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EXISTENCE OF POSITIVE SOLUTIONS FOR SOME
NONLINEAR PARABOLIC EQUATIONS IN THE HALF SPACE

ABDELJABBAR GHANMI

Abstract. We prove the existence of positive solutions to the nonlinear par-
abolic equation

∆u−
∂u

∂t
= p(x, t)f(u)

in the half space Rn
+, n ≥ 2, subject to Dirichlet boundary conditions. The

function f is nonnegative continuous non-increasing, and the potential p is

nonnegative and satisfies some hypotheses related to the parabolic Kato class.

We use potential theory arguments to prove our main result.

1. Introduction

In this article, we study the existence and asymptotic behaviour of continuous
positive solution, in the sense of distributions, for the nonlinear parabolic equation

∆u− ∂u

∂t
= p(x, t)f(u) in Rn

+ × (0,∞)

u(x, 0) = u0(x) in Rn
+

u(z, t) = 0 on ∂Rn
+ × (0,∞),

(1.1)

where u0 is a nonnegative measurable function in Rn
+, the function f : (0,∞) →

[0,∞) is non-increasing and continuous and the potential p : Rn
+× (0,∞) → [0,∞)

is measurable and satisfies some hypotheses related to the parabolic Kato class
P∞(Rn

+) studied in [11, 13].
In this article, we denote Rn

+ = {x = (x1, x2, . . . , xn) ∈ Rn : xn > 0}, n ≥ 2, we
denote by ∂Rn

+ the boundary of Rn
+ and by C(Rn

+ × (0,∞)) the set of continuous
functions in Rn

+ × (0,∞). Note that x → ∂Rn
+ means that x = (x′, xn) tends to a

point (ξ, 0) of ∂Rn
+.

For each nonnegative measurable function f on Rn
+, we denoted

Ptf(x) = Pf(x, t) =
∫

Rn
+

Γ(x, t, y, 0)f(y)dy, t > 0, x ∈ Rn
+,
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where Γ(x, t, y, s) is the heat kernel in Rn
+ × (0,∞) with Dirichlet boundary condi-

tions u = 0 on ∂Rn
+ × (0,∞) given by

Γ(x, t, y, s) = (4π)−n/2 1
(t− s)n/2

exp
(
− |x− y|

4(t− s)
)
(1− exp

(
− xnyn

t− s

)
)

for t > s, x, y ∈ Rn
+.

We note that the family of kernels (Pt)t>0 is sub-Markov semi-group, that is
Pt+s = PtPs for all s, t > 0 and Pt1 ≤ 1. We mention that for each nonnegative
f on Rn

+, the map (x, t) → Ptf(x) is lower semi-continuous on Rn
+ and becomes

continuous if f is further bounded. Moreover, let w be a nonnegative superharmonic
function on Rn

+, then for every t > 0, Ptw ≤ w and consequently the mapping
t → Ptw is non-increasing.

The motivation for our study are the results presented in [6, 7, 8, 9, 10, 11, 12,
13, 15] and their references. Zhang [15] gave an existence result of the parabolic
problem

∆u− ∂u

∂t
+ q(x, t)up = 0, in D × (0,∞)

u(x, 0) = u0(x), x ∈ D,
(1.2)

where D = Rn(n ≥ 3), u0 is a bounded function of class C2(Rn) and q(x, t) is in
the parabolic Kato class P∞(Rn) which was introduced in [16].

Inspired by the papers by Zhang [15] and Zhang and Zhao [14], Maatoug and
Riahi introduced for the case of the half space a parabolic Kato class P∞(Rn

+) and
gave an existence result for (1.2) where D = Rn

+.
Maagli et al [11] studied the problem

∆u− uϕ(., u)− ∂u

∂t
= 0 in Rn

+ × (0,∞)

u(x, 0) = u0(x), x ∈ Rn
+

u = 0 in ∂Rn
+ × (0,∞),

(1.3)

where u0 is a nonnegative measurable function defined on Rn
+ and satisfies some

properties which allows u0 to be not bounded, the perturbed nonlinear term uϕ(., u)
satisfies some hypotheses related to the parabolic Kato class P∞(Rn

+).
Under some conditions imposed on the initial value u0 and the nonlinear term

ϕ, the authors proved in [11] the following result.

