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REMARK ON WELL-POSEDNESS AND ILL-POSEDNESS FOR
THE KDV EQUATION

TAKAMORI KATO

ABSTRACT. We consider the Cauchy problem for the KdV equation with low
regularity initial data given in the space H**(R), which is defined by the norm

lellme.e = [1(€)* €@l 2-
We obtain the local well-posedness in H%® with s > max{—3/4, —a — 3/2},
—3/2 < a < 0 and (s,a) # (—3/4,—3/4). The proof is based on Kishi-
moto’s work [12] which proved the sharp well-posedness in the Sobolev space

H=3/%(R). Moreover we prove ill-posedness when s < max{—3/4, —a — 3/2},
a<—-3/2o0ra>0.

1. INTRODUCTION

We consider the Cauchy problem of the Korteweg-de Vries equation as follows;
Opu+ O3u — 30,(u)?> =0, (t,x) €[0,T] xR,
u(0,2) = up(x), = e€R.

(1.1)

Here the given data uy and an unknown function w are real-valued. We consider
(1.1) with initial data given in the space H*%(R), which is defined by the norm

pllersa == [[(€)°~I€1* D) 2

where (£) := (1 + |¢]?)Y/? and @ is the Fourier transform of u. The KdV equation
was originally derived by Korteweg and de Vries [15] as a model for the propagation
of shallow water waves along a canal. This equation is completely integrable in the
sense that there are Lax formulations, which have an infinite number of conservation
laws as follows;

/u2dﬂc, /(8$u)2 + 2uldz, /(Zﬁu)2 + 50, (0,u)? + gu4dm, etc.

Our main aim is to prove the local well-posedness (LWP for short) for with
low regularity initial data given in H*%(R). The main tool is the Fourier restriction
norm method introduced by Bourgain [3].

We recall some known results of LWP for with initial data given in the
Sobolev space H*(R). The viscosity method was applied to establish LWP for
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with s > 3/2, (see [2]). Kenig, Ponce and Vega [9] proved LWP for s > 3/4 by
the iterative approach exploiting the local smoothing effect for the Airy operator
e~19%2. Bourgain [3] established the Fourier restriction norm method and showed
LWP for s > 0 by this method, which was improved to s > —3/4 by Kenig, Ponce
and Vega [10]. In [II], they also proved that the data-to-solution map fails to be
uniformly continuous as a map from H*® to C([0,T]; H®) for s < —3/4, (see also
[B]). Kishimoto [12] showed LWP and the global well-posedness for at the
critical regularity s = —3/4, (see also [§]). In [18], Tzvetkov proved the flow map
H* 5 ug +— u(t) € H® cannot be C? for s < —3/4.

Under the following assumptions we obtain the following well-posedness result
which is generalization of [12].

3 3 3 3 3
> _2 a2y 2 o< _2 2y,
s_max{ e 2}, 2<a_07 (s,a) # ( 7 4)
Theorem 1.1. Let s,a satisfy (L.2). Then (L.1) is locally well-posed in H**.

We put s, = —a — 3/2 and B,.(X) := {u € X;||lul]|x < r} for a Banach space X.
We obtain ill-posedness for (|1.1)) in the following sense when s < max{—3/4, —a —
3/2},a<-=3/20ra>0.

Theorem 1.2. (i) Let r > 1 and —3/2 < a < —3/4. Then, from Proposi-
tion below, there exist T > 0 and the flow map for B, (H®*%) >
ug — u(t) € H*>* for any t € (0,T]. The flow map is discontinuous
on B.(H®%) (with H** topology) to H*+% (with H*® topology) for any
$ < Sq.

(i) Let s < 8q, a < —3/2 or 0 < a. Then there is no T > 0 such that the
flow map for (L)), ug — u(t), is C* as a map from B,(H*) to H*>* for
t e (0,7].

(i) Let s < —3/4 and a € R. Then there is no T > 0 such that the flow map for
, ug — u(t), is C* as a map from B,(H*®) to H>® for any t € (0,T].

(1.2)

We consider (|1.1) with initial data given in the homogeneous Sobolev space
H*(R). Noting H*(R) = H**(R) if s = a, we immediately obtain the following
results.

Corollary 1.3. Let —3/4 < s < 0. Then (1.1 is well-posed in Hs.

