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CONCENTRATION-COMPACTNESS PRINCIPLE FOR
VARIABLE EXPONENT SPACES AND APPLICATIONS

JULIÁN FERNÁNDEZ BONDER, ANALÍA SILVA

Abstract. In this article, we extend the well-known concentration - compact-
ness principle by Lions to the variable exponent case. We also give some appli-

cations to the existence problem for the p(x)-Laplacian with critical growth.

1. Introduction

When dealing with nonlinear elliptic equations with critical growth (in the sense
of the Sobolev embeddings) the concentration - compactness principle by Lions, see
[12], have been proved to be a fundamental tool for proving existence of solutions.
Just to cite a few references, we have [1, 2, 3, 7, 4, 11] but there is an impressive
list of references on this topic.

Recently in the analysis of some new models, that are called electrorheological
fluids, the following equation has been studied

−∆p(x)u = f(x, u) in Ω. (1.1)

The operator ∆p(x)u := div(|∇u|p(x)−2∇u) is called the p(x)-Laplacian. When
p(x) ≡ p is the well-known p-Laplacian.

In recent years a vast amount of literature that deal with the existence problem
for (1.1) with different boundary conditions (Dirichlet, Neumann, nonlinear, etc)
have appeared. See, for instance [5, 6, 8, 13, 14] and references therein.

However, up to our knowledge, no results are available for (1.1) when the source
term f is allowed to have critical growth at infinity (see the remark after the
introduction for more on this). That is,

|f(x, t)| ≤ C(1 + |t|q(x))

with q(x) ≤ p∗(x) := Np(x)/(N − p(x)) (if p(x) < N) and {q(x) = p∗(x)} 6= ∅.
This article attempts to begin filling this gap. So, the objective is to extend the
concentration - compactness principle by Lions to the variable exponent setting.

The method of the proof follows the lines of the ones in the original work of
P.L. Lions and the main novelty in our result is the fact that we do not require the
exponent q(x) to be critical everywhere. Moreover, we show that the delta masses
are concentrated in the set where q(x) is critical.

2000 Mathematics Subject Classification. 35J20, 35J60.

Key words and phrases. Concentration-compactness principle; variable exponent spaces.
c©2010 Texas State University - San Marcos.
Submitted August 8, 2009. Published October 5, 2010.

1
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Finally, as an application of our result, we prove the existence of solutions to the
problem

−∆p(x)u = |u|q(x)−2u+ λ(x)|u|r(x)−2u in Ω
u = 0 on ∂Ω

(1.2)

where Ω is a bounded smooth domain in RN , r(x) < p∗(x)− δ, q(x) ≤ p∗(x) with
{q(x) = p∗(x)} 6= ∅.

1.1. Statement of the results. As we already mentioned, the main result of the
paper is the extension of Lions concentration - compactness method to the variable
exponent case. More precisely, we prove the following result.,

Theorem 1.1. Let q(x) and p(x) be two continuous functions such that

1 < inf
x∈Ω

p(x) ≤ sup
x∈Ω

p(x) < n and 1 ≤ q(x) ≤ p∗(x) in Ω.

Let {uj}j∈N be a weakly convergent sequence in W
1,p(x)
0 (Ω) with weak limit u, and

such that:
• |∇uj |p(x) ⇀ µ weakly-* in the sense of measures.
• |uj |q(x) −→ ν weakly-* in the sense of measures.

Also assume that A = {x ∈ Ω: q(x) = p∗(x)} is nonempty. Then, for some
countable index set I, we have:

ν = |u|q(x) +
∑
i∈I

νiδxi νi > 0 (1.3)

µ ≥ |∇u|p(x) +
∑
i∈I

µiδxi µi > 0 (1.4)

Sν
1/p∗(xi)
i ≤ µ

1/p(xi)
i ∀i ∈ I. (1.5)

where {xi}i∈I ⊂ A and S is the best constant in the Gagliardo-Nirenberg-Sobolev
inequality for variable exponents, namely

S = Sq(Ω) := inf
φ∈C∞0 (Ω)

‖|∇φ|‖Lp(x)(Ω)

‖φ‖Lq(x)(Ω)

.

We remark that in Theorem 1.1 is not required the exponent q(x) to be critical
everywhere and that the point masses are located in the criticality set A = {x ∈
Ω: q(x) = p∗(x)}.

Now, as an application of Theorem 1.1, following the techniques in [11], we prove
the existence of solutions to

−∆p(x)u = |u|q(x)−2u+ λ(x)|u|r(x)−2u in Ω
u = 0 on ∂Ω.

(1.6)

In the spirit of [11], we have two types of results, depending on r(x) being smaller
or bigger that p(x). More precisely, we prove the following two theorems.

Theorem 1.2. Let p(x) and q(x) be as in Theorem 1.1 and let r(x) be continuous.
Moreover, assume that maxΩ p < minΩ q and maxΩ r < minΩ p. Then, there exists
a constant λ1 > 0 depending only on p, q, r,N and Ω such that if λ(x) verifies
0 < infx∈Ω λ(x) ≤ ‖λ‖L∞(Ω) < λ1, then there exists infinitely many solutions to
(1.6) in W

1,p(x)
0 (Ω).
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Theorem 1.3. Let p(x) and q(x) be as in Theorem 1.1 and let r(x) be continuous.
Moreover, assume that maxΩ p < minΩ r and that there exists η > 0 such that
r(x) ≤ p∗(x)− η in Ω.

Then, there exists λ0 > 0 depending only on p, q, r,N and Ω, such that if

inf
x∈Aδ

λ(x) > λ0 for some δ > 0,

problem (1.6) has at least one nontrivial solution in W
1,p(x)
0 (Ω). Here, Aδ is the

δ-tubular neighborhood of A, namely

Aδ := ∪x∈A(Bδ(x) ∩ Ω).

Organization of this article. After finishing this introduction, in Section 2 we
give a very short overview of some properties of variable exponent Sobolev spaces
that will be used throughout the paper. In Section 3 we deal with the main result
of the paper. Namely the proof of the concentration - compactness principle (The-
orem 1.1). In Section 4, we begin analyzing problem (1.6) and prove Theorem 1.3.
Finally, in Section 5, we prove Theorem 1.2.

Comment on a related result. After this paper was written, we found out
that a similar result was obtained independently by Yongqiang Fu [10]. Even the
techniques in Fu’s work are similar to the ones in this paper (and both are related
to the original work by Lions), we want to remark that our results are slightly
more general than those in [10]. For instance, we do not require q(x) to be critical
everywhere (as is required in [10]) and we obtain that the delta functions are located
in the criticality set A (see Theorem 1.1).