Theorem 1.1. Problem (1.3) has a positive continuous solution u in Rn
+ × (0,∞)

satisfying
cPtu0(x) ≤ u(x, t) ≤ Ptu0(x),

for each t > 0 and x ∈ Rn
+, where c ∈ (0, 1).

The elliptic counterpart of the problem (1.1) was studied in [2]. There the author
proved existence and nonexistence results for the semilinear elliptic equation

∆u = g(u) in D

u = ϕ on ∂D,
(1.4)

where D is a simply connected bounded C2-domain in Rd (d ≥ 3), g is a continuous
function on (0,∞) such that 0 ≤ g(u) ≤ max(1, u−α), for 0 < α < 1 and ϕ is a
nontrivial nonnegative continuous function on ∂D. More precisely, Athreya [2]
proved the following result.
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Theorem 1.2. There exists 0 < c1 < ∞ such that if u ∈ C(∂D) and ϕ(x) ≥
(1 + c1)h0(x), then there exists a solution u of (1.4) such that u ≥ h0, where h0 is
a fixed positive harmonic function.

Hence it is interesting to discuss the parabolic problem (1.1) by adopting similar
techniques as in [11] based on potential theory tools.

For the study of (1.1), a basic assumption on the function p requires to fix a
nonnegative superharmonic function ω on Rn

+ satisfying condition (H0) defined as
follows.

Definition 1.3. We say that a nonnegative superharmonic function w satisfies
condition (H0) if w is locally bounded in Rn

+ such that the map (x, t) 7→ Pw(x, t)
is continuous in Rn

+ × (0,∞) and limx→∂Rn
+

Ptw(x) = 0, for every t > 0.

To illustrate the above definition, we consider the following examples of functions
satisfying (H0); see [11].
• Every bounded nonnegative superharmonic function ω in Rn

+ satisfies (H0).

• ω(x) = xβ
n, 0 < β ≤ 1. Indeed, ∆ω = β(1−β)ω

β−2
β , then ω is a superharmonic

function. Moreover, by a simple calculation we obtain

ω(x)− Ptω(x) =
∫ t

0

Psω
β−2

β (x)ds, (x, t) ∈ Rn
+ × (0,∞).

Hence, Pω ≤ ω and so limx→∂Rn
+

Ptω(x) = 0. Furthermore, the function (x, t) →
ω(x)−Ptω(x) is upper semicontinuous, which ensures the continuity of the function
(x, t) → Ptω(x).
• ω(x) = Kν(x), where ν is a nonnegative measure on ∂Rn

+ satisfying for 0 <
α ≤ n/2

sup
x∈Rn

+

∫
∂Rn

+

xn

|x− z|n−2α
ν(dz) < ∞.

• ω(x) = Σ∞p=1 min(p, αpG(x, ep)), where G is the Green’s function of ∆ in Rn
+

with zero boundary condition, ep = (0, . . . , 0, p) and αp > 0 is chosen such that
αpG(x, ep) ≤ 2−p for x ∈ Bc(ep,

1
2 ) ∩ Rn

+. This last example is studied in [11],
where the authors proved that the function ω is an unbounded potential satisfying
condition (H0).

For the rest of this article, we fix a nonnegative superhahmonic function ω sat-
isfying the condition (H0), and we assume the following hypotheses:

(H1) The function f : (0,∞) → [0,∞) is nonincreasing and continuous.
(H2) For all x ∈ Rn

+, we have limt→0 Ptu0(x) = u0(x) and

Pu0 ∈ C(Rn
+ × (0,∞)) and lim

x→ξ∈∂Rn
+

Ptu0(x) = 0. (1.5)

We note that if there exists c > 0 such that 0 ≤ u0 ≤ cω, then (1.5) is
satisfied.