Corollary 1.4. (i) Letr > 1, ss—s—3/2 and —3/2 < s < —3/4. Then, from
Theorem [1.3, there exists T > 0 and the flow map for B, (H®**) >
ug — u(t) € H* for any t € (0,T]. The flow map is discontinuous on
B,.(H**®) (with H® topology) to H** (with H® topology).

(ii) Let s > 0 or s < —3/2. Then there is no T > 0 such that the flow map for
(T3], uo — u(t), is C* as a map from B,.(H®) to H® fort c (0,T).

Remark. We do not know whether LWP for holds or not in H—3/4=3/4 1In
the present paper, we only prove LWP when s > max{—3/4,—a — 3/2}, —3/2 <
a <0 and (s,a) # (—3/4,—3/4) because the case a = 0 is proved in [12].

The main idea is how to define the function space to construct the solution of
. The bilinear estimates of the nonlinear term 8, (u)? play an important role
to prove Theorem (1.1} Here the Bourgain space X#ab is defined by

Xo00 = {f € Z' R | gonn = 6 211 T — %) Iz, < o0}
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Here Z'(R™) denotes the dual space of
ZR™) :={f € S(R"); D*F f(0) = 0 for every multi-index a}.

For details on Z(R"™), see e.g. [I7, pp. 237].
We consider the bilinear estimate in the Bourgain space X% as follows

1€ % gllxean-1 < Cllfll xeanlgl o0 (1.3)
However, (1.3) fails to hold for any b € R when
3 3
= —— —— <0 1.4
S 1 1 <a=<0, ( )
3 3 16 3
82—1—1—61, a=-,, o s=-a—g, _B<a<_i’ (1.5)

where £1 is a sufficiently small number such that 0 < &1 < s + 3/4. Therefore,
the standard argument by using the Fourier restriction norm method does not
work for 7. To overcome this difficulty, we modify the Bourgain space
to establish bilinear estimates for 7. An idea of a modification of the
Bourgain space is used by Bejenaru-Tao [I] to prove LWP at the critical regularity
s = —1 for the quadratic Schrédinger equation with nonlinear term u2. We consider
counterexamples of to find a suitable function space in the case . Noting
Example in the appendix, we make a modification to the Besov type space as
follows:

£ = I (7 = €020 1s2 a0} ssopsolliy
where A;, By, are two dyadic decompositions defined by
Aj = {(r,6) e R%; 27 < (€) < 27*1},
By, := {(1,6) e R%; 28 < (7 — €3) < 2F 1Y,

for j,k € NU{0}. For a normed space X and a set Q C R", || - || x(q) is defined by
Ilfllx) = lIxafllx where xq is the characteristic function of Q.

From Examples and in the appendix, we have to take b = a/3 + 1/2 on
the domain

Do :={(r,6) € R?; [¢| < Tand |r| ~ |¢[ 7}

to obtain (|1.3)) for (L.4). Therefore, we make a modification on the Bourgain norm
in the low frequency part {|¢| < 1} as follows:

||f||)”(g=“/3+1/2(,40) for —3/4 <a <0,
Hf”;zg = ||f||X;3/4=1/4+51/2(A0) for a = —3/4,
||f||XZ’1/4+£2/2(Ao) for —3/2 <a< -3/4.

where &5 is a sufficiently small number satisfying 0 < g2 < —(a + 3/4) and Xz’b is
equipped with the norm

1fllges = Nl (r =€) Fllz2 a0

Following the above argument, we define the function space

2 = {f € Z'®):\fll o = IpnS ez + Ipifll gy < o0},
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where pp,, p; are the projection operators such that (pnf)(§) := f(§)|jg>1 and
(e f)(€) == f(€)]jg)<1- Using the function space above, we obtain the following
estimates which are the main estimates in this article.

Proposition 1.5. Let s,a satisfy (1.2]). Then

K = €)71 & Frgllzee < ClAllzecllgll 2o (1.6)
&>~ el r =€) Fxgllizrs < Clfl geallgll gova- (L.7)

We will use A < B to denote A < CB for some positive constant C' and write
A~ Btomean A < B and B < A. The rest of this paper is organized as follows.
In Section 2, we give some preliminary lemmas. In Section 3, we prove the bilinear
estimates. In Section 4, We give the proofs of Theorem and

Zs.a

2. PRELIMINARIES

In this section, we prepare some lemmas to show the main theorems and the
bilinear estimates. When we use the variables (7, ), (11,£1) and (72, &2), we always
assume the relation

(1,8) = (11,&1) + (72, &2).