Also, in our application, again as we do not required the source term to be
critical everywhere, so the result in [10] is not applicable directly. Moreover, in
Theorem 1.3 our approach allows us to consider λ(x) not necessarily a constant
and the restriction that λ is large is only needed in an L∞-norm in the criticality
set.

We believe that these improvements are significant and made our result more
flexible that those in [10].

2. Results on variable exponent Sobolev spaces

The variable exponent Lebesgue space Lp(x)(Ω) is defined as

Lp(x)(Ω) = {u ∈ L1
loc(Ω):

∫
Ω

|u(x)|p(x) dx <∞}.

This space is endowed with the norm

‖u‖Lp(x)(Ω) = inf{λ > 0 :
∫

Ω

|u(x)
λ

|p(x) dx ≤ 1}

The variable exponent Sobolev space W 1,p(x)(Ω) is defined as

W 1,p(x)(Ω) = {u ∈W 1,1
loc (Ω): u ∈ Lp(x)(Ω) and |∇u| ∈ Lp(x)(Ω)}.

The corresponding norm for this space is

‖u‖W 1,p(x)(Ω) = ‖u‖Lp(x)(Ω) + ‖|∇u|‖Lp(x)(Ω)
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Define W 1,p(x)
0 (Ω) as the closure of C∞0 (Ω) with respect to the W 1,p(x)(Ω) norm.

The spaces Lp(x)(Ω), W 1,p(x)(Ω) and W 1,p(x)
0 (Ω) are separable and reflexive Banach

spaces when 1 < infΩ p ≤ supΩ p <∞.
As usual, we denote p′(x) = p(x)/(p(x) − 1) the conjugate exponent of p(x).

Define

p∗(x) =

{
Np(x)

N−p(x) if p(x) < N

∞ if p(x) ≥ N .

The following results are proved in [9].

Proposition 2.1 (Hölder-type inequality). Let f ∈ Lp(x)(Ω) and g ∈ Lp′(x)(Ω).
Then the following inequality holds∫

Ω

|f(x)g(x)| dx ≤ Cp‖f‖Lp(x)(Ω)‖g‖Lp′(x)(Ω) .

Proposition 2.2 (Sobolev embedding). Let p, q ∈ C(Ω) be such that 1 ≤ q(x) ≤
p∗(x) for all x ∈ Ω. Assume moreover that the functions p and q are log-Hölder
continuous. Then there is a continuous embedding

W 1,p(x)(Ω) ↪→ Lq(x)(Ω).

Moreover, if infΩ(p∗ − q) > 0 then, the embedding is compact.

Proposition 2.3 (Poincaré inequality). There is a constant C > 0, such that

‖u‖Lp(x)(Ω) ≤ C‖|∇u|‖Lp(x)(Ω),

for all u ∈W 1,p(x)
0 (Ω).

Remark 2.4. By Proposition 2.3, we know that ‖|∇u|‖Lp(x)(Ω) and ‖u‖W 1,p(x)(Ω)

are equivalent norms on W 1,p(x)
0 (Ω).

In this article, the following notation will be used: Given q : Ω → R bounded,
we denote

q+ := sup
Ω
q(x), q− := inf

Ω
q(x).

The following proposition is also proved in [9] and it will be very useful here.

Proposition 2.5. Set ρ(u) :=
∫
Ω
|u(x)|p(x) dx. For u,∈ Lp(x)(Ω) and {uk}k∈N ⊂

Lp(x)(Ω), we have

u 6= 0 ⇒
(
‖u‖Lp(x)(Ω) = λ⇔ ρ(

u

λ
) = 1

)
. (2.1)

‖u‖Lp(x)(Ω) < 1(= 1;> 1) ⇔ ρ(u) < 1(= 1;> 1). (2.2)

‖u‖Lp(x)(Ω) > 1 ⇒ ‖u‖p−

Lp(x)(Ω)
≤ ρ(u) ≤ ‖u‖p+

Lp(x)(Ω)
. (2.3)

‖u‖Lp(x)(Ω) < 1 ⇒ ‖u‖p+

Lp(x)(Ω)
≤ ρ(u) ≤ ‖u‖p−

Lp(x)(Ω)
. (2.4)

lim
k→∞

‖uk‖Lp(x)(Ω) = 0 ⇔ lim
k→∞

ρ(uk) = 0. (2.5)

lim
k→∞

‖uk‖Lp(x)(Ω) = ∞⇔ lim
k→∞

ρ(uk) = ∞. (2.6)
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3. concentration compactness principle

Let {uj}j∈N be a bounded sequence in W 1,p(x)
0 (Ω) and let q ∈ C(Ω) be such that

q ≤ p∗ with {x ∈ Ω: q(x) = p∗(x)} 6= ∅. Then there exists a subsequence, still
denoted by {uj}j∈N, such that

• uj ⇀ u weakly in W 1,p(x)
0 (Ω),

• uj → u strongly in Lr(x)(Ω) ∀1 ≤ r(x) < p∗(x),
• |uj |q(x) ⇀ ν weakly * in the sense of measures,
• |∇uj |p(x) ⇀ µ weakly * in the sense of measures.

Consider φ ∈ C∞(Ω), from the Poincaré inequality for variable exponents, we
obtain

‖φuj‖Lq(x)(Ω)S ≤ ‖∇(φuj)‖Lp(x)(Ω). (3.1)
On the other hand,

|‖∇(φuj)‖Lp(x)(Ω) − ‖φ∇uj‖Lp(x)(Ω)| ≤ ‖uj∇φ‖Lp(x)(Ω).

We first assume that u = 0. Then, we observe that the right side of the inequality
converges to 0. In fact, if, for instance ‖|u|p(x)‖L1(Ω) ≥ 1,

‖uj∇φ‖Lp(x)(Ω) ≤ (‖∇φ‖L∞(Ω) + 1)p+
‖uj‖Lp(x)(Ω)

≤ (‖∇φ‖L∞(Ω) + 1)p+
‖|u|p(x)‖1/p−

L1(Ω) → 0

Now we want to take the limit in (3.1). To do this, we need the following Lemma.

Lemma 3.1. Let {νj}j∈N, ν be nonnegative, finite Radon measures in Ω such that
νj ⇀ ν weakly* in the sense of measures. Then

‖φ‖
L
q(x)
νj

(Ω)
→ ‖φ‖

L
q(x)
ν (Ω)

as j →∞,

for all φ ∈ C∞(Ω).