(H3) p : Rn
+ × (0,∞) → [0,∞) is measurable such that the function

p̃ :=
pf(Pω)

Pω

belongs to the parabolic Kato class P∞(Rn
+).

Before stating our main result, we give an example where (H3) is satisfied.
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Example 1.4. Let f be a non-increasing continuous function such that there exists
η > 0 satisfying

0 ≤ f(t) ≤ η(t + 1) ∀t > 0.

Let ω(x) = xn, x ∈ Rn
+ and let p be a nonnegative function such that

p ≤ ω

1 + ω
q

for some q ∈ P∞(Rn
+). Then we have

p̃ =
pf(Pω)

Pω
=

pf(ω)
ω

≤ η
1 + ω

1 + ω
q = ηq

which belongs to P∞(Rn
+).

More examples where (H3) is satisfied will be developed in section 4. Now, we
give our main result.

Theorem 1.5. Under the assumptions (H1)–(H3), there exist a constant c > 1 such
that if u0 ≥ cω on Rn

+, then (1.1) has a positive continuous solution u satisfying,
for each x ∈ Rn

+ and t > 0,

Ptω(x) ≤ u(x, t) ≤ Ptu0(x).

The outline of this article is as follows. In section 2, we give some notations and
we recall some properties of the parabolic Kato class P∞(Rn

+). Section 3 concerns
the proof of Theorem 1.5 by using a potential theory approach. The last section is
reserved for examples.

2. Preliminary results

In this section we collect some useful results concerning the parabolic Kato class
P∞(Rn

+), which is stated in [11] and [13].

Definition 2.1 ([11]). A Borel measurable function q in Rn
+ × R belongs to the

class P∞(Rn
+) if for all c > 0,

lim
h→0

sup
(x,t)∈Rn

+×R

∫ t+h

t−h

∫
B(x,

√
h)∩Rn

+

min(1,
y2

n

|t− s|
)Gc(x, |t− s|, y, 0)|q(y, s)|dyds = 0

and

sup
(x,t)∈Rn

+×R

∫ +∞

−∞

∫
Rn

+

min(1,
y2

n

|t− s|
)Gc(x, |t− s|, y, 0)|q(y, s)|dyds < ∞,

where

Gc(x, t, y, s) :=
1

(t− s)n/2
exp(−c

|x− y|2

t− s
), t > s, x, y ∈ Rn

+.

Remark 2.2. The parabolic Kato class P∞(Rn
+) is quite rich. In particular, it

contains the time independent Kato class K∞(Rn
+) used in the study of elliptic

equations (See [3, 4] for definition and properties).

Other examples of functions belonging to P∞(Rn
+) are given by the following

proposition.

Proposition 2.3 ([11]). (i) L∞(Rn
+)⊗ L1(R) ⊂ P∞(Rn

+).
(ii) K∞(Rn

+)⊗ L∞(R) ⊂ P∞(Rn
+).
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(iii) For 1 < p < +∞ and q ≥ 1 such that 1
p + 1

q = 1. Then for s > np
2 and

δ < 2
p −

n
s < ν we have

Ls(Rn
+)

θ(.)δ(1 + |.|)ν−δ
⊗ Lq(Rn

+) ⊂ P∞(Rn
+),

where θ is defined on Rn
+ by θ(x) = xn.

We state now an elementary inclusion of the class P∞(Rn
+) as follows.

Proposition 2.4 ([11]). Let q ∈ P∞(Rn
+), then the function (y, s) 7→ y2

nq(y, s) is
in L1

loc(Rn
+ × R). In particular, we have P∞(Rn

+) ⊂ L1
loc(Rn

+ × R).