We state the smoothing estimates for the KdV equation.
Lemma 2.1. Suppose that f and g are supported on a single A; for j > 0. If
K =inf{[§ — &af; 311, 72 s.t. (11,61) € supp f, (72,&2) € suppg} > 0,

then we have
12 £ gl S K20 gopalll o (21)
Lemma 2.2. Assume that f is supported on A; and g is an arbitrary test function
for § > 0. If a non-empty set Q C R? satisfies
K :=inf{|¢ + &]|; 3,11 s.t. (1,€) €Q, (m1,&1) €supp f} > 0,
then
I|f = gHLzT(QmBk) S oh/2 K1/ ||f|‘X0>}1/)2|||£|71/29||L§’E- (2.2)

(2

For the proof of these lemmas, refer the reader to [I2, Lemmas 3.2 and 3.3]. Here
we put U(t) := exp(—t02) and a smooth cut-off function ¢(t) satisfying ¢(t) = 1 for
|t| < 1 and o(t) = 0 for [t| > 2. For a Banach space &, ||-||x denotes |lullx = ||@]| 5.
We mention the linear estimates below.

Proposition 2.3. Let s,a € R and u(t) = p(t)U(t)ug. Then the following estimate
holds.

lullzse + [Jull oo mmzey S lluollea.

Proposition 2.4. Let s,a € R and

Then
lull zeo + [lull Lgo sy S NFrg {m =€) T Fllzoe + (€)™ [€]* (T =€) T Fllpzpa.

The proofs of these two propositions are given in [6].
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3. PROOF OF THE BILINEAR ESTIMATES

In this section, we give the proof of the bilinear estimates (1.6) and (1.7). We
use the following notation for simplicity,

A<j1 = Uj<j1Aj, B[kl,kz) = Uk1§k<szk7 etc.
We now prove the key bilinear estimates.

Proposition 3.1. Let s, a satisfy (1.2). Suppose that f and g are restricted on Aj,
and Aj, for ji,j2 € NU{0}. For j >0, we obtain

1 = €728 # gll gernay S CGsdns 2l allgl s (3.1)
| € It =€ F wgll g ay S CUI N gellglzee (32)

in the following five cases.

(i) At least two of j, j1,jo are less than 20 and C(j, j1,j2) ~ 1.

(11) jlan 2 20; |.71 _]2| S 1; 0< ] < jl — 10 and C(jajluj?) ~ 2_6J fOT some
0 >0.

(iif) j,j2 > 20, [j—j1] €10, 0 < jo < j+11 and C(j, jr, ja) ~ 2772 +270032)
for some § > 0.

(IV) J1,J2 220, 7 =0 and C(jvjlan) ~ 1.

(V) jvjl Z 207 j2 = O and C(jvjlva) ~ 1.

We remark that the cases (iii), (v) are also true with j; and j; exchanged because

of symmetry. Using this proposition and || f||%,, ~ > ||f||2hs,a(A_), we obtain (|1.6))
and (1.7) in the same manner as the proof inc [I3, Theorem 2.2].
Proof. We only prove (3.1)—(3.2) in the case s > max{—3/4,—a — 3/2}, —3/2 <
a < 0 and (s,a) # (—3/4,—3/4), because the case a = 0 is shown in [I2]. In the
same manner as [I2, Proposition 3.4 (ii) and (iii)], we obtain the desired estimates
in the cases (ii) and (iii). Therefore we omit the proof of these cases.

Here we put 2Fmax = max{2F, 2¥1 2F21 Then we have 2Fmax > [££, (€ — &1)].
From the definition, we easily obtain

Xs,a,1/2+s AN Zs,a N Xs,a,l/él’ (33)

where € > 0 is a sufficiently small number. First, we prove (3.1)).
(I) Estimate for (i). In this case, we can assume j, j1,j2 < 30. From (3.3)), the
left hand side of (3.1) is bounded by C/|||¢|*+! (7 —¢3)~1/2+ef *g||L§ . We use the

Holder inequality and the Young inequality to obtain

el (7 — €372 fugllz <11 % gllogeus

S ||f||L§L§/5||9||L§L§/5 S Il geanrallgll goansa-
II) Estimate for (iv). We prove
( p
_ g3\—1 . < N N
Ir = €71 € £ gll gy ag S W gopsnlgl o (34

(ITa) We consider the estimate (3.4)) in the case |¢| < 27271, In this case, the left
hand side of (3.4) is bounded by C|||¢|*+!(r)~1/2F= f « 9llz2 . from (3-3). We use
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Holder’s inequality and Young’s inequality to have

el r) =124 f o gllpa € 27290 1€l | paeca—ai 1) F) * (€9l e s
,€ 3 £
o G R PSR

< 9—2(s+a+3/2)5 . .
~ 2 ||fHX(“'2*’11/)2 ||g||)((2’111/)2
We prove only the case 2721 < |¢] < 1 below.