Proof. First, observe that for φ ∈ C∞(Ω) fixed and for any nonnegative, finite
Radon measure µ, the function

hµ(λ) :=
∫

Ω

∣∣∣φ(x)
λ

∣∣∣q(x)

dµ

is continuous, decreasing with hµ(0) = +∞ and hµ(+∞) = 0. Hence, if λµ =
‖φ‖

L
p(x)
µ (Ω)

we have that ∫
Ω

∣∣∣φ(x)
λµ

∣∣∣q(x)

dµ = 1.

Now, let λ = ‖φ‖
L
q(x)
ν (Ω)

+ ε. Hence∫
Ω

∣∣φ(x)
λ

∣∣q(x)
dν < 1.

Now, as νj → ν weakly* in the sense of measures,∫
Ω

∣∣φ(x)
λ

∣∣q(x)
dνj →

∫
Ω

∣∣φ(x)
λ

∣∣q(x)
dν < 1.

Therefore, for j large,

‖φ‖
L
q(x)
νj

(Ω)
< λ = ‖φ‖

L
q(x)
ν (Ω)

+ ε,
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and so
lim sup

j→∞
‖φ‖

L
q(x)
νj

(Ω)
≤ ‖φ‖

L
q(x)
ν (Ω)

.

Let λ0 := lim infj→∞ ‖φ‖
L
q(x)
νj

(Ω)
and assume that λ0 < ‖φ‖

L
q(x)
ν (Ω)

.

We can assume that λ0 := limj→∞ ‖φ‖
L
q(x)
νj

(Ω)
. It is easy to see that

fj(x) :=
∣∣∣φ(x)
λj

∣∣∣q(x)

→ f0(x) :=
∣∣∣φ(x)
λ0

∣∣∣q(x)

as j →∞

uniformly in Ω and so, as j →∞,

1 =
∫

Ω

∣∣φ(x)
λj

∣∣q(x)
dνj →

∫
Ω

∣∣φ(x)
λ0

∣∣q(x)
dν < 1,

a contradiction. The proof is completed. �

Finally, if we take the limit for j →∞ in (3.1), by Lemma 3.1, we have

‖φ‖
L
q(x)
ν (Ω)

S ≤ ‖φ‖
L
p(x)
µ (Ω)

(3.2)

Now we need a lemma that is the key role in the proof of Theorem 1.1.

Lemma 3.2. Let µ, ν be two non-negative and bounded measures on Ω, such that
for 1 ≤ p(x) < r(x) <∞ there exists some constant C > 0 such that

‖φ‖
L
r(x)
ν (Ω)

≤ C‖φ‖
L
p(x)
µ (Ω)

Then, there exist {xj}j∈J ⊂ Ω and {νj}j∈J ⊂ (0,∞), such that

ν = Σνiδxi

For the proof of the lemma above, we need a couple of preliminary results.

Lemma 3.3. Let ν be a non-negative bounded measure. Assume that there exists
δ > 0 such that for all A Borelian, ν(A) = 0 or ν(A) ≥ δ. Then, there exist {xi}
and νi > 0 such that

ν =
∑

νiδxi

The proof of the above lemma is elementary and is omitted.

Lemma 3.4. Let ν be non-negative and bounded measures, such that

‖ψ‖
L
r(x)
ν (Ω)

≤ C‖ψ‖
L
p(x)
ν (Ω)

Then there exist δ > 0 such that for all A Borelian, ν(A) = 0 or ν(A) ≥ δ.

Proof. First, observe that if ν(A) ≥ 1,∫
Ω

( χA(x)

ν(A)
1
p−

)p(x)

dν ≤
∫

Ω

( χA(x)

ν(A)
1

p(x)

)p(x)

dν = 1.

Then ν(A)
1
p− ≥ ‖χA‖L

p(x)
ν

. On the other hand,∫
Ω

( χA(x)

ν(A)
1
r+

)r(x)

dν ≥
∫

Ω

χA(x)
ν(A)

dν = 1.

Then ν(A)
1
r+ ≤ ‖χA‖L

r(x)
ν

. So we conclude that

ν(A)
1
r+ ≤ Cν(A)

1
p− .
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Now, if ν(A) < 1, we obtain

ν(A)
1
r− ≤ Cν(A)

1
p+ .

Combining all these facts, we arrive at

min{ν(A)
1
r− , ν(A)

1
r+ } ≤ Cmax{ν(A)

1
p− , ν(A)

1
p+ }.

Now, if ν(A) ≤ 1, we have
ν(A)

1
r− ≤ Cν(A)

1
p+ .

Then, ν(A) = 0 or

ν(A) ≥ (
1
C

)
p+r−

r−−p+ .

Finally,

ν(A) ≥ min{( 1
C

)
p+r−

r−−p+ , 1}

This completes the proof. �

In the rest of the proofs we will use the following notation: Given a Radon
measure µ in Ω and a funcion f ∈ L1

µ(Ω) we denote the restriction of µ to f by

µbf(E) :=
∫

E

f dµ.

Proof of Lemma 3.2. By reverse Hölder inequality (3.2), the measure ν is absolutely
continuous with respect to µ. As consequence there exists f ∈ L1

µ(Ω), f ≥ 0, such
that ν = µbf . Also by (3.2), we have

min
{
ν(A)

1
r− , ν(A)

1
r+

}
≤ Cmax

{
µ(A)

1
p− , µ(A)

1
p+

}
for any Borel set A ⊂ Ω. In particular, f ∈ L∞µ (Ω). On the other hand the
Lebesgue decomposition of µ with respect to ν gives us

µ = νbg + σ, where g ∈ L1
ν(Ω), g ≥ 0

and σ is a bounded positive measure, singular with respect to ν.
Now consider (3.2) applying the test function

φ = g
1

r(x)−p(x)χ{g≤n}ψ.