For any nonnegative measurable function f in Rn
+ × (0,∞), we denote

V f(x, t) :=
∫ t

0

∫
Rn

+

Γ(x, t, y, s)f(y, s)dyds =
∫ t

0

Pt−s(f(., s))(x)ds

and we give the following propositions that will be useful in proving the existence
and continuity of solutions to (1.1).

Proposition 2.5 ([11]). Let q be a nonnegative function in P∞(Rn
+) then there

exists a positive constant αq such that for each nonnegative superharmonic function
v in Rn

+,

V (qPv)(x, t) =
∫ t

0

∫
Rn

+

Γ(x, t, y, s)f(y, s)Ptv(y)dyds ≤ αqPtv(x),

for every (x, t) ∈ Rn
+ × (0,∞).

Proposition 2.6 ([11]). Let w be a nonnegative superharmonic function in Rn
+

satisfying (H0) and q be a nonnegative function in P∞(Rn
+) then the family of

functions{
(x, t) → V f(x, t) =

∫ t

0

∫
Rn

+

Γ(x, t, y, s)f(y, s)dyds, |f | ≤ qPw
}

is equicontinuous in Rn
+× (0,∞). Moreover, for each (x, t) ∈ Rn

+× (0,∞), we have

lim
s→0

V f(x, s) = lim
y→∂Rn

+

V f(y, t) = 0,

uniformly on f .

We will apply the following auxiliary result, several times in this article.

Proposition 2.7. Let ω be a nonnegative superharmonic function satisfying condi-
tion (H0) and ϕ be a nonnegative measurable function such that ϕ ≤ ω on Rn

+, then
the function (x, t) → Ptϕ(x) is continuous on Rn

+× (0,∞) and limx→∂Rn
+

Ptϕ(x) =
0, for every t > 0.

Proof. For each (x, t) ∈ Rn
+ × (0,∞), we write

Ptω(x) = Ptϕ(x) + Pt(ω − ϕ)(x).

So, from (H0) we have (x, t) → Ptω(x) is continuous in Rn
+ × (0,∞) and from the

fact that (x, t) → Ptϕ(x) and (x, t) → Pt(ω − ϕ)(x) are lower semicontinuous in
Rn

+ × (0,∞), we deduce that (x, t) → Ptϕ(x) is continuous in Rn
+ × (0,∞). On

the other hand since 0 ≤ Ptϕ ≤ Ptω and limx→∂Rn
+

Ptω(x) = 0, then we have
limx→∂Rn

+
Ptϕ(x) = 0, for every t > 0. �
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3. Proof of theorem 1.5

Let p̃ be the function given in hypothesis (H3) and let αep be the constant defined
in Proposition 2.5. We put c := 1 + αep and we consider a nonnegative continuous
function u0 on Rn

+ such that u0 ≥ cω. Let Λ be the non-empty closed convex set
given by

Λ = {v measurable function in Rn
+ × (0,∞) : Pω ≤ v ≤ Pu0}.

We define the integral operator T on Λ by

T (v) = Pu0 − V (pf(v)).

We aim to prove that T has a fixed point u in Λ. First, we prove that T maps Λ
into itself. Let v ∈ Λ, since v ≥ Pω ≥ 0, we have

Tv ≤ Pu0.

Furthermore, by the monotonicity of the function f we have

Tv = Pu0 − V (pf(v))

≥ Pu0 − V (p̃Pω)
≥ c1Pω − αepPω

≥ (c1 − αep)Pω ≥ Pω.

Secondly, we claim that T is nondecreasing on Λ. Indeed, let u, v ∈ Λ such that
u ≤ v. Then it follows from the monotonicity of the function f that

Tv − Tu = V (p(f(u)− f(v))) ≥ 0.

Now, we define the sequence (vk)k∈N by

v0 = Pω and vk+1 = Tvk, for k ∈ N.

Since TΛ ⊂ Λ, then from the monotonicity of T , we obtain for all k ∈ N

Pω ≤ vk ≤ vk+1 ≤ Pu0.

