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FREDHOLM TYPE INTEGRODIFFERENTIAL EQUATION ON
TIME SCALES

DEEPAK B. PACHPATTE

Abstract. The aim of this article is to study some basic qualitative properties
of solutions to Fredholm type integrodifferential equations on time scales. A

new integral inequality with explicit estimate on time scales is obtained and
used to establish the results.

1. Introduction

The theory of time scales was introduced by Stefan Hilger [4] in 1988 which unifies
continuous and discrete analysis. Since then many authors have studied various
aspects of dynamic integral equations on time scales by using various techniques
[5, 7, 8, 9, 10]. In this paper we consider the integrodifferential equation

x∆(t) = f(t, x(t), x∆(t),Hx(t)), x(α) = x0, (1.1)

for t ∈ [α, β] ⊂ IT, where

Hx(t) =
∫ β

α

h(t, τ, x(τ), x∆(τ))∆τ, (1.2)

f, h are given functions and x is unknown function to be found, and ∆ denotes the
delta derivative. We assume that h : I2

T×Rn×Rn → Rn, f : IT×Rn×Rn×Rn → Rn

are rd-continuous functions, t is from a time scale T, which is nonempty closed
subset of R, the set of real numbers, τ ≤ t and IT = I ∩ T, I = [t0,∞) the
given subset of R, Rn the real n-dimensional Euclidean space with appropriate
norm defined by | · |. The integral sign represents the delta integral. Recently in
[1, 2, 5, 7, 8, 9, 10] the authors have studied the existence, uniqueness and other
qualitative properties of solutions of various dynamic equations on time scales by
using different techniques. In fact the study of equations of the form (1.1) is a
challenging task, because of the occurrence of the x∆ on the right hand side in
(1.1). One can formulate existence and uniqueness result for (1.1) by using the
idea recently employed in [8, Theorem 3.1]. Motivated by the results obtained
by the present author in [8], in this paper we study some fundamental qualitative
properties of solutions of equation (1.1). Time scale analogue of a variant of a
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certain integral inequality with explicit estimate is obtained and used to establish
the results.

2. Preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers R.
We define the jump operators σ, ρ on T by the two mapping σ, ρ : T → R satisfying
conditions

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}.
The jump operators classify the points of time scale T as left dense, left scattered,
right dense and right scattered according to whether ρ(t) = t or ρ(t) < t, σ(t) = t
and σ(t) > t respectively for t ∈ T. A function f : T → R is said to be rd-continuous
if it is continuous at each right dense point in T. The set of all rd-continuous
functions is denoted by Crd, If T has left scattered maximum m, then

Tk =

{
T−m if sup T < ∞
T if sup T = ∞

(2.1)

A function F : T → R is said to be an antiderivative of f : T → R provided
F∆ = f(t) holds for all t ∈ IT. We define the integral of f by∫ t

s

f(t)∆τ = F (t)− F (s), (2.2)

where s, t ∈ T. The graininess function µ : T → R+ = [0,∞) is defined by
µ(t) = σ(t)− t. The function p : T → R is said to be regressive if 1 + µ(t)p(t) 6= 0
for all t ∈ IT. We denote by < the set of all regressive and rd-continuous functions
and define the set of all regressive functions by

<+ = {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T}. (2.3)

For p ∈ <+ we define (see [1]) the exponential function ep(., t0) on time scale T as
the unique solution to the scalar initial value problem

x∆(t) = p(t)x(t), x(t0) = 1. (2.4)

If p ∈ <+, then ep(t, t0) > 0 for all t ∈ T. The exponential function ep(., t0) is
given by

ep(t, t0) =

exp
( ∫ t

t0
p(s)∆s

)
for t ∈ T, µ = 0;

exp
( ∫ t

t0

log(1+µ(s)p(s))
µ(s) ∆s

)
for t ∈ T, µ > 0;