We obtain

‖g
1

r(x)−p(x)χ{g≤n}ψ‖L
r(x)
ν

≤ C‖g
1

r(x)−p(x)χ{g≤n}ψ‖L
p(x)
µ

= C‖g
1

r(x)−p(x)χ{g≤n}ψ‖L
p(x)
gdν+dσ

≤ C‖g
r(x)

p(x)(r(x)−p(x))χ{g≤n}ψ‖L
p(x)
ν

+ C‖g
1

r(x)−p(x)χ{g≤n}ψ‖L
p(x)
σ

Since σ ⊥ ν, we have

‖g
1

r(x)−p(x)χ{g≤n}ψ‖L
r(x)
ν

≤ C‖g
r(x)

p(x)(r(x)−p(x))χ{g≤n}ψ‖L
p(x)
ν

Hence calling dνn = g
r(x)

(r(x)−p(x))χg≤ndν the following reverse Hölder inequality holds

‖ψ‖
L
r(x)
νn

≤ C‖ψ‖
L
p(x)
νn

.
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By Lemma 3.3 and Lemma 3.4, there exists xn
i and Kn

i > 0 such that νn =∑
i∈I K

n
i δxni . On the other hand, νn ↗ g

r(x)
r(x)−p(x) ν. Then, the points xn

i are in fact
independent of n, and there will denoted by xi, and the numbers Kn

i are monotone
in n. Then, we have

g
r(x)

r(x)−p(x) ν =
∑
i∈I

Kiδxi

where Ki = g
r(xi)

r(xi)−p(xi) (xi)ν(xi). This finishes the proof. �

The following Lemma follows exactly as in the constant exponent case and the
proof is omitted.

Lemma 3.5. Let fn → f a.e and fn ⇀ f in Lp(x)(Ω) then

lim
n→∞

( ∫
Ω

|fn|p(x)dx−
∫

Ω

|f − fn|p(x)dx
)

=
∫

Ω

|f |p(x)dx

Now we are in position to prove the main results.

Proof of Theorem 1.1. Given any φ ∈ C∞(Ω), we write vj = uj −u and by Lemma
3.5, we have

lim
j→∞

( ∫
Ω

|φ|q(x)|uj |q(x) −
∫

Ω

|φ|q(x)|vj |q(x)dx
)

=
∫

Ω

|φ|q(x)|u|q(x)dx.

On the other hand, by reverse Hölder inequality (3.2) and Lemma 3.2, taking limits
we obtain the representation

ν = |u|q(x) +
∑
j∈I

νjδxj

Let us now show that the points xj actually belong to the critical set A. In fact,
assume by contradiction that x1 ∈ Ω \ A. Let B = B(x1, r) ⊂⊂ Ω − A. Then
q(x) < p∗(x) − δ for some δ > 0 in B and, by Proposition 2.2, The embedding
W 1,p(x)(B) ↪→ Lq(x)(B) is compact. Therefore, uj → u strongly in Lq(x)(B) and
so |uj |q(x) → |u|q(x) strongly in L1(B). This is a contradiction to our assumption
that x1 ∈ B.

Now we proceed with the proof. Applying (3.1) to φuj and taking into account
that uj → u in Lp(x)(Ω), we have

S‖φ‖
L
q(x)
ν (Ω)

≤ ‖φ‖
L
p(x)
µ (Ω)

+ ‖(∇φ)u‖Lp(x)(Ω).

Consider φ ∈ C∞c (Rn) such that 0 ≤ φ ≤ 1, φ(0) = 1 and supported in the unit
ball of Rn. Fixed j ∈ I, we consider ε > 0 be arbitrary.

We denote by φε,j(x) := ε−nφ((x− xj)/ε). By decomposition of ν, we have:

ρν(φi0,ε) :=
∫

Ω

|φi0,ε|q(x) dν

=
∫

Ω

|φi0,ε|q(x)|u|q(x) dx+
∑
i∈I

νiφi0,ε(xi)q(xi) ≥ νi0 .

For the rest of this article, we will denote

q+i,ε := sup
Bε(xi)

q(x), q−i,ε := inf
Bε(xi)

q(x),

p+
i,ε := sup

Bε(xi)

p(x), p−i,ε := inf
Bε(xi)

p(x).
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If ρν(φi0,ε) < 1 then

‖φi0,ε‖L
q(x)
ν (Ω)

= ‖φi0,ε‖L
q(x)
ν (Bε(xi0 ))

≥ ρν(φi0,ε)1/q−i,ε ≥ ν
1/q−i,ε
i0

.

Analogously, if ρν(φi0,ε) > 1, then

‖φi0,ε‖L
q(x)
ν (Ω)

≥ ν
1/q+

i,ε

i0
.

Then

min{ν
1
q
+
i,ε

i , ν

1
q
−
i,ε

i }S ≤ ‖φi,ε‖L
p(x)
µ (Ω)

+ ‖(∇φi,ε)u‖Lp(x)(Ω).

By Proposition 2.5,

‖(∇φi,ε)u‖Lp(x)(Ω) ≤ max{ρ((∇φi,ε)u)1/p− ; ρ((∇φi,ε)u)1/p+
}.

Then, by Hölder inequality, we have

ρ((∇φi,ε)u) =
∫

Ω

|∇φi,ε|p(x)|u|p(x) dx

≤ ‖|u|p(x)‖Lα(x)(Bε(xi))‖|∇φi,ε|p(x)‖Lα′(x)(Bε(xi))
,

where α(x) = n/(n− p(x)) and α′(x) = n/p(x).
Moreover, using that ∇φi,ε = ∇φ

(
x−xi

ε

)
1
ε , we obtain

‖|∇φi,ε|p(x)‖Lα′(x)(Bε(xi))
≤ max{ρ(|∇φi,ε|p(x))p+/n; ρ(|∇φi,ε|p(x))p−/n},

and

ρ(|∇φi,ε|p(x)) =
∫

Bε(xi)

|∇φi,ε|n dx

=
∫

Bε(xi)

|∇φ(
x− xi

ε
)|n 1

εn
dx

=
∫

B1(0)

|∇φ(y)|n dy.

Then ∇φi,εu→ 0 strongly in Lp(x)(Ω). On the other hand,∫
Ω

|φi,ε|p(x) dµ ≤ µ(Bε(xi)).

Therefore,

‖φi,ε‖Lp(x)(Ω) = ‖φi,ε‖Lp(x)(Bε(xi))

≤ max{ρµ(φi,ε)1/p+
i,ε , ρµ(φi,ε)1/p−i,ε}

≤ max{µ(Bε(xi))1/p+
i,ε , µ(Bε(xi))1/p−i,ε},

so we obtain,

Smin{ν
1
q
+
i,ε

i , ν

1
q
−
i,ε

i } ≤ max{µ(Bε(xi))1/p+
i,ε , µ(Bε(xi))

1
p
−
i,ε }.