(ITb) In the case 2Fmax = 2k2 we have 2¥2 > |¢|271. Since |¢|*F! < [¢]7°71/2 and
2 k2/2 < 9= k/4(1¢|291) =14 we use ([2.2) with Ky ~ 271 to have

(LS. S 2727 Y 27 M2 |t ((€)° f) * ((6)°9) 2 . s4)

k>0

< 9 Z 2—k/2||<|£|22j1>—5—1/2(<§>5f) * (<£>Sg)||L3,§(Bk)

k>0

S 2 Y2722 TN ((€) )+ ((6)°(r = €929 a2 (i
k>0
< —k/4 . o1
< Z 2 ||fog?{f“g”XfZ‘,{f'
k>0

In the same manner as above, we obtain the desired estimate in the case 2Fmsx =
2k,

(Ilc) We consider the estimate ([3.4) in the case 2Fmax = 2F  If 2kmax > |¢
then we have 2Fmax ~ 2F1 or 2kmax ~ 9%2 Thus we only consider the case 2Fmax ~
eJ221.

(IIc-1) In the case —3/4 < a < 0, we prove

95
2]1’

a+1 3\a/3—1/2
I (7= €032  x glzz ay S Wl gppollollgopn (35)
(i) We consider (3.5)) when f * g is supported on the domain
Dy = {(1,6) € R%|r| > |¢|° and |¢| < 1}.

In this case, 2771/2 < |¢] < 1 and 2%7/2 < |7] < 2%, From [£] ~ 2521, we use
([2.1) with K ~ 27t to obtain

(LHS)S > 2V fagl e (s,
k>3j1/24+0(1)
Splm22amhin N kB2 ((6) ) x (€)% 9) 12
k>3j1/2+0(1) |
—2(s+3/4)j
S2THIR |

sl

(ii) We consider (3.5)) when f * g is restricted to the domain

Dy = {(7,€) € R%|7| < [¢]7* and [¢] <1}.
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In the present case, we have 27271 < |¢] < 2791/2 and 1 < |7| < 2%71/2. We use the
Holder inequality and the Young inequality to have

(L.HS.)

< Z 2(a/371/2)k|”€|a+1f *g”Li,&(Bk)
k<3j1/24+0(1)

S22 IR o g 1(E)° ) ((€)°9) | e 2
k<3j1/24+0(1)

<oCBIn SN O  f (€ g g
k<3j1/2+0(1)

< 9—2(s+3/4)j1 R N

(IIc-2) In the case a = —3/4, we prove
1/4/ \—3/4+e1/2
I e gl oy S I lgealloll e (36)
From |7| ~ |£]2%1 > 1, we use Holder’s inequality and Young’s inequality to obtain
(L.H.S.) §2(72573/2+£1)j1 ”‘£|71/2+61/2”L§(‘E‘S1)H(<£>Sf) % (<§>SQ)”L?’L2
S22 () £ 1o €)1
<2(_25_3/2+61)]1 >s,1/2 >s,1/2.
S 170 selol

Since —2s — 3/2 4+ &1 < —&7 in present case, we have ([3.6]).
(IIc-3) In the case —3/2 < a < —3/4, we estimate

T

+1 —3/4+e5/2
I ()22 gl gy S W el B)

From the assumption, —s — 3/4 + g5 < 0 and |¢|*t! < |¢]7571/2. Now we use the
Holder inequality and the Young inequality to have

(LH.S.) S 27201 |Jg] 7712 (r) =322 ((6)° £) + ((€)°9)l 2,
<27 H|§|71/2752/2||L§(|§|22*211)||(<£>Sf) * ((€)°9)llrger2
Sl gellol oo
(ITII) Estimate for (v). We prove

22 €D gl o) S I el (3.8)
k>0 '