(2.5)

where log is a principle logarithm function. To allow a comparison of the results
in the paper with the continuous case, we note that, if T = R, the exponential
function is given by

ep(t, s) = exp
( ∫ t

s

p(τ)dτ
)
, eα(t, s) = exp(α(t− s)), eα(t, 0) = exp(αt), (2.6)

for s, t ∈ R, where α ∈ R is a constant and p : R → R is a continuous function.
To compare with the discrete case, if T = Z (the set of integers), the exponential
function is given by

ep(t, s) =
t−1∏
τ=s

[1 + p(τ)], eα(t, s) = (1 + α)t−s, eα(t, 0) = (1 + α)t, (2.7)
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for s, t ∈ Z with s < t, where α 6= −1 is a constant and p : Z → R is a sequence
satisfying p(t) 6= −1 for all t ∈ Z. We use the following fundamental result proved
in Bohner and Peterson [1] (see also [3]).

Lemma 2.1. Suppose u, b ∈ Crd and a ∈ <+. Then

u∆(t) ≤ a(t)u(t) + b(t) (2.8)

for all t ∈ T, implies

u(t) ≤ u(t0)ea(t, t0) +
∫ t

t0

ea(t, σ(τ))b(τ)∆τ, (2.9)

for all t ∈ T.

3. Basic integral inequality on time scale

In this section we establish the time scale analogue of the variant of the integral
inequality given in [6,Theorem 1.3.1 part(a2), p.41].

Theorem 3.1. Let u, a, b, c, d, f, g ∈ Crd(IT, R+) and suppose that

u(t) ≤ a(t) + b(t)
∫ t

α

f(t)
[
u(s) + d(s)

∫ β

α

g(τ)u(τ)∆τ
]
∆s

+ c(t)
∫ β

α

g(τ)u(τ)∆τ,

(3.1)

for t ∈ IT. If

k =
∫ β

α

g(ξ)K2(ξ)∆ξ < 1, (3.2)

then
u(t) ≤ K1(t) + MK2(t), (3.3)

for t ∈ IT, where

K1(t) = a(t) + b(t)
∫ t

α

f(τ)a(τ)efb(t, σ(τ))∆τ, (3.4)

K2(t) = c(t) + b(t)
∫ t

α

f(τ){c(τ) + d(τ)}efb(t, σ(τ))∆τ, (3.5)

M =
1

1− k

∫ β

α

g(ξ)K1(ξ)∆ξ. (3.6)

Proof. Let

λ =
∫ β

α

g(τ)u(τ)∆τ, (3.7)

and

z(t) =
∫ t

α

f(s)[u(s) + d(s)
∫ β

α

g(τ)u(τ)∆τ ]∆s =
∫ t

α

f(s)[u(s) + d(s)λ]∆s, (3.8)

then z(α) = 0 and (3.1) can be restated as

u(t) ≤ a(t) + b(t)z(t) + c(t)λ. (3.9)

From (3.8) and (3.9), we have

z∆(t) ≤ f(t)[a(t) + b(t)z(t) + c(t)λ + d(t)λ]

= f(t)b(t)z(t) + f(t)[a(t) + {c(t) + d(t)}λ].
(3.10)
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Applying lemma 2.1 to (3.10) yields

z(t) ≤
∫ t

α

f(τ)[a(τ) + λ{c(τ) + d(τ)}]efb(t, σ(τ))∆τ. (3.11)

Using (3.11) in (3.9), we obtain

u(t) ≤ a(t) + b(t)
{∫ t

α

f(τ)[a(τ) + λ{c(τ) + d(τ)}]efb(t, σ(τ))∆τ
}

+ c(t)λ

= a(t) + b(t)
∫ t

α

f(τ)a(τ)efb(t, σ(τ))∆τ

+ λ
{

c(t) + b(t)
∫ t

α

f(τ){c(τ) + d(τ)}efb(t, σ(t))∆τ
}

= K1(t) + λK2(t).

(3.12)

From this inequality and (3.7), it is easy to observe that λ ≤ M . Using this
inequality in (3.12), we obtain (3.3). �

4. Estimates on the solutions

In this section we obtain estimates on the solutions of equation (1.1) by applying
Theorem 3.1, under some suitable conditions on the functions involved therein.

First, we shall give the following theorem concerning the estimate on the solution
of equation (1.1).