As p and q are continuous functions and as q(xi) = p∗(xi), letting ε→ 0, we get

Sν
1/p∗(xi)
i ≤ µ

1/p(xi)
i ,

where µi := limε→0 µ(Bε(xi)).
Finally, we show that µ ≥ |∇u|p(x) + Σµiδxi . In fact, we have that µ ≥

∑
µiδxi .

On the other hand uj ⇀ u weakly in W
1,p(x)
0 (Ω) then ∇uj ⇀ ∇u weakly in
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Lp(x)(U) for all U ⊂ Ω. By weakly lower semi continuity of norm we obtain that
dµ ≥ |∇u|p(x) dx and, as |∇u|p(x) is orthogonal to µ1, we conclude the desired
result. This completes the proof. �

4. Applications

In this section, we apply Theorem 1.1 to study the existence of nontrivial solu-
tions of the problem

−∆p(x)u = |u|q(x)−2u+ λ(x)|u|r(x)−2u in Ω,
u = 0 on ∂Ω,

(4.1)

where r(x) < p∗(x) − ε, q(x) ≤ p∗(x) and A = {x ∈ Ω: q(x) = p∗(x)} 6= ∅. We
define Aδ :=

⋃
x∈A(Bδ(x) ∩ Ω) = {x ∈ Ω: dist(x,A) < δ}. The ideas for this

application follow those in [11].
For (weak) solutions of (4.1) we understand critical points of the functional

F(u) =
∫

Ω

|∇u|p(x)

p(x)
− |u|q(x)

q(x)
− λ(x)

|u|r(x)

r(x)
dx

4.1. Proof of Theorem 1.3. We begin by proving the Palais-Smale condition for
the functional F , below certain level of energy.

Lemma 4.1. Assume that r ≤ q. Let {uj}j∈N ⊂ W
1,p(x)
0 (Ω) a Palais-Smale se-

quence then {uj}j∈N is bounded in W
1,p(x)
0 (Ω).

Proof. By definition F(uj) → c and F ′(uj) → 0. Now, we have

c+ 1 ≥ F(uj) = F(uj)−
1
r−

〈F ′(uj), uj〉+
1
r−

〈F ′(uj), uj〉,

where

〈F ′(uj), uj〉 =
∫

Ω

(
|∇uj |p(x) − |uj |q(x) − λ(x)|uj |r(x)

)
dx.

Then, if r(x) ≤ q(x), we conclude that

c+ 1 ≥
( 1
p+

− 1
r−

) ∫
Ω

|∇uj |p(x) dx− 1
r−

|〈F ′(uj), uj〉|.

We can assume that ‖uj‖W
1,p(x)
0 (Ω)

≥ 1. As ‖F ′(uj)‖ is bounded we have that

c+ 1 ≥
( 1
p+

− 1
r−

)
‖uj‖p−

W
1,p(x)
0 (Ω)

− C

r−
‖uj‖W

1,p(x)
0 (Ω)

.

We deduce that uj is bounded. This completes the proof. �

From the fact that {uj}j∈N is a Palais-Smale sequence it follows, by Lemma 4.1,
that {uj}j∈N is bounded in W 1,p(x)

0 (Ω). Hence, by Theorem 1.1, we have

|uj |q(x) ⇀ ν = |u|q(x) +
∑
i∈I

νiδxi νi > 0, (4.2)

|∇uj |p(x) ⇀ µ ≥ |∇u|p(x) +
∑
i∈I

µiδxi µi > 0, (4.3)

Sν
1/p∗(xi)
i ≤ µ

1/p(xi)
i . (4.4)

Note that if I = ∅ then uj → u strongly in Lq(x)(Ω). We know that {xi}i∈I ⊂ A.
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Let us show that if c <
(

1
p+ − 1

q−A

)
Sn and {uj}j∈N is a Palais-Smale sequence,

with energy level c, then I = ∅. In fact, suppose that I 6= ∅. Then let φ ∈ C∞0 (Rn)
with support in the unit ball of Rn. Consider, as in the previous section, the
rescaled functions φi,ε(x) = φ(x−xi

ε ).
As F ′(uj) → 0 in (W 1,p(x)

0 (Ω))′, we obtain that

lim
j→∞

〈F ′(uj), φi,εuj〉 = 0.

On the other hand,

〈F ′(uj), φi,εuj〉 =
∫

Ω

|∇uj |p(x)−2∇uj∇(φi,εuj)− λ(x)|uj |r(x)φi,ε − |uj |q(x)φi,ε dx

Then, passing to the limit as j →∞, we obtain

0 = lim
j→∞

( ∫
Ω

|∇uj |p(x)−2∇uj∇(φi,ε)uj dx
)

+
∫

Ω

φi,ε dµ−
∫

Ω

φi,ε dν −
∫

Ω

λ(x)|u|r(x)φi,ε dx.

By Hölder inequality, it is easy to check that

lim
j→∞

∫
Ω

|∇uj |p(x)−2∇uj∇(φi,ε)uj dx = 0.

On the other hand,

lim
ε→0

∫
Ω

φi,ε dµ = µiφ(0), lim
ε→0

∫
Ω

φi,ε dν = νiφ(0), lim
ε→0

∫
Ω

λ(x)|u|r(x)φi,ε dx = 0.

So, we conclude that (µi − νi)φ(0) = 0; i.e., µi = νi. Then

Sν
1/p∗(xi)
i ≤ ν

1/p(xi)
i ;

so it is clear that νi = 0 or Sn ≤ νi.
On the other hand, as r− > p+,

c = lim
j→∞

F(uj) = lim
j→∞

F(uj)−
1
p+

〈F ′(uj), uj〉

= lim
j→∞

∫
Ω

( 1
p(x)

− 1
p+

)
|∇uj |p(x) dx+

∫
Ω

( 1
p+

− 1
q(x)

)
|uj |q(x) dx

+ λ

∫
Ω

( 1
p+

− 1
r(x)

)
|uj |r(x) dx

≥ lim
j→∞

∫
Ω

( 1
p+

− 1
q(x)

)
|uj |q(x) dx

≥ lim
j→∞

∫
Aδ

( 1
p+

− 1
q(x)

)
|uj |q(x) dx

≥ lim
j→∞

∫
Aδ

( 1
p+

− 1
q−Aδ

)
|uj |q(x) dx .

However,

lim
j→∞

∫
Aδ

( 1
p+

− 1
q−Aδ

)
|uj |q(x) dx =

( 1
p+

− 1
q−Aδ

)( ∫
Aδ
|u|q(x) dx+

∑
j∈I

νj

)
≥

( 1
p+

− 1
q−Aδ

)
νi
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≥
( 1
p+

− 1
q−Aδ

)
Sn.

