
pers that considered the sign-changing solutions for the impulsive boundary-value
problems. Usually, to show the existence of sign-changing solutions one employs
the variational method and the Leray-Schauder degree method. However, a suit-
able variational structure for impulsive boundary-value problems is yet unknown.
In [7, 12, 13], authors computed the algebraic multiplicities of the linear problems
corresponding to the discussed boundary-value problems, but we know that the
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algebraic multiplicities of impulsive boundary-value problem are not easy to com-
pute. Thus, there are many difficulties in studying the sign-changing solutions for
the impulsive boundary-value problem (1.1) by the method mentioned above.

In this paper, we consider the sign-changing solutions for the impulsive three-
point boundary-value problem (1.1) by the Leray-Schauder degree and strict upper
and lower solution method. We assume a sub-linear condition at infinity, and we
construct another pair of strict upper and lower solutions by conditions of f and Īk.
We will show a result of at least four sign-changing solutions, two positive solutions
and two negative solutions for (1.1). Moreover, we will give a description of the
exact locations of them.

2. Preliminaries

Let J ′ = J \ {t1, t2, . . . , tm}, PC1[J, R1] = {x : J → R1, x′ is continuous at
t 6= tk, x′ is left continuous at t = tk, x′(t+k ) exists}. For x ∈ PC1[J, R1], let

‖x‖PC1 = max{‖x‖, ‖x′‖},

where ‖x‖ = supt∈J |x(t)| and ‖x′‖ = supt∈J |x′(t)|. Then PC1[J, R1] is a real
Banach space with norm ‖ · ‖PC1 . Let x, y ∈ C[J, R1]. Define ≺ as follows

x ≺ y if x(t) < y(t) for all t ∈ J.

Definition 2.1. A function u ∈ PC1[J, R1] ∩ C2[J ′, R1] is called a strict lower
solution of (1.1), if

u′′(t) + f(t, u(t), u′(t)) > 0, t 6= tk,

∆u′|t=tk
> Īk(u(tk)), k = 1, 2, . . . ,m,

u(0) < 0, u(1)− αu(η) < 0.

(2.1)

A function v ∈ PC1[J, R1] ∩ C2[J ′, R1] is called a strict upper solution of (1.1), if

v′′(t) + f(t, v(t), v′(t)) < 0, t 6= tk,

∆v′|t=tk
< Īk(v(tk)), k = 1, 2, . . . ,m,

v(0) > 0, v(1)− αv(η) > 0.

(2.2)

Let us introduce the following constants:

β = lim sup
|x|+|y|→∞

max
t∈J

|f(t, x, y)|
|x|+ |y|

,

β̄k = lim sup
|x|→∞

|Īk(x)|
|x|

, k = 1, 2, . . . m,

γ =
4

1− αη
(2β +

m∑
k=1

β̄k).

(2.3)

To state the main results in this paper we need the following assumptions:

(H1) For each k ∈ {1, 2, . . . ,m}, Īk(0) = 0 and

lim
x→0

Īk(x)
x

= d0 > 0.
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(H2) f : [0, 1]× R2 → R1 is continuous, f(t, 0, 0) = 0 and

lim
x→0

f(t, x, y)
x

= d1 < 0,

uniformly for t ∈ [0, 1].
From [3, Lemma 5.4.1], we have the following result.

Lemma 2.2. H ⊂ PC1[J, R1] is a relatively compact set if and only if for any
x ∈ H, x(t) and x′(t) are uniformly bounded on J and equicontinuous at any
Jk(k = 1, 2, . . . ,m), where J1 = [0, t1], Ji = (ti−1, ti], i = 2, 3, . . . ,m + 1.

Now we define the operator A : PC1[J, R1] → PC1[J, R1] as follows:

(Ax)(t)

=
t

1− αη

∫ 1

0

(1− s)f(s, x(s), x′(s))ds− αt

1− αη

∫ η

0

(η − s)f(s, x(s), x′(s))ds

−
∫ t

0

(t− s)f(s, x(s), x′(s))ds +
∑

0<tk<t

[Īk(x(tk))(t− tk)]

− t

1− αη

m∑
k=1

{[1− tk − α(η − tk)]Īk(x(tk))}, x ∈ PC1[J, R1].