In the case |&| < 2727, we use Holder’s inequality and Young’s inequality to have
(L.H.S.) S27[((6)° f) * gHLi@ < 2j||<§>sfHLgL}_ ||9||L§L3(\5\g2—2j)
§2j||f||)z(sé}1/)2|||f|7a||L§(\§\gz—2j)||\f|a9\|L31§
S22l g el o

Therefore we only consider the case 2727 < [&] < 1.
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(ITTa) We consider the estimate (3.8) in the case 2Fmax = 2F, From 2% > 2k2  we
use (2.1)) with K ~ 27 to obtain

(LHS.) S27|[(r = &) ((€)° ) % gl 2,
SIIfHX;';{f||<T>_1/2+59||Xo 2 S IIfIIXb 2 ll9 ggrs-

(ITIb) We consider the estimate (3.8)) in the case 2kmax = 21 The left hand side
of (B8) is bounded by C27[[(r — €)~V/2+((€)° ) # gll 2 . From |éa] S 252, we
use the Holder inequality and the Young inequality to have

2||(r = )7V ) * glliz S PN F) * gl 2w

5 2JH<§>éf||L3g Hg||L1L3/2(‘§‘<2k1—2j)

SY DT ez (50,22 Nl 21072,

which is bounded by the right hand side of .

(ITIc) We consider the estimate in the case 2Fmax = 2k2 | If 2kmax — 9k2
|€2|2%7, then we have 2Fmax ~ 28 or 2kmax ~ 2k Therefore we only consider the
case 2F2 ~ |£5]2%7,

(ITIc-1) In the case a = —3/4, we prove

20 2RO ) * gllz sy S 1l sy1r2 90 g oraaraverse. (3.9)
k>0

From 2(=1/4=e1/2)k2 < (|¢,]220)~1/42=1k/2 e use ([2.2) with Ky ~ 27 to have

(L.H.S.) 527723 " 21 2=/DR ()7 f) s (€] 74 () V41 2 g) |2y,
k>0

S22 N gz Nl g o savensa
k>0

(IIc-2) In the case —3/2 < a < —3/4, we prove

27 272 (¢ N *glez (mo S Hf”;géll/)?||9HX2=1/4+62/2- (3.10)
k>0 ’

From |&;|~(0+1/2) (1) ~1/4=e2/2 < 9-7/29=22k/2 e use ([2.2) with Ky ~ 27 to obtain

(L.H.S.) S 27723 2 2=/2R) ()2 f) s (J€)* T2 ()42 2) | 12y
k>0

<S> 2 2k/QHfHX 1/2HQH got/atea/2:
k>0

(ITIc-3) In the case —3/4 < a < 0, we prove
21 27 ) * gllz iy S 11l 5172190 gvarasara. (3.11)
k>0 '

(i) We consider (3.11)) when g is restricted to D. In the present case, 272 <
ol 292 and 1 Sl S 2975 From €] o{n) o151 8] oS 3133 115
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we use the Holder inequality and the Young inequality to obtain
(L.H.S.) §2j 1(€€)° f) * 9||L§L3 S 2j||<§>sf\|L§L§/3||9||L§Lg(\g\52—j/2)
—2aj/3 —4a/3-1/2 ,
S L Iz (es1g2-ir2) 9] goarsraa.

Since [|[¢]7**/3712| 1 (a1 212y S 2°%9/3, we have (B.11)).

(ii) We consider (3.11)) when g is supported on D;. In this case, we have 277/2 <
|&2] <1 and 2%/2 < |7| < 2%,

(ila) Firstly, g is restricted to B3j/2,3j/24a) With 0 < a < j/2. From 9—3/2 <
‘§2| 5 9=3/2+a 414 ‘€2|—a<7_2>—a/3—1/2 ~ |§2|—4a/3—1/22—2aj/3—j7 we use Holder’s
inequality and Young’s inequality to obtain

1€ f*g||)g(sé—1;/2(3>2a) ~2 Z 27k/2||(<§>5f) *g”Lﬁ’E(Bk)
’ - k>2a

< Z Q_k/2||<€>sf”L§L}_”g”LéLﬁ(\&\,SZ*J'/?JrQ)
k>2a

S22 g 15 2 g gamsrmey s

<o—slatde g .
S27slTa Hf”xd}l/ngHxL’ /34172

We put a sufficiently small number e3 satistying 0 < €3 < 4(a + 3/4)/3. From the
above estimate, we have