As δ is positive and arbitrary, and q is continuous, we have

c ≥
( 1
p+

− 1
q−A

)
Sn.

Therefore, if

c <
( 1
p+

− 1
q−A

)
Sn,

the index set I is empty.
Now we are ready to prove the Palais-Smale condition below level c.

Theorem 4.2. Let {uj}j∈N ⊂W
1,p(x)
0 (Ω) be a Palais-Smale sequence, with energy

level c. If c <
(

1
p+ − 1

q−A

)
Sn, then there exist u ∈ W

1,p(x)
0 (Ω) and {ujk}k∈N ⊂

{uj}j∈N a subsequence such that ujk → u strongly in W
1,p(x)
0 (Ω).

Proof. We have that {uj}j∈N is bounded. Then, for a subsequence that we still
denote {uj}j∈N, uj → u strongly in Lq(x)(Ω). We define F ′(uj) := φj . By the
Palais-Smale condition, with energy level c, we have φj → 0 in (W 1,p(x)

0 (Ω))′.
By definition 〈F ′(uj), z〉 = 〈φj , z〉 for all z ∈W 1,p(x)

0 (Ω); i.e.,∫
Ω

|∇uj |p(x)−2∇uj∇z dx−
∫

Ω

|uj |q(x)−2ujz dx−
∫

Ω

λ(x)|uj |r(x)−2ujz dx = 〈φj , z〉.

Then, uj is a weak solution of the following equation.

−∆p(x)uj = |uj |q(x)−2uj + λ(x)|uj |r(x)−2uj + φj =: fj in Ω,
uj = 0 on ∂Ω.

(4.5)

We define T : (W 1,p(x)
0 (Ω))′ → W

1,p(x)
0 (Ω), T (f) := u where u is the weak solution

of the equation
−∆p(x)u = f in Ω,
u = 0 on ∂Ω.

(4.6)

Then T is a continuous invertible operator.
It is sufficient to show that fj converges in (W 1,p(x)

0 (Ω))′. We only need to prove
that |uj |q(x)−2uj → |u|q(x)−2u strongly in (W 1,p(x)

0 (Ω))′. In fact,

〈|uj |q(x)−2uj − |u|q(x)−2u, ψ〉 =
∫

Ω

(|uj |q(x)−2uj − |u|q(x)−2u)ψ dx

≤ ‖ψ‖Lq(x)(Ω)‖(|uj |q(x)−2uj − |u|q(x)−2u)‖Lq′(x)(Ω).

Therefore,

‖(|uj |q(x)−2uj − |u|q(x)−2u)‖
(W

1,p(x)
0 (Ω))′

= sup
ψ∈W1,p(x)

0 (Ω)
‖ψ‖

W
1,p(x)
0 (Ω)

=1

∫
Ω

(|uj |q(x)−2uj − |u|q(x)−2u)ψ dx

≤ ‖(|uj |q(x)−2uj − |u|q(x)−2u)‖Lq′(x)(Ω)

and now, by the Dominated Convergence Theorem this last term approaches zero
as j →∞. The proof is complete. �
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We are now in position to prove Theorem 1.3.

Proof of Theorem 1.3. In view of the previous result, we seek for critical values
below level c. For that purpose, we want to use the Mountain Pass Theorem.
Hence we have to check the following condition:

(1) There exist constants R, r > 0 such that when ‖u‖W 1,p(x)(Ω) = R, then
F(u) > r.

(2) There exist v0 ∈W 1,p(x)(Ω) such that F(v0) < r.

Let us first check (1). We suppose that ‖|∇u|‖Lp(x)(Ω) ≤ 1 and ‖u‖Lp(x)(Ω) ≤ 1.
The other cases can be treated similarly.

By Poincaré inequality (Proposition 3.1), we have∫
Ω

|∇u|p(x)

p(x)
− |u|q(x)

q(x)
− λ(x)

|u|r(x)

r(x)
dx

≥ 1
p+

∫
Ω

|∇u|p(x) dx− 1
q−

∫
Ω

|u|q(x) dx− ‖λ‖∞
r−

∫
Ω

|u|r(x) dx

≥ 1
p+

‖|∇u|‖p+ − 1
q−

‖u‖q−
Lq(x)(Ω)

− ‖λ‖∞
r−

‖u‖r−
Lr(x)(Ω)

≥ 1
p+

‖|∇u|‖p+ − C

q−
‖|∇u|‖q−

Lp(x)(Ω)
− C‖λ‖∞

r−
‖|∇u|‖r−

Lp(x)(Ω)
.

Let g(t) = 1
p+ t

p+ − C
q− t

q− − C‖λ‖∞
r− tr−, then it is easy to check that g(R) > r for

some R, r > 0. This proves (1).
Now (2) is immediate as for a fixed w ∈W 1,p(x)

0 (Ω) we have

lim
t→∞

F(tw) = −∞.

Now the candidate for critical value according to the Mountain Pass Theorem is

c = inf
g∈C

sup
t∈[0,1]

F(g(t)),

where C = {g : [0, 1] →W
1,p(x)
0 (Ω): g continuous and g(0) = 0, g(1) = v0}.

We will show that, if infx∈Aδ λ(x) is big enough for some δ > 0 then c <
(

1
p+ −

1
q−A

)
Sn and so the local Palais-Smale condition (Theorem 4.2) can be applied. We

fix w ∈W 1,p(x)
0 (Ω). Then, if t < 1, we have

F(tw) ≤
∫

Ω

tp(x) |∇w|p(x)

p−
− tq(x) |w|q(x)

q+
− λ(x)tr(x) |w|r(x)

r+
dx

≤ tp−

p−

∫
Ω

|∇w|p(x) dx− tr+

r+

∫
Ω

λ(x)|w|r(x) dx

≤ tp−

p−

∫
Ω

|∇w|p(x) dx− tr+

r+

∫
Aδ
λ(x)|w|r(x) dx

≤ tp−

p−

∫
Ω

|∇w|p(x) dx− tr+

r+

∫
Aδ

( inf
x∈Aδ

λ(x))|w|r(x) dx

We define g(t) := tp−

p− a1 − (infx∈Aδ λ(x)) tr+

r+ a3, where a1 and a2 are given by a1 =
‖|∇w|p(x)‖L1(Ω) and a3 = ‖|w|r(x)‖L1(Aδ).
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The maximum of g is attained at tλ =
(

a1
(infx∈Aδ λ(x))a3

) 1
r+−p− . So, we conclude

that there exists λ0 > 0 such that if (infx∈Aδ λ(x)) ≥ λ0 then

F(tw) <
( 1
p+

− 1
q−A

)
Sn

This completes the proof. �

Remark 4.3. Observe that if λ(x) is continuous it suffices to assume that λ(x) is
large in the criticality set A.