From Lemma 2.2, we know A : PC1[J, R1] → PC1[J, R1] is a completely continuous
operator. The following Lemma can be easily obtained.

Lemma 2.3. y ∈ PC1[J, R1] is a solution of (1.1) if and only if y(t) = Ay(t) for
t ∈ [0, 1]

Theorem 2.4. Assume that u1 and u2 are two strict lower solutions of (1.1),
0 ≤ γ < 1, then there exists R0 > 0 large enough such that

deg(I −A,Ω, θ) = 1,

where Ω = {x ∈ B(θ, R0) : σ1 ≺ x}, σ1(t) = supt∈J{u1(t), u2(t)}.
Proof. If we let Ik = 0 in the proof of [11, Theorem 2.1], we can easily get this
theorem by slight modification. But for the completeness of this paper we will give
details of the proof of this theorem. For 0 ≤ γ < 1, we take β′ > β, β̄′k > β̄k,
(k = 1, 2, . . . ,m) with

γ′ :=
4

1− αη
(2β′ +

m∑
k=1

β̄′k) < 1. (2.4)

From the definition of β, there exists N > 0, such that

|f(t, x, y)| < β′(|x|+ |y|), ∀t ∈ J, |x|+ |y| ≥ N,

and so
|f(t, x, y)| ≤ β′(|x|+ |y|) + M, ∀t ∈ J, x, y ∈ R1, (2.5)

where M = sup(t,x,y)∈J×R2, |x|+|y|≤N |f(t, x, y)|. Similarly, we have

|Īk(x)| ≤ β̄′k|x|+ Mk, ∀x ∈ R1, (2.6)

where Mk is a positive constant. Take

R0 > max{‖u1‖PC1 , ‖u2‖PC1 ,
1

1− γ′
4

1− αη
(M +

m∑
k=1

Mk)}. (2.7)
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Let σ1(t) = supt∈J{u1(t), u2(t)} for all t ∈ J . Then σ1 ∈ PC[J, R1]. Now we define
h1 : J × R2 → R1, J̄k,1 : R1 → R1, (k = 1, 2, . . . ,m) as follows:

h1(t, x, y) =

{
f(t, σ1(t), y), x < σ1(t),
f(t, x, y), x ≥ σ1(t),

(2.8)

J̄k,1(x) =

{
Īk(σ1(tk)), x < σ1(tk),
Īk(x), x ≥ σ1(tk).

(2.9)

Define the nonlinear operator A1 : PC1[J, R1] → PC1[J, R1] as follows:

(A1x)(t)

=
t

1− αη

∫ 1

0

(1− s)h1(s, x(s), x′(s))ds− αt

1− αη

∫ η

0

(η − s)h1(s, x(s), x′(s))ds

−
∫ t

0

(t− s)h1(s, x(s), x′(s))ds +
∑

0<tk<t

[J̄k,1(x(tk))(t− tk)]

− t

1− αη

m∑
k=1

{[1− tk − α(η − tk)]J̄k,1(x(tk)}, ∀t ∈ J.

Clearly, A1 : PC1[J, R1] → PC1[J, R1] is a completely continuous operator. Let

B(θ, R0) = {x ∈ PC1[J, R1] : ‖x‖PC1 < R0}.

For any x ∈ B(θ, R0), by (2.5)-(2.9), we have for all t ∈ J ,

|h1(t, x(t), x′(t))| ≤ β′ sup
t∈J

{|x(t)|, |u1(t)|, |u2(t)|}+ β′|x′(t)|+ M ≤ 2β′R0 + M,

and for k = 1, 2, . . . ,m,

|J̄k,1(x(tk))| ≤ β̄′k max{|x(tk)|, |u1(tk)|, |u2(tk)|}+ Mk ≤ β̄′kR0 + Mk.