Theorem 4.1. Suppose that the functions f, h in (1.1) satisfy the conditions

|f(t, u, v, w)| ≤ γ[|u|+ |v|+ |w|], (4.1)

|h(t, u, v, w)| ≤ q(t)r(τ)[|u|+ |v|], (4.2)

where 0 ≤ γ < 1 is a constant and q, r ∈ Crd(IT, R+). Let

L1(t) =
|x0|

1− γ
+

1
1− γ

[∫ t

α

γ

1− γ
|x0|e γ

1−γ
(t, τ)∆τ

]
, (4.3)

L2(t) =
γ

1− γ
q(t) +

1
1− γ

[∫ t

α

γ[
γ

1− γ
+ 1]q(t)e γ

1−γ
(t, τ)∆τ

]
, (4.4)

for t ∈ IT and

λ =
∫ β

α

r(ξ)L2(ξ)∆ξ < 1, Q =
1

1− λ

∫ β

α

r(ξ)L1(ξ)∆ξ. (4.5)

If x(t) is a solution of (1.1) on IT, then

|x(t)|+ |x∆(t)| ≤ L1(t) + QL2(t), (4.6)

for t ∈ IT.

Proof. Let m(t) = |x(t)|+ |x∆(t)|, t ∈ IT. Using the fact that x(t) is a solution of
(1.1) and the hypotheses, we have

m(t) =
∣∣∣x0 +

∫ t

α

f(s, x(s), x∆(s),Hx(s))∆s
∣∣∣ + |f(t, x(t), x∆(t),Hx(t))|

≤ |x0|+
∫ t

α

γ
[
m(s) +

∫ β

α

q(s)r(τ)m(τ)∆τ
]
∆s
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+ γ
[
m(t) +

∫ β

α

q(t)r(τ)m(τ)∆τ
]
.

From this inequality, we have

m(t) ≤ |x0|
1− γ

+
1

1− γ

∫ t

α

γ
[
m(s) + q(s)

∫ β

α

r(τ)m(τ)∆τ
]
∆s

+
γ

1− γ
q(t)

∫ β

α

r(τ)m(τ)∆τ.

Now an application of theorem 3.1 to the above inequality, we have (4.6). �

Remark 4.2. The estimate obtained in (4.6) yields bounds on the solution x(t)
and its delta derivative. If the estimate in (4.6) is bounded, then the solution x(t)
of (1.1) and its delta derivative are also bounded on IT.

Consider the IVP (1.1) with the IVP

z∆(t) = g(t, z(t), z∆(t),Hz(t)), z(α) = z0, (4.7)

for t ∈ IT, where H is given by (1.2) and g ∈ Crd(IT × Rn × Rn × Rn, Rn).
The next result deals with the closeness of solutions of (1.1) and (4.7).

Theorem 4.3. Suppose that the functions f, h in (1.1) satisfy the conditions

|f(t, u, v, w)− f(t, u, v, w)| ≤ γ[|u− u|+ |v − v|+ |w − w|], (4.8)

|h(t, τ, u, v)− h(t, τ, u, v)| ≤ q(t)r(τ)[|u− u|+ |v − v|], (4.9)

where 0 ≤ γ < 1 is a constant and q, r ∈ Crd(IT, R+) and

|f(t, u, v, w)− g(t, u, v, w)| ≤ ε, (4.10)

|x0 − z0| ≤ δ, (4.11)

where f, x0 and g, z0 are as in (1.1) and (4.7). Let

w(t) = δ + ε[1 + t− α], (4.12)

λ, L2(t) be as in (4.4), (4.5) and

Q0 =
1

1− λ

∫ β

α

r(ξ)A0(ξ)∆ξ, (4.13)

in which

A0(t) =
w(t)
1− γ

+
1

1− γ

[∫ t

α

γ

1− γ
w(τ)e γ

1−γ
(t, τ)∆τ

]
. (4.14)

Let y(t) and z(t) be respectively, solutions of (1.1) and (4.7) on IT, then

|x(t)− z(t)|+ |x∆(t)− z∆(t)| ≤ A0(t) + Q0L2(t), (4.15)

for t ∈ IT.