167 % 9lxsy 1200 2770

|X(52,’11/)2||g||xz,a/3+1/2. (312)

(iib) Secondly, g is restricted to Bjz; o2 With 0 <~ < 29/2. From 279/2+7 <
€] < 1, we use (2.2)) with Ky ~ 27 to obtain
~ 9 —k/2 s
1€ 9l o1y ~ 2 D0 2720 ) % 9z (s

k<2a

<29/ Z 1 ||f||)2(52v11/)2H|€|_1/29||Lf_€(2*1/2+“f§|§|)
k<2a ’ '

— i/3—4 _4 3
§a2 2aj/3 J/2|||§| 3(a+4)||L§(2__i/2+w§|£|)HfHX;QJl/)zHQHX(LL,H,/3+1/2
5@27%(04’%)7”.]('”)252,111/)2HgHXz,a/3+1/2.

From the definition of €3, we have

1€ * 9||X(sé;;/2(BS2a) S 042—763||f||)g(sé}1/)2||9||Xz-,a/3+1/2~ (3.13)
If g is restricted to B[3;/24+,35/2+a] With v < a, from (3.12)) and (3.13), we have
lEf g |X'(52"_1)1/2 < (2*63& + 042753“/) Hf”)?f;l/f ||g||X.z,a/3+1/2. (3.14)

Let be the decreasing sequence {a,}Y_, defined by

1 1
ag = Ap4+1 = £ 0n, 0 < an S ia

J

2’ 2

where N is a minimum integer such that N > log, j. We first apply with o = ag
and v = ay, next apply with a = a; and v = a3. Repeating this procedure at the
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end we apply with a = ay and v = 0. From ({3.14)), we obtain

N
1
N < i N N
||€f * g||X:2v;;/2 ~ (]- + nzo an, ) ||f||)((92'11/)2 Hg||XZ’a/3+1/2(D1)3
which shows the claim since ZZ«LV:O ai is bounded uniformly in j.
Next, we prove (3.2). From the triangle inequality and the Schwarz inequality,
we have

£z S 31z S D252 I fllz2(s,)- (3.15)

k>0 k>0
From (3.15)), we obtain
s 3\—1
=& Ef % glluzrrcay SUE S *gllri2a)

for any j > 0. Thus we only consider the case (i) and (iv).

(IV) Estimate of (i). In this case, the left hand side of is bounded by
C|||€|et (T — &3)~1/2Fe f « gllzz - In the same manner as (I), we have the desired
estimate. ’

(V) Estimate of (vi). We prove

41/ \—1
Y % lazns cao) S WAL e gl e (3.16)

We easily obtain ([3.16]) in the case |¢| < 27271, Therefore we only consider the case
27271 < |¢] < 1 below.

(Va) We consider the estimate (3.16)) in the case 2Fmax = 2%1 or 2%2. Note that
the left hand side of (3.16) is bounded by C'Y7, -, 27F/2||[¢]* f * 9llzz (5, from

(3-15). In the same manner as (IIb), we obtain ([3.16) in the case 2Fmax = 2F1 or
272

(Vb) We consider the estimate (3.16) in the case 2Fmex = 2k From [¢[at! <
1€]7571/2) we have [¢]2t1(r)~1 < |¢]73/122991791/2 We use the Hélder inequality
and the Young inequality to have

(LHS) S 2772 )1e734((€)° ) + (€)° 9l 2
S 27 2NE N p2egm-20) 146)° Fll L2 ra 1669l 12

< oo o
Sl lgl e

4. PROOF OF THE MAIN RESULTS

In this section, we give the proofs of Theorem and Here Z7" is defined
by the norm

Hu||Z;ya = inf{||v| zsasu(t) =v(t) ont € [O,T]}.

We obtain the following main result.

Proposition 4.1. Let s,a satisfy (1.2) and r > 1.
(Ezistence) For any ug € B,.(H>®), there exist T ~ r~6/G+2min{s.al) gpq 4, ¢
C([0,T); H>*) N Z3* satisfying the following integral form for (L.1));

u(t) = U(t)up + 3/0 U(t — 5)0x(u(s))?ds. (4.1)
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Moreover the data-to-solution map B,.(H**) 3 ug — u € C([0,T); H>*) N Z3* is
Lipschitz continuous.