Then

|A1x(t)|

≤ [
1

1− αη

∫ 1

0

(1− s)ds +
α

1− αη

∫ η

0

(η − s)ds +
∫ 1

0

(1− s)ds](2β′R0 + M)

+
1

1− αη

m∑
k=1

(β̄′kR0 + Mk) +
m∑

k=1

(β̄′kR0 + Mk)

≤ 2
1− αη

(2β′R0 + M) +
m∑

k=1

(
1

1− αη
+ 1)β̄′kR0 +

m∑
k=1

(
1

1− αη
+ 1)Mk

≤ 2
1− αη

(2β′ +
m∑

k=1

β̄′k)R0 +
2

1− αη
(M +

m∑
k=1

Mk).

(2.10)
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Also we have

|(A1x)′(t)| ≤ [
1

1− αη

∫ 1

0

(1− s)ds +
α

1− αη

∫ η

0

(η − s)ds + 1](2β′R0 + M)

+
1

1− αη

m∑
k=1

(β̄′kR0 + Mk) +
m∑

k=1

(β̄′kR0 + Mk)

≤ 2
1− αη

(2β′ +
m∑

k=1

β̄′k)R0 +
2

1− αη
(M +

m∑
k=1

Mk).

(2.11)
Thus

‖A1x‖PC1 ≤ 4
1− αη

(2β′ +
m∑

k=1

β̄′k)R0 +
4

1− αη
(M +

m∑
k=1

Mk) < R0.

Then A1(B(θ, R0)) ⊂ B(θ, R0). Hence

deg(I −A1, B(θ, R0), θ) = 1. (2.12)

Now we prove that x0 ∈ Ω whenever x0 ∈ B(θ, R0) with x0 = A1x0. By Lemma
2.3, we have

x′′0(t) + h1(t, x0(t), x′0(t)) = 0, t ∈ J, t 6= tk,

∆x′0|t=tk
= J̄k,1(x0(tk)), k = 1, 2, . . . ,m,

x0(0) = 0, x0(1)− αx0(η) = 0,

(2.13)

for any x0 ∈ B(θ, R0) with x0 = A1x0. We need to prove

σ1 ≺ x0. (2.14)

Let ω(t) = σ1(t) − x0(t) for all t ∈ J . Then ω ∈ PC[J, R1]. If (2.14) is not true,
then supt∈J ω(t) ≥ 0. We have several cases to consider.

(1) ω(0) = supt∈J ω(t) ≥ 0. In this case,

0 ≤ ω(0) = σ1(0)− x0(0) = σ1(0) = max{u1(0), u2(0)} < 0,

which is a contradiction.
(2) ω(1) = supt∈J ω(t) ≥ 0. Assume without loss of generality that σ1(1) =

u1(1). Then

0 ≤ ω(1) = u1(1)− x0(1) < αu1(η)− αx0(η) ≤ αω(η) ≤ αω(1),

which is a contradiction.
(3) There exists k0 ∈ {1, 2, . . . ,m, m+1} and τ0 ∈ (tk0−1, tk0) such that ω(τ0) =

supt∈J ω(t) ≥ 0. We may assume σ1(τ0) = u1(τ0). We have two subcases: (3A)
u2(τ0) < u1(τ0), and (3B) u2(τ0) = u1(τ0).

For case (3A), we take δ0 > 0 small enough such that [τ0−δ0, τ0+δ0] ⊂ (tk0−1, tk0)
and σ1(t) = u1(t) for all t ∈ [τ0 − δ0, τ0 + δ0]. Then ω(t) = u1(t) − x0(t) for all
t ∈ [τ0 − δ0, τ0 + δ0]. Thus, ω ∈ C2[τ0 − δ0, τ0 + δ0] and ω(τ0) is a local maximum
of ω in [τ0 − δ0, τ0 + δ0]. Therefore ω′(τ0) = 0 , ω′′(τ0) ≤ 0 and so

0 ≥ ω′′(τ0) = u′′1(τ0)− x′′0(τ0)

= u′′1(τ0) + h1(τ0, x0(τ0), x′0(τ0))

= u′′1(τ0) + f(τ0, u1(τ0), u′1(τ0)) > 0,

which is a contradiction.
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For case (3B), let ω1(t) = u2(t)−x0(t) for all t ∈ (tk0−1, tk0). For t′ ∈ (tk0−1, tk0),
we have

ω1(τ0) = u2(τ0)− x0(τ0)

= σ1(τ0)− x0(τ0) = ω(τ0)

≥ ω(t′) = σ1(t′)− x0(t′)

≥ u2(t′)− x0(t′) = ω1(t′).