Proof. Let u(t) = |x(t)− z(t)|+ |x∆(t)− z∆(t)|, t ∈ IT. Using the hypotheses, we
have

u(t) ≤ |x0 − z0|+
∫ t

α

|f(s, x(s), x∆(s),Hx(s))− f(s, z(s), z∆(s),Hz(s))|∆s

+
∫ t

α

|f(s, z(s), z∆(s),Hz(s))− g(s, z(s), z∆(s),Hz(s))|∆s

+ |f(t, x(t), x∆(t),Hx(t))− f(t, z(t), z∆(t),Hz(t))|
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+ |f(t, z(t), z∆(t),Hz(t))− g(t, z(t), z∆(t),Hz(t))|

≤ δ +
∫ t

α

γ
[
u(s) + q(s)

∫ β

α

r(τ)u(τ)∆τ
]
∆s

+
∫ t

α

ε∆s + γ[u(t) + g(t)
∫ β

α

r(τ)u(τ)∆τ ] + ε

= w(t) +
∫ t

α

γ[u(s) + q(s)
∫ β

α

r(τ)u(τ)∆τ ]∆s

+ γ
[
u(t) + q(t)

∫ β

α

r(τ)u(τ)∆τ
]
.

Then we obtain

u(t) ≤ w(t)
1− γ

+
1

1− γ

∫ t

α

γ
[
u(s) + q(s)

∫ β

α

r(τ)u(τ)∆τ
]
∆s

+
γ

1− γ
q(t)

∫ β

α

r(τ)u(τ)∆τ.

Now an application of Theorem 3.1 yields (4.15). �

Remark 4.4. The result given in theorem 4.2 relates the solutions of (1.1) and
(4.7) in the sense that if f is close to g and x0 is close to z0, then the solutions of
(1.1) and (3.10) are also close to each other.

5. Continuous dependence of Solutions

In this section we study continuous dependence of solutions of (1.1) and its
variants. The following theorem deals with the continuous dependence of solution
of (1.1) on given initial values.

Theorem 5.1. Suppose that f, h in (1.1) satisfy (4.8), (4.9). Let xi(t), (i = 1, 2)
be respectively solutions of equation

x∆(t) = f(t, x(t), x∆(t),Hx(t)), (5.1)

with the given initial conditions

xi(α) = ci, (5.2)

on IT, where f,H are as in (1.1) and ci are given constants. Let λ and L2(t) be as
in (4.4) and (4.5) and

Q1 =
1

1− λ

∫ β

α

r(ξ)A1(ξ)∆ξ, (5.3)

where A1(t) is defined by the right hand side of (4.14) by replacing w(t) with the
expression |c1 − c2|. Then

|x1(t)− x2(t)|+ |x∆
1 (t)− x∆

2 (t)| ≤ A1(t) + Q1L2(t), (5.4)

for t ∈ IT.

Proof. Let v(t) = |x1(t)− x2(t)| + |x∆
1 (t)− x∆

2 (t)|, t ∈ IT. From the hypotheses,
we have

v(t) ≤ |c1 − c2|+
∫ t

α

|f(s, x1(s), x∆
1 (s),Hx1(s))− f(s, y2(s), y∆

2 (s),Hy2(s))|∆s
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+ |f(t, x1(t), x∆
1 (t),Hx1(t))− f(t, x2(t), x∆

2 (t),Hx2(t))|

≤ |c1 − c2|+
∫ t

α

γ
[
v(s) +

∫ β

α

q(s)r(τ)v(τ)∆τ
]
∆s

+ γ
[
v(t) +

∫ β

α

q(t)r(τ)v(τ)∆τ
]
.

Then

v(t) ≤ |c1 − c2|
1− γ

+
1

1− γ

∫ t

α

γ
[
v(s) + q(s)

∫ β

α

r(τ)v(τ)∆τ
]
∆s

+
γ

1− γ
q(t)

∫ β

α

r(τ)v(τ)∆τ.

Now applying theorem 3.1 gives (5.4), which shows the dependency of solution of
(5.1) on given initial values. �

Remark 5.2. If we put c1 = c2 = 0, then we have A1(t) = 0, Q1 = 0 and the
uniqueness of solutions of equation (5.1) follows.