(Uniqueness) Assume that u,v € C([0,T]; H>*)NZ3:" satisfy (4.1). Then, u=v
ont e [0,T].

Proof. We first prove the existence of the solution to . The KdV equation is
scale invariant with respect to the transform
u(t, ) — ux(t,z) == A 2u(A 2, ), A > 1.
A simple calculation shows
ux (0, ) [rewe < A3 g e

Therefore, we can assume that initial data is small enough. From this, we use
Propositions and to prove the existence of the solution by Banach’s
fixed point argument. For the details, see the proof in [I4, Proposition 4.1].

We next prove the uniqueness of solutions by the argument in [16]. We define
the space W*“ by the norm

[ullwea = [lul|zs.e + HuHLm(R;HS’“)'

In the same manner as the proof in [16, Theorem 2.5], we obtain, for 1/2 < b < 1,

s,a,b .
we XY, w0z)=0 = 51—1}20 l[w] 0,61 ||X(51,71,)b’(5 -0, (4.2)
where T := A3T, A > 1 and the space X(Sl’al’g’ defined by
— s—a|¢|a 3\ b~
lull oo = I{14€Y" =161 (r = €)'l 22 (4,080} zolli -

Let u € W satisfy u(0,2) = 0 and ¢ is an arbitrary positive number. Since W*
contains Z densely, we can choose v € Z satisfying ||[v — u||ws.« < . From the
definition, we have

[0(0) 100 = [[90) = w(O) 1120 S lu— vllwen < .
Note that
Sup ullzzea S llullwea S lluflxses,
for 1/2 < b < 1. By the above argument, we have
[ullwge Sllu—vllwze + 1o = U@)o(0)l[wie + [1UE)00)] x50

Se+llo =U@)v0)lwze + [[0(0)] o

Se At llo = U@)v(0)lwze-
Since the second term tends to 0 as T — 0 from , we have

li s,a = (). 4.

Jim [ullyye =0 (43)
By combining Propositions and (4.3), we have uniqueness. For the
details, see [12]. O

Next, we prove Theorem (1)—(iii). We first consider Theorem (i). In [II,
Bejenaru and Tao, for the quadratic Schrodinger equation with nonlinear term 2,
proved the discontinuity of the data-to-solution map for any s < —1. We essentially
follow their argument to obtain the following proposition.
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Proposition 4.2. Let s < s,, —3/2 < a < =7/8 and 0 < § < 1. Then there
exist T = T(0) > 0 and a sequence of initial data {dn s}-; € H> satisfying the
following three conditions for any t € (0,T),
(1) l¢n.sllesae ~ 6,
(2) ll¢onsllzsa — 0 as N — oo,
(3) lluns(®)llm=e 2 62,
where un s(t) is the solution to obtained in Pmposz'tion with the
initial data ¢ 5.

Proof. Let N > 1. We put the initial data ¢y s as follows;
v
ons(x) = SN2 cos(Nx)/ e g,
-

where v := N2, By a simple calculation, we have

ON.6(€) ~ ONTE 2y i (€) + SN2y 5 (€), (4.4)

where
BT :=[£N — v, £N +1].
Therefore,
on.sllmea ~ ON*TT32 U )by sllproe = |dnsllmoa ~ SN*TF32 (45)

Since ||¢n sl|msa ~ J, we have T = T(§) > 0 and the solution uy s to (L.1) with
the initial data ¢n s by Proposition Let t € (0,T]. A quadratic term Ay of the
Taylor expansion is defined by

t
As(uo)(t) = 3/ Ut — 5)0, (U (s)uo)?ds.
0
A simple calculation shows that

Rafun) (1) = expis’y) [ 1= 8400

where ¢(&,&1) := 38€1(£ — &1). By similar argument to the proof in [I4, Theorem
1.2], we obtain

o (&§1)uo(§ — &1)dé, (4.6)

|42 (o) (8) || e Z 62 (4.7)
Now we put vy 5(t) := un,s(t) —U(t)pn,s — A2(dn,s)(t). Since the data-to-solution
map is Lipschitz continuous for s = s,, we obtain
[on,s(8)]| o < 0, (4.8)
by using Propositions and From (@.5)), (4.7) and (4.8), we obtain
lun,s(@)|[ e > [|A2(6n,6) ) mree = o, (@) e = U dn sl are0 2 67,

for all N > 1. Since ||¢n ||z — 0 as N — oo, this shows the discontinuity of
the flow map.
We next prove Theorem (ii). We only prove that the following estimate fails.