Then ω1(τ0) is a local maximum of ω1 in (tk0−1, tk0). Thus ω′1(τ0) = 0, ω′′1 (τ0) ≤ 0.
Therefore

0 ≥ ω′′1 (τ0) = u′′2(τ0)− x′′0(τ0)

= u′′2(τ0) + h1(τ0, x0(τ0), x′0(τ0))

= u′′2(τ0) + f(τ0, u2(τ0), u′2(τ0)) > 0,

which is a contradiction.
(4) There exists k0 ∈ {1, 2, . . . ,m} such that ω(tk0) = supt∈J ω(t) ≥ 0. We take

δ0 > 0 small enough such that ω(tk0) is a local maximum of ω(t) in [tk0−δ0, tk0 +δ0],
then we have ω′(tk0) ≥ 0 and ω′(t+k0

) ≤ 0. Thus,

0 ≥ ω′(t+k0
) = u′1(t

+
k0

)− x′0(t
+
k0

)

> [u′1(tk0) + Īk0(u1(tk0))]− [x′0(tk0) + J̄k0,1(x0(tk0))]

= u′1(tk0)− x′0(tk0)

= ω′(tk0) ≥ 0,

which is a contradiction.
From the discussion of cases (1)-(4), we see that (2.14) holds. Since Ω = {x ∈

B(θ, R0)|σ1 ≺ x}, it follows that Ω ⊂ PC1[J, R1] is an open set. We see from (2.12)
(2.14) and the properties of topological degree that

deg(I −A1,Ω, θ) = 1.

Notice that A1x = Ax for all x ∈ Ω, and so we have

deg(I −A,Ω, θ) = 1.

This completes the proof. �

Corollary 2.5. Assume that u1 is a strict lower solution of (1.1), 0 ≤ γ < 1, then
there exists R0 > 0 large enough such that

deg(I −A,Ω, θ) = 1,

where Ω = {x ∈ B(θ, R0) : u1 ≺ x}.

Also we have the following Theorems.

Theorem 2.6. Assume that v1 and v2 are two strict upper solutions of (1.1),
0 ≤ γ < 1, then there exists R0 > 0 large enough such that

deg(I −A,Ω, θ) = 1,

where Ω={x ∈ B(θ, R0) : x ≺ σ2}, σ2(t) = inft∈J{v1(t), v2(t)}.
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Corollary 2.7. Assume that v1 is a strict upper solution of (1.1), 0 ≤ γ < 1, then
there exists R0 > 0 large enough such that

deg(I −A,Ω, θ) = 1,

where Ω = {x ∈ B(θ, R0) : x ≺ v1}.

Theorem 2.8. Assume that u1 is a strict lower solution and v1 is a strict upper
solution of (1.1), 0 ≤ γ < 1, then there exist R0 > 0 large enough such that

deg(I −A,Ω, θ) = 1,

where Ω = {x ∈ B(θ, R0) : u1 ≺ x ≺ v1}.

3. Main Results

Theorem 3.1. Assume that (H1), (H2) are satisfied, 0 ≤ γ < 1 and (1.1) has a
strict lower solution u1 and a strict upper solution v1, such that u1 ≺ v1 and u1,
v1 are sign-changing on [0, 1]. Then (1.1) has at least four sign-changing solutions,
two positive solutions and two negative solutions.

Proof. From (H2), there exists 0 < ε0 < R0 such that

f(t,−ε, 0) > 0, f(t, ε, 0) < 0, ∀t ∈ [0, 1], ∀ε ∈ (0, ε0).