Now we consider the integrodifferential equations on time scales

z∆(t) = f(t, z(t), z∆(t),Hz(t), µ), z(α) = z0, (5.5)

z∆(t) = f(t, z(t), z∆(t),Hz(t), µ0), z(α) = z0, (5.6)

for t ∈ IT, where H is given as in (1.2), f ∈ Crd(IT × Rn × Rn × Rn × R, Rn) and
µ, µ0 are parameters.

Our next theorem deals with the dependency of solutions of (5.5) and (5.6) on
parameters.

Theorem 5.3. Suppose that the functions h and f in (5.5) and (5.6) satisfy re-
spectively the conditions (4.9) and

|f(t, u, v, w, µ)− f(t, u, v, w, µ)| ≤ γ[|u− u|+ |v − v|+ |w − w|], (5.7)

|f(t, u, v, w, µ)− f(t, u, v, w, µ0)| ≤ m(t)|µ− µ0|, (5.8)

where 0 ≤ γ ≤ 1 is a constant and m ∈ Crd(IT, R+). Let

m(t) = m(t) +
∫ β

α

m(s)∆s, (5.9)

λ, L2(t) be as in (4.4), (4.5) and

Q2 =
1

1− λ

∫ β

α

r(ξ)A2(ξ)∆ξ, (5.10)

where A2(t) is defined by the right hand side of (4.14) by replacing w(t) with the
expression |µ− µ0|m(t).

Let z1(t) and z2(t) be respectively, the solutions of (5.5) and (5.6) on IT. Then

|z1(t)− z2(t)|+ |z∆
1 (t)− z∆

2 (t)| ≤ A2(t) + Q2L2(t), (5.11)

for t ∈ IT.
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Proof. Let z(t) = |z1(t)− z2(t)| + |z∆
1 (t)− z∆

2 (t)|, t ∈ IT. Using that z1(t) and
z2(t) are respectively, the solutions of (5.5) and (5.6) and hypotheses, we have

z(t) ≤
∫ t

α

|f(s, z1(s), z∆
1 (s),Hz1(s), µ)− f(s, z2(s), z∆

2 (s),Hz2(s), µ)|∆s

+
∫ t

α

|f(s, z2(s), z∆
2 (s),Hz2(s), µ)− f(s, z2(s), z∆

2 (s),Hz2(s), µ0)|∆s

+ |f(t, z1(t), z∆
1 (t),Hz1(t), µ)− f(t, z2(t), z∆

2 (t),Hz2(t), µ)|
+ |f(t, z2(t), z∆

2 (t),Hz2(t), µ)− f(t, z2(t), z∆
2 (t),Hz2(t), µ0)|

≤
∫ t

α

γ[z(s) +
∫ β

α

q(s)r(τ)z(τ)∆τ ]∆s +
∫ t

α

m(s)|µ− µ0|∆s

+ γ[z(t) +
∫ β

α

q(t)r(τ)z(τ)∆τ ] + m(t)|µ− µ0|

= |µ− µ0|m(t) +
∫ t

α

γ[z(s) + q(s)
∫ β

α

r(τ)z(τ)∆τ ]∆s

+ γ[z(t) + q(t)
∫ β

α

r(τ)z(τ)∆τ ].

Then we have

z(t) ≤ |µ− µ0|m(t)
1− γ

+
1

1− γ

∫ t

α

γ
[
z(s) + q(s)

∫ β

α

r(τ)z(τ)∆τ
]
∆s

+
γ

1− γ
q(t)

∫ β

α

r(τ)z(τ)∆τ.

Now applying Theorem 3.1 yields (5.11), which shows the dependency of solutions
of (5.5) and (5.6) on parameters. �

Application. It is often difficult to obtain explicitly the solutions to the equations
of the form (1.1) and thus need a new insight for handling the qualitative properties
of its solutions. The method of integral inequalities with explicit estimates provides
a powerful analytic tool in the study of various dynamic equations. It enable us to
obtain valuable information about solutions without the need to know in advance
the solution explicitly. To illustrate this fact and the main ideas, we consider the
following special version of equation (1.1).

x∆(t) = F (t, x(t), x∆(t)), x(α) = x0, (5.12)

for t ∈ IT, where F : IT × Rn × Rn → Rn is rd-continuous function and x(t) is
unknown function.