So, the sequence (vk)k∈N converge to a function u ∈ Λ. Moreover, using hypothesis
(H3) and the monotonicity of the function f we obtain for each k ∈ N

pf(vk) ≤ pf(Pw) = p̃Pω.

So, by Proposition 2.5 and Lebesgue’s theorem we deduce that V (pf(vk) converges
to V (pf(u)) as k tends to infinity. Then, on Rn

+ × (0,∞), u satisfies

u = Pu0 − V (pf(u)). (3.1)

At the remainder of the proof, we aim to show that u is a desired solution of (1.1).
It is obvious that

pf(u) ≤ p̃Pw. (3.2)
So, from the hypothesis (H0) and Proposition 2.4, we deduce that

pf(u) ∈ L1
loc(Rn

+ × (0,∞))

moreover, by (3.2) and Proposition 2.6, we obtain

V (pf(u)) ∈ C(Rn
+ × (0,∞)) ⊂ L1

loc(Rn
+ × (0,∞)).

In addition, using (1.5) and Proposition 2.7 we obtain

Pu0 ∈ C(Rn
+ × (0,∞)).
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Thus, by (3.1) it follows that u ∈ C(Rn
+ × (0,∞)).

Now, applying the heat operator ∆ − ∂
∂t in (3.1), we obtain clearly that u is a

positive continuous solution (in the distributional sense) of

∆u− ∂u

∂t
= p(x, t)f(u) in Rn

+ × (0,∞).

Next, using (1.5) and hypothesis (H2), it follows that

lim
t→0

u(x, t) = lim
t→0

Ptu0(x) = u0(x) and lim
x→ξ∈∂Rn

+

Ptu0(x) = 0.

Finally, from (3.2) and Proposition 2.6, we conclude that for each x ∈ Rn
+ we have

lim
t→0

V (pf(u))(x, t) = 0.

Hence, u is a positive continuous solution in Rn
+× (0,∞) of the problem (1.1). This

completes the Proof.

4. Examples

In this section we give some examples. The first one concerns functions satisfying
the hypothesis (H3), the second is an application of Theorem 1.5.

Example 4.1. Let f be a nonnegative bounded continuous function on (0,∞) and
σ be a nonnegative measure on ∂Rn

+ satisfying

sup
x∈Rn

+

∫
∂Rn

+

xn

|x− z|n−2α
σ(dz) < ∞,

for some 0 < α ≤ n/2. Then, it was shown in [11], that the harmonic function
defined on Rn

+ by

Kσ(x) := Γ(
n

2
)π−n/2

∫
∂Rn

+

xn

|x− z|n
σ(dz)

satisfies condition (H0).
Now, let ω = Kσ and let p be a nonnegative function such that p ≤ qP (ω) for

some q ∈ P∞(Rn
+), then

p̃ =
pf(Pω)

Pω
≤ ||f ||∞q ∈ P∞(Rn

+).

Hence, hypothesis (H3) is satisfied.

Example 4.2. Let 1 ≤ s < ∞ and r ≥ 1 such that 1
s + 1

r = 1. Let σ ≥ ns
2 and

ρ < 2
s −

n
σ < µ. For each (x, t) ∈ Rn

+ × (0,∞), We put

p(x, t) =
|g(x)|

x
ρ−(γ+1)
n (1 + |x|)µ−ρ

|h(t)|,

where γ > 0, g ∈ Lσ(Rn
+) and h ∈ Lr(R).

Let u0 be a nonnegative continuous function on Rn
+ satisfying hypothesis (H2).

Then, there exist a constant c > 1 such that if u0(x) ≥ cxn, for all x ∈ Rn
+, the
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problem

∆u− ∂u

∂t
= p(x, t)u−γ in Rn

+ × (0,∞)

u(x, 0) = u0(x) in Rn
+

u(z, t) = 0 on ∂Rn
+ × (0,∞),

has a positive continuous solution u satisfying, for each (x, t) ∈ Rn
+ × (0,∞),

xn ≤ u(x, t) ≤ Ptu0(x).
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