Let u1,i(t) = −1/i, v1,j(t) = 1
j , i, j = 1, 2, . . . . Then there exists a natural number

n0 > 1
ε0

such that
u1,i 6� v1, u1 6� v1,j ,

for each i, j ≥ n0. Since u1,i(t) = − 1
i < 0, it follows that u1,i(tk) = −1/i < 0,

k = 1, 2, 3, . . . ,m. By (H1) and (H2), we can easily show that

u′′1,i(t) + f(t, u1,i(t), u′1,i(t)) > 0, t 6= tk,

∆u′1,i|t=tk
> Īk(u1,i(tk)), k = 1, 2, . . . ,m,

u1,i(0) < 0, u1,i(1)− αu1,i(η) < 0.

So, u1,i(t) is a strict lower solution of (1.1). Similarly, we know v1,j is a strict upper
solution of (1.1).

Take u1,n0 and v1,n0 , let

O1 = {x ∈ B(θ, R0)|u1 ≺ x}, O2 = {x ∈ B(θ, R0)|x ≺ v1},
O3 = {x ∈ B(θ, R0)|u1,n0 ≺ x}, O4 = {x ∈ B(θ, R0)|x ≺ v1,n0},

Ω1 = O1 \ (O1 ∩O2) ∪ (O1 ∩O3), Ω2 = O2 \ (O1 ∩O2) ∪ (O2 ∩O4),

Ω3 = O3 \ (O1 ∩O3) ∪ (O3 ∩O4), Ω4 = B(θ, R0) \ (O1 ∪O4 ∪ Ω2 ∪ Ω3).

From Theorems 2.4-2.8 and Corollaries 2.5-2.7, we have

deg(I −A,O1, θ) = 1, (3.1)

deg(I −A,O2, θ) = 1, (3.2)

deg(I −A,O1 ∩O2, θ) = 1, (3.3)

deg(I −A,O1 ∩O3, θ) = 1, (3.4)

deg(I −A,O2 ∩O4, θ) = 1. (3.5)
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Thus,

deg(I −A,Ω1, θ) = 1− 1− 1 = −1, (3.6)

deg(I −A,Ω2, θ) = 1− 1− 1 = −1. (3.7)

So, there exist x1 ∈ O1 ∩ O2, x2 ∈ Ω1, x3 ∈ Ω2, which are sign-changing solutions
of (1.1). From Corollaries 2.5-2.7 and Theorem 2.8, we have

deg(I −A,O3, θ) = 1, (3.8)

deg(I −A,O4, θ) = 1, (3.9)

deg(I −A,O3 ∩O4, θ) = 1. (3.10)

Thus, from (3.4), (3.7) and (3.9), we have

deg(I −A,Ω3, θ) = 1− 1− 1 = −1. (3.11)

From the proof of (2.12), it is easy to get

deg(I −A,B(θ, R0), θ) = 1. (3.12)

Then we have from (3.1), (3.7), (3.9), (3.11) and (3.12) that

deg(I −A,Ω4, θ) = 1− 1− 1− (−1)− (−1) = 1.

So, there exists a fourth sign-changing solution x4 ∈ Ω4. By (3.4), we can get
a solution x5,i ∈ O1 ∩ O3 for i ≥ n0. From ‖x5,i‖ = ‖Ax5,i‖ < R0, we know
{x5,i}∞i=n0

is a bounded set. Notice that A is a completely continuous operator,
then {x5,i}∞i=n0

is a relatively compact set. Without loss of generality, assume that
x5,i → x5 as i →∞. Then x5 is a solution of (1.1). Since u1,i → 0 as i →∞, then
x5 is a positive solution of (1.1). Similarly, we can get x6, x7 and x8 such that

θ ≺ x6 ≺ R0, u1 6≺ x6 6≺ v1,n0 .

−R0 ≺ x7 ≺ v1, −R0 ≺ x7 ≺ θ,

−R0 ≺ x8 ≺ θ, u1,n0 6≺ x8 6≺ v1.

It is easy to see that x6 is a positive solution of (1.1), x7 and x8 are two negative
solutions of (1.1). This completes the proof. �

Remark 3.2. Obviously, we can replace the sub-linear condition 0 ≤ γ < 1 with a
pair of strict upper and lower solutions, but then we need to introduce a Nagumo
condition for nonlinear item f .