Let y ∈ Crd(IT, Rn) be a function such that y∆(t) exists for t ∈ IT and satisfies
the inequality

|y∆(t)− F (t, y(t), y∆(t))| ≤ ε, (5.13)

for a given ε > 0, where it is supposed that the initial condition y(α) = x0 is fulfilled.
Then we call y(t) an ε-approximate solution with respect to problem (5.12).

The relation between an ε-approximate solution of (5.12) and a solution of (5.12)
is shown in the following example.
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Example. Suppose that the function F in (5.12) satisfies the condition

|F (t, u, v)− F (t, u, v)| ≤ γ[|u− u|+ |v − v|], (5.14)

where 0 ≤ γ < 1 is a constant. Let x(t), y(t) ∈ Crd(IT, Rn) are respectively a
solution of (5.12) and an ε-approximate solution of (5.12). Then from (5.12) and
(5.13), we have

x(t) = x0 +
∫ t

α

F (s, x(s), x∆(s))∆s, (5.15)

and

ε(t− α) ≥
∫ t

α

|y∆(s)− F (s, y(s), y∆(s))|∆s

≥
∣∣∣∫ t

α

{y∆(s)− F (s, y(s), y∆(s))}∆s
∣∣∣

=
∣∣∣y(t)− x0 −

∫ t

α

F (s, y(s), y∆(s))
∣∣∣.

(5.16)

From (5.14)–(5.16), we observe that

|y(t)− x(t)| =
∣∣∣y(t)− x0 −

∫ t

α

F (s, y(s), y∆(s))∆s

+
∫ t

α

{F (s, y(s), y∆(s))− F (s, x(s), x∆(s))}∆s
∣∣∣

≤
∣∣∣y(t)− x0 −

∫ t

α

F (s, y(s), y∆(s))∆s
∣∣∣

+
∫ t

α

|F (s, y(s), y∆(s))− F (s, x(s), x∆(s))|

≤ ε(t− α) +
∫ t

α

γ[|y(s)− x(s)|+ |y∆(s)− x∆(s)|]∆s.

(5.17)

Also, from (5.12)–(5.14), we observe that

|y∆(t)− x∆(t)|
=

∣∣y∆(t)− F (t, y(t), y∆(t))+F (t, y(t), y∆(t))− F (t, x(t), x∆(t))
∣∣

≤ |y∆(t)− F (t, y(t), y∆(t))|+ |F (t, y(t), y∆(t))− F (t, x(t), x∆(t))|
≤ ε + γ[|y(t)− x(t)|+ |y∆(t)− x∆(t)|].

(5.18)

Let z(t) = |y(t)− x(t)| + |y∆(t)− x∆(t)| for t ∈ IT. From (5.17) and (5.18), we
have

z(t) ≤ ε(t− α) +
∫ t

α

γz(s)∆s + ε + γz(t). (5.19)

From (5.19), we observe that

z(t) ≤ ε[1 + (t− α)]
1− γ

+
1

1− γ

∫ t

α

γz(s)∆s. (5.20)

Now a suitable application of Theorem 3.1 (when a(t) = ε[1+(t−α)]
1−γ , b(t) = 1

1−γ ,
f(t) = γ, g(t) = 0) to (5.20) yields

z(t) ≤ ε[1 + (t− α)]
1− γ

+
1

1− γ

∫ t

α

γ
{ε[1 + (τ − α)]

1− γ

}
eγ( 1

1−γ )(t, σ(τ))∆τ.
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From where, we obtain
|y(t)− x(t)|

≤ ε

1− γ

[
[1 + (t− α)] +

∫ t

α

γ[1 + (τ − α)]
1− γ

eγ( 1
1−γ )(t, σ(τ))∆τ

]
.

(5.21)

Clearly, this estimate provides the relationship between an ε-approximate solution
of (5.12) and a solution of (5.12), without knowing in advance their explicit so-
lutions. Moreover, from (5.21), it follows that if ε = 0, then the uniqueness of
solutions of equation (5.12) is established.
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