A2 (o) ()l ree S llwollFre.e, (4.9)
for |t| bounded by the general argument. For details, see [7].
Let N > 1. We put a smooth initial data as follows;

v V2
én(z) := N~ cos(Nx) / e’ de + N2+ cos(N~2x) / e de.
- —v/2
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A straightforward computation shows that

ON(E) ~ N™ x5+ (€) + x5~ (6) + N> xe(©), (4.10)
where C := [y/2,3v/2]. Clearly, ||¢n| ps.e ~ 1. Substituting into (4.6)), we

have

A2 () (8)] S N721E] X(—rj221(€) + N 78] Xpan,2n41(€)
+ (remainder terms).

Therefore,

[A2(on) Ol se 2 N2 (/7/2 |§|2&+2d£)1/2 4+ N—st2a (/NN+7<£>25+2)1/2'

—/2
(4.11)
If a < —3/2, the first term of the right hand side of diverges. When we assume
a > —3/2, the right hand side of is greater than C'(N~2(sTa+3/2) 4 N2a) T
the case 0 < a or s < —a — 3/2, we have || A2(¢n)(¢)||zrs.c — 00 as N — oo, which
shows the claim since ||¢n || gsa ~ 1.
Finally, we consider Theorem [1.2] (iii). Similar to the proof of Theorem |1.2 (ii),
we only prove that the following estimate fails for |¢| bounded.

|45 (o) ()| oo S N[0 27e.0 (4.12)

where Aj is the cubic term of the Taylor expansion. We put the sequence of initial
data {9}¥_, € H™ as follows;
N1/2
Yn(z) = N~5TL/4 Cos(Nx)/ e e,
_N-1/2

Similar to this data is used in [4]. In the same manner as the argument in [4], we

prove (4.12)) fails. O

5. APPENDIX

We mention the typical counterexamples of (1.3 in the case (|1.4]).

Example 5.1 (high-high-low interaction). We define the rectangles P;, P> as fol-
lows;

P ={(r,) eR*; [ = N| < N7V2, |7 — (3N%¢ — 2N?)| < 1/2},
PQ = {(T,f) S Rz; (—T, —f) € Al}

Here we put
f(1.8) == xp(1.8), 9(7.€) == xp, (T, €). (5.1)
Then
Frg(r€) 2 N7V2 xp, (7,6), (5.2)
where

Ry :={(1,€) e R*; ¢ € [1/2N~Y2 3/AN~1/?], |7 — 3N?¢| < 1/2}.

Inserting (5.1) and (5.2)) into ([1.3)), the necessary condition for ([1.3)) is b < 4s/3 +
a/3+3/2. If (L.3) for s=-3/4,b<a/3+1/2.
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Example 5.2 (high-low-high interaction). We define the rectangle
Q= {(r,6) eR%|¢ —2N"V2 < N7V2) |7 - 3N%¢| < 1/2}.

Here we put

f(Ta g) = XP, (Ta 5)7 g(Tv f) = XQ(Tv f) (53)

Then
Frg(r€) 2 N7V xp, (1,6), (5.4)
where
Ry :={(1,£) € R%; ¢ — N| < N7Y2/2, |7 — (3N2%¢ — 2N?)| < 1/2}.

Substituting (5.3) and (5.4) into (1.3]), the necessary condition for (|1.3) is b >
a/3+1/2.
Example 5.3 (high-high-high interaction). We put

f(Ta 5) = XP, (T7 5); g(Ta 5) = XP, (T7 g) (55)
Then

fxg(r,6) 2 N7Y2 xp, (1,€), (5.6)

where
Ry:={(r.€) € R%|€ —2N| < N7V2/2, |7 — 3N*¢ — 4N®)| < 1/2}.

Inserting (5.5) and (5.6) into (1.3), the necessary condition for (1.3)) is b < 1/2 for
s=—-3/4.
On the other hand, we put

F(7,6) = xRy (T, f), g(T, 5) = XP; (T, g) (5.7)
Then

frg(r,8) 2 N2 xp,(1,9), (5.8)

where
Ry = {(r,€) e R} | — N| < N~Y2/4, |7 — (3N?¢ — 2N®)| < 1/2}.

Substituting (5.7) and (5.8]) into (1.3]), the necessary condition for (1.3 is b > 1/2
for s = —3/4.
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