In this paper, we give some existence results for sign-changing solutions. Up to
now, there were few papers that considered the existence of sign-changing solutions
for impulsive multi-point boundary-value problem. Moreover, we give the exact
positions of them. Therefore, the result of this paper is new.

The method of this paper is of interest even if there exists a jump of x(t) at
t = tk, k = 1, 2, 3, . . . ,m at the same time.

Example 3.3. Let R0 = 100 and

u1(t) = sin
3
2
πt− 1

2
, v1(t) = sin

1
2
πt +

1
2
, ∀t ∈ [0, 1].
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Obviously, u1(t) and v1(t) are sign-changing on [0, 1] and u1 ≺ v1. Now let the sets
D1, D2, D3, and D̃4 be defined by

D1 = {(t, u1(t), u′1(t)) : t ∈ [0, 1]}, D2 = {(t, v1(t), v′1(t)) : t ∈ [0, 1]},

D3 = {(t, 100, 0) : t ∈ [0, 1]}, D̃4 = {(t, 0, 0) : t ∈ [0, 1]}.

Then D1, D2, D3, and D̃4 are four disjoint closed sets of R3. Let

r0 =
1
2

min{d(D̃4, D1), d(D̃4, D2), d(D̃4, D3)} > 0

and
D4 = {(t, x, y) ∈ R3 : d((t, x, y), D̃4) ≤ r0}.

Define the function f̃ by

f̃(t, x, y) =


30, (t, x, y) ∈ D1,

−30, (t, x, y) ∈ D2,

1, (t, x, y) ∈ D3,
1

100 (−x + y), (t, x, y) ∈ D4.

From Dugundji’s extension theorem, see [4], there exists a continuous function
f : [0, 1] × R2 7→ R1 such that f(t, x, y) = f̃(t, x, y) while (t, x, y) ∈ Di for each
i = 1, 2, 3, 4, and f([0, 1]×R2) ⊂ f̃([0, 1]×R2) ⊂ B(θ, 100). Consider the impulsive
three-point boundary-value problem

y′′(t) + f(t, y(t), y′(t)) = 0, t ∈ J, t 6= tk,

∆y′|t=tk
= Īk(y(tk)), k = 1, 2,

y(0) = 0, y(1) = αy(η),

(3.13)

where t1 = 1
10 , t2 = 2

3 , α = 1
2 , η = 3

4 and Īk(x) = 1
50kx, k = 1, 2. From the definition

of u1(t) and f we have

u′′1(t) + f(t, u1(t), u′1(t)) = −9
4
π2 sin

3
2
πt + f̃(t, u1(t), u′1(t)) > −9

4
π2 + 30 > 0,

for all t ∈ [0, 1],

Ī1(u1(t1)) =
1
50

(sin
3
20

π − 1
2
) < 0 = ∆u′1|t=t1 ,

Ī2(u1(t2)) =
1

100
(sinπ − 1

2
) < 0 = ∆u′1|t=t2 ,

u1(0) < 0, αu1(η) =
1
2
(sin

9
8
π − 1

2
) > −3

2
= u1(1).

Then u1(t) is a strict lower solution of (3.12). Similarly, v1(t) is a strict upper
solution of (3.12). From

lim
x→0

Īk(x)
x

=
1

50k
> 0, Īk(0) = 0, k = 1, 2,

we see that (H1) holds. Next note

lim
x→0

f(t, x, 0)
x

= lim
x→0

f̃(t, x, 0)
x

= − 1
100

< 0, f(t, 0, 0) = 0,
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uniformly for t ∈ [0, 1], then (H2) holds. Since

β = lim sup
|x|+|y|→∞

max
t∈J

|f(t, x, y)|
|x|+ |y|

= 0,

β̄k = lim sup
|x|→∞

|Īk(x)|
|x|

=
1

50k
, k = 1, 2,

it follows that
γ =

4
1− αη

(2β + β̄1 + β̄2) =
24
125

< 1.

Now all conditions of Theorem 3.1 hold. Therefore, the impulsive boundary-value
problem (3.2) has at least four sign-changing solutions, two positive solutions and
two negative solutions.
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