4.2. Proof of Theorem 1.2. Now it remains to prove Theorem 1.2. So we begin
by checking the Palais-Smale condition for this case.

Lemma 4.4. Let {uj}j∈N ⊂ W
1,p(x)
0 (Ω) be a Palais-Smale sequence for F then

{uj}j∈N is bounded.

Proof. Let {uj}j∈N ⊂ W
1,p(x)
0 (Ω) be a Palais-Smale sequence; that is, F(uj) → c

and F ′(uj) → 0. Therefore there exists a sequence εj → 0 such that

|F ′(uj)w| ≤ εj‖w‖W
1,p(x)
0 (Ω)

for all w ∈W 1,p(x)
0 (Ω).

Now we have

c+ 1 ≥ F(uj)−
1
q−
F ′(uj)uj +

1
q−
F ′(uj)uj

≥
( 1
p+

− 1
q−

) ∫
Ω

|∇uj |p(x) dx+
∫

Ω

(λ(x)
q−

− λ(x)
r−

)
|uj |r(x) dx+

1
q−
F ′(uj)uj

We can assume that ‖|∇uj |‖Lp(x)(Ω) > 1. Then we have, by Proposition 2.5 and by
Poincaré inequality,

c+ 1 ≥
( 1
p+

− 1
q−

)
‖|∇uj |‖p−

Lp(x)(Ω)
+ ‖λ‖∞

( 1
q−

− 1
r−

)
‖uj‖r+

Lr(x)(Ω)

− 1
q−
‖uj‖W

1,p(x)
0 (Ω)

εj

≥
( 1
p+

− 1
q−

)
‖|∇uj |‖p−

Lp(x)(Ω)
+ ‖λ‖∞

( 1
q−

− 1
r−

)
C‖|∇uj |‖r+

Lp(x)(Ω)

− 1
q−
‖uj‖W

1,p(x)
0 (Ω)

from where it follows that ‖uj‖W
1,p(x)
0 (Ω)

is bounded (recall that p+ ≤ q− and
r+ < p−). �

Let {uj}j∈N be a Palais-Smale sequence for F . Therefore, by the previous
Lemma, it follows that {uj}j∈N is bounded in W 1,p(x)

0 (Ω).
Then, by Theorem 1.1 we can assume that there exist two measures µ, ν and a

function u ∈W 1,p(x)
0 (Ω) such that

uj ⇀ u weakly in W 1,p(x)
0 (Ω), (4.7)

|∇uj |p(x) ⇀ µ weakly in the sense of measures, (4.8)

|uj |q(x) ⇀ ν weakly in the sense of measures, (4.9)

ν = |u|q(x) +
∑
i∈I

νiδxi , (4.10)
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µ ≥ |∇u|p(x) +
∑
i∈I

µiδxi , (4.11)

Sν
1/p∗(xi)
i ≤ µ

1/p(xi)
i . (4.12)

As before, assume that I 6= ∅. Now the proof follows exactly as in the previous
case, until we get to

c ≥
( 1
p+

− 1
q−

) ∫
Ω

|u|q(x) dx+
( 1
p+

− 1
q−

)
Sn + ‖λ‖L∞(Ω)

( 1
p+

− 1
r−

) ∫
Ω

|u|r(x) dx.

Applying now Hölder inequality, we find

c ≥
( 1
p+

− 1
q−

) ∫
Ω

|u|q(x) dx+
( 1
p+

− 1
q−

)
Sn

+ ‖λ‖L∞(Ω)

( 1
p+

− 1
r−

)
‖|u|r(x)‖Lq(x)/r(x)(Ω)|Ω|

q+

q−−r+ .

If ‖|u|r(x)‖Lq(x)/r(x)(Ω) ≥ 1, we have

c ≥ c1‖|u|r(x)‖(q/r)−

Lq(x)/r(x)(Ω)
+ c3 − ‖λ‖L∞(Ω)c2‖|u|r(x)‖Lq(x)/r(x)(Ω),

so, if f1(x) := c1x
(q/r)− −‖λ‖L∞(Ω)c2x, this function reaches its absolute minimum

at x0 =
(‖λ‖L∞(Ω)c2

c1(q/r)−

) 1
(q/r)−−1 .

On the other hand, if ‖|u|r(x)‖Lq(x)/r(x)(Ω) < 1, then

c ≥ c1‖|u|r(x)‖(q/r)+

Lq(x)/r(x)(Ω)
+ c3 − ‖λ‖L∞(Ω)c2‖u‖Lq(x)/r(x)(Ω),

so, if f2(x) = c1x
(q/r)+ − ‖λ‖L∞(Ω)c2x, this function reaches its absolute minimum

at x0 =
(‖λ‖L∞(Ω)c2

c1(q/r)+

) 1
(q/r)+−1 . Then

c ≥
( 1
p+

− 1
q−

)
Sn +Kmin{‖λ‖

(q/r)−

(q/r)−−1

L∞(Ω) , ‖λ‖
(q/r)+

(q/r)+−1

L∞(Ω) },

which contradicts our hypothesis. Therefore I = ∅ and so uj → u strongly in
Lq(x)(Ω).

With these preliminaries the Palais-Smale condition can now be easily checked.

Lemma 4.5. Let (uj) ⊂W
1,p(x)
0 (Ω) be a Palais-Smale sequence for F , with energy

level c. There exists a constant K depending only on p, q, r and Ω such that, if

c <
(

1
p+−

1
q−

)
Sn+Kmin{‖λ‖

(q/r)−

(q/r)−−1

L∞(Ω) , ‖λ‖
(q/r)+

(q/r)+−1

L∞(Ω) }, then there exists a subsequence

{ujk}k∈N ⊂ {uj}j∈N that converges strongly in W
1,p(x)
0 (Ω).

The proof of the above lemma follows by the continuity of the solution operator
as in Theorem 4.2.

Assume now that ‖|∇u|‖Lp(x)(Ω) ≤ 1. Then, applying Poincaré inequality, we
have

F(u) ≥ 1
p+
‖|∇u|‖p+

Lp(x)(Ω)
− 1
q−
‖u‖q−

Lq(x)(Ω)
−
‖λ‖L∞(Ω)

r−
‖u‖r−

Lr(x)(Ω)

≥ 1
p+
‖|∇u|‖p+

Lp(x)(Ω)
− C

q−
‖|∇u|‖q−

Lp(x)(Ω)
−
‖λ‖L∞(Ω)C

r−
‖|∇u|‖r−

Lp(x)(Ω)

=: J1(‖|∇u|‖Lp(x)(Ω)),
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where J1(x) = 1
p+x

p+ − C
q−x

q− − ‖λ‖L∞(Ω)C

r− xr− . We recall that p+ ≤ q− and
r− < r+ < p− < p+.

As J1 attains a local, but not a global, minimum (J1 is not bounded below),
we have to perform some sort of truncation. To this end let x0, x1 be such that
m < x0 < M < x1 where m is the local minimum and M is the local maximum
of J1 and J1(x1) > J1(m). For these values x0 and x1 we can choose a smooth
function τ1(x) such that τ1(x) = 1 if x ≤ x0, τ1(x) = 0 if x ≥ x1 and 0 ≤ τ1(x) ≤ 1.

If ‖|∇u|‖Lp(x)(Ω) > 1, we argue similarly and obtain

F(u) ≥ 1
p+
‖|∇u|‖p−

Lp(x)(Ω)
− C

q−
‖|∇u|‖q+

Lp(x)(Ω)
−
‖λ‖L∞(Ω)C

r−
‖|∇u|‖r+

Lp(x)(Ω)

=: J2(‖|∇u|‖Lp(x)(Ω))

where

J2(x) =
1
p+
xp− − C

q−
xq+

−
‖λ‖L∞(Ω)C

r−
xr+

.

As in the previous case, J2 attains a local but not a global minimum. So let x0, x1

be such that m < x0 < M < x1 where m is the local minimum of j and M is
the local maximum of J2 and J2(x1) > J2(m). For these values x0 and x1 we can
choose a smooth function τ2(x) with the same properties as τ1. Finally, we define

τ(x) =

{
τ1(x) if x ≤ 1
τ2(x) if x > 1.

Next, let ϕ(u) = τ(‖|∇u|‖Lp(x)(Ω)) and define the truncated functional as follows,

F̃(u) =
∫

Ω

|∇u|p(x)

p(x)
dx−

∫
Ω

|u|q(x)

q(x)
ϕ(u) dx−

∫
Ω

λ(x)
r(x)

|u|r(x) dx

Next we state a Lemma that contains the main properties of F̃ .

Lemma 4.6. F̃ is C1, if F̃(u) ≤ 0 then ‖u‖
W

1,p(x)
0 (Ω)

< x0 and F(v) = F̃(v) for
every v close enough to u. Moreover there exists λ1 > 0 such that if 0 < ‖λ‖L∞(Ω) <

λ1 then F̃ satisfies a local Palais-Smale condition for c ≤ 0.

Proof. We have to check only the local Palais-Smale condition. Observe that every
Palais-Smale sequence for F̃ with energy level c ≤ 0 must be bounded, therefore
by Lemma 4.5 if λ verifies

0 <
( 1
p+

− 1
q−

)
Sn +Kmin{‖λ‖

(q/r)−

(q/r)−−1

L∞(Ω) , ‖λ‖
(q/r)+

(q/r)+−1

L∞(Ω) },

then there exists a convergent subsequence. �

The following Lemma gives the final ingredients needed in the proof.

Lemma 4.7. For every n ∈ N there exists ε > 0 such that

γ(F̃−ε) ≥ n

where F̃−ε = {u ∈W 1,p(x)
0 (Ω): F̃(u) ≤ −ε} and γ is the Krasnoselskii genus.
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Proof. Let En ⊂ W
1,p(x)
0 (Ω) be a n-dimensional subspace. Hence we have, for

u ∈ En such that ‖u‖
W

1,p(x)
0 (Ω)

= 1,

F̃(tu) =
∫

Ω

|∇(tu)|p(x)

p(x)
dx−

∫
Ω

|tu|q(x)

q(x)
ϕ(tu) dx−

∫
Ω

λ(x)
r(x)

|tu|r(x) dx

≤
∫

Ω

|∇(tu)|p(x)

p−
dx−

∫
Ω

|tu|q(x)

q+
ϕ(tu) dx−

∫
Ω

λ(x)
r+

|tu|r(x) dx.

If t < 1, then

F̃(tu) ≤
∫

Ω

tp
− |∇u|p(x)

p−
dx−

∫
Ω

tq
+ |u|q(x)

q+
dx−

∫
Ω

infx∈Ω λ(x)
r+

tr
+
|u|r(x) dx

≤ tp
−

p−
− tq

+

q+
an − inf

x∈Ω
λ(x)

tr
+

r+
bn,

where

an = inf
{∫

Ω

|u|q(x) dx : u ∈ En, ‖u‖W
1,p(x)
0 (Ω)

= 1
}
,

bn = inf
{∫

Ω

|u|r(x) dx : u ∈ En, ‖u‖W
1,p(x)
0 (Ω)

= 1
}
.

Then

F̃(tu) ≤ tp
−

p−
− tq

+

q+
an − inf

x∈Ω
λ(x)

tr
+

r+
bn ≤

tp
−

p−
− inf

x∈Ω
λ(x)

tr
+

r+
bn .

Observe that an > 0 and bn > 0 because En is finite dimensional. As r+ < p− and
t < 1 we obtain that there exists positive constants ρ and ε such that

F̃(ρu) < −ε for u ∈ En, ‖u‖W
1,p(x)
0 (Ω)

= 1.

Therefore, if we set Sρ,n = {u ∈ En : ‖u‖ = ρ}, we have that Sp,n ⊂ F̃−ε. Hence
by monotonicity of the genus

γ(F̃−ε) ≥ γ(Sρ,n) = n

as we wanted to show. �

Theorem 4.8. Let

Σ = {A ⊂W
1,p(x)
0 (Ω)− 0: A is closed, A = −A}, Σk = {A ⊂ Σ: γ(A) ≥ k},

where γ stands for the Krasnoselskii genus. Then

ck = inf
A∈Σk

sup
u∈A

F(u)

is a negative critical value of F and moreover, if c = ck = · · · = ck+r, then
γ(Kc) ≥ r + 1, where Kc = {u ∈W 1,p(x)(Ω): F(u) = c,F ′(u) = 0}.

The proof follows exactly the steps in in [11], using Lemma 4.